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Abstract
One of the most popular methods for modelling survival analysis data is the ubiquitous

and time-honored proportional hazards model of Cox (1972). Popularity notwithstanding,
in several cases, however, the proportional hazards assumption is found to be violated.
Thus, important model extensions have been developed in the intervening years. One such
extension is the so-called Frailty model (see for example Collett, 2015), which is based on the
utilization of random effects. Another extension arises from the application of finite mixtures
in the context of time-to-event data. Although finite mixture modelling tools are used in
many fields of science, they have been less well-developed and used in survival analysis.
Thus, a key aim of this article is to provide an interesting application of mixture modeling
in survival analysis and to discuss aspects arising in its application. In this paper, we apply
these techniques using real data from the research register of the Finnish Centre for Pensions;
using pension insurance mortality data, we use the basic Cox proportional hazards model
by incorporating finite mixture modelling techniques. Additional comparisons with frailty
models are also provided.

Key words: Censoring; Cox model; Disability pension; EM algorithm; Finite mixtures; Mix-
ture models; Mortality.

1. Introduction

Survival analysis (SA) techniques include a set of methods for analyzing time until the
occurrence of a pre-specified event of interest such as mortality. In SA, subjects are usually
followed over a pre-specified period of time. As such, an event can be, for example, death, the
occurrence of a disease or the end of working life. SA can also be used to handle incomplete
information. This is called censoring. Observations are censored when the information
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about their survival time is incomplete. A commonly encountered form of censoring is right
censoring, which means that the event of interest did not occur during the chosen follow-up
period. When studying lifetime data, SA techniques are often considered superior to normal
linear regression. SA is applied in many fields of science, including economics (Heckman and
Singer, 1985; van den Berg, 2001), medicine and health (Machin et al., 2006; Collett, 2015),
amongst other fields.

One of the most popular method or model in SA is the Cox proportional hazards
(CPH) model (Cox, 1972). In important cases, however, the required proportional hazards
assumption is violated and this has led to key CPH model extensions. For example, in some
cases the survival times among individuals are not independent. This situation may arise
if individuals falling into specific groups (such as hospitals or clinics) tend to follow similar
survival times. These types of model extensions are often addressed in Frailty models (see
Collett, 2015). The basic idea in these models is to apply mixed modelling (with random
effects) in a SA context. In this type of modelling, the source of correlation is assumed to be
known. Frailty modelling includes two main approaches (see e.g., Wienke, 2010). First, it is
assumed that the event times include clusters, defined as shared frailties (random effects).
Second, frailty can also be defined on an individual level, in which case the corresponding
model is called the univariate frailty model. A comprehensive treatment of random effects
in survival modelling is given in Ha et al. (2017) for example.

In another type of modelling, the observed survival times may be correlated, but the
source of correlation cannot be directly measured. Basically, this kind of situation can
be addressed using the theory and methods of finite mixtures (e.g., McLachlan and Peel,
2000). One technique used in mixture longitudinal data analysis is trajectory analysis (e.g.,
Nagin, 2005; Nagin and Odgers, 2010a), where the focus is on the analysis of a sequence of
measurements. This technique has been widely applied in the social sciences (Nagin and
Odgers, 2010b; Nummi et al., 2017), but applications to survival data have not been that
common. Thus, although finite mixture modelling tools are used in many fields of science
(e.g., Böhning et al., 2007), they are not that much utilized with CPH model especially.
Some related topics are covered in textbooks, like Ng et al. (2019) and McLachlan and Peel
(2000), but there are surprisingly few published articles of the topic. Obviously, there are
some practical obstacles in the combination of these two techniques and we try to figure out
what these are with interesting heterogeneous pension insurance survival data that is used
for testing and illustration.

In this paper, we employ real data from the research register of the Finnish Centre for
Pensions. In the Finnish context, the causes of disability correlate with mortality as high-
lighted in Polvinen et al. (2015) and Sewdas et al. (2020). Using these data and focusing
on mortality, we test and illustrate several important and practical modelling scenarios. In
the first scenario, we apply the basic Cox proportional hazards model. In the second sce-
nario, we apply mixture modelling to survival times, and then we use the identified mixture
components as a risk factor in the basic Cox model. Our third scenario includes applying
mixture modelling within Cox model. The final scenario involves using a frailty model with
individual-level frailties. Our results are summarized in the final section as well as recom-
mendations for future research.
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2. Theoretical Background

2.1. Finite mixture analysis

A finite mixture of censored T distribution regression models is defined by letting G
denote the number of mixture components (i.e., groups) in the mixture model and Zi denote
the latent class (random) variable which indicates the component (group or sub-population)
to which the ith observation (individual) belongs. The conditional density of the outcome
variable Yi, i = 1, . . . , n, given Zi = j, is given by

Yi|{zi = j} ∼ T (β0 + µj + xTi β, σ2
j , ν), j = 1, . . . , G, (1)

where (β0 + µj) is the intercept of jth group, xi is a p-dimensional predictor vector, β is a
p-dimensional parameter vector, σj is the scale parameter, ν is the degrees of freedom and
T (µ, σ, ν) is the generalized T distribution with location parameter µ, scale parameter σ and
ν degrees of freedom. Note that if Y ∼ T (µ, σ, ν), then the distribution of (Y − µ)/σ is
standardized Student’s T distribution with ν degrees of freedom. Clearly, the mean of the
density within the jth group is β0 + µj + xTi β.

In the case of right censoring, the observed ith outcome can be defined as follows:

Y ∗i =
{
ci, if ρi = 1 (i.e. yi > ci)
yi, if ρi = 0. (2)

Here,
ρi =

{ 1, if the ith observation is right-censored,
0, if the ith observation is not censored.

Suppose that P (Zi = j) = pj and Zi is independent of predictor variables xi. The
maximum likelihood estimate is then obtained by maximizing the log-likelihood function

l(θ|y∗1, . . . , y∗n, ρ1, . . . , ρn) =
n∑
i=1

log{pj[fij(y∗i )]1−ρi [1− Fij(y∗i )]ρi} (3)

where fij and Fij are the probability density function and cumulative distribution function
of T (β0 + µj + xTi β, σ2

j , ν) distribution. Correspondingly, θ = (θT1 , . . . , θTG), where θj =
(pj, βTj , σ2

j , ν)T . In the R-package CensMixReg, the maximum likelihood estimate of θ is
found using an EM-type algorithm (Dempster et al., 1977). Note that it is also possible
to fit a finite mixture of censored normal distribution regression models using CensMixReg.
However, in our empirical experience and the context of our application, using the T
distribution gave more consistent results than the normal distribution.

The posterior probability of the ith individual belonging to the jth mixture component
is estimated by

pij = pj[fij(y∗i )]1−ρi [1− Fij(y∗i )]ρi∑G
h=1 ph[fih(y∗i )]1−ρi [1− Fih(y∗i )]ρi

, i = 1, . . . n, j = 1, . . . , G. (4)
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The individual i is assigned to the group having the highest posterior probability estimate.

Likelihood-based inference can be very difficult in mixture models and this is also the
case when mixtures and Cox models are combined. For example, when testing hypotheses
H0 : G = G0 against HA : G = G0 + 1, the usual likelihood ratio testing should not
be applied because the clusters may not be nested. Also, other point identification and
boundary problems may appear. However, the usual information criteria and some other
statistical measures may still be applied.

2.2. The proportional hazards (PH) and frailty model

2.2.1. The hazard function

Let Y be the time to an event. The hazard function can be defined as follows:

h(y) = lim
∆y→0

P (y ≤ Y < y + ∆y|Y ≥ y)
∆y . (5)

In this expression, P (y ≤ Y < y + ∆y|Y ≥ y) is the conditional probability that the event
occurs in a short time-interval, given that the event has not occurred before time y. Note
that h(y) is not the probability that the event occurs at time y or before time y. We can
interpret the hazard function h(y) as an instantaneous rate of occurrence of an event (e.g.,
death). We can also approximate the conditional probability with h(y)∆y, where ∆y is a
small positive real number.

2.2.2. The Cox PH model with finite mixtures

The Cox proportional hazards model can be defined in terms of the hazard function in
the following manner:

hi(y) = λ0(y) exp(β1xi1 + . . .+ βkxik), (6)
where hi(y) is the hazard of individual i at time y, xi1, . . . , xik are k covariates of the
individual i, β1, . . . , βk are the model regression coefficients and λ0(y) is the baseline hazard
function.

The above model is called the proportional hazards model because the hazard ratio
relating individual i to individual j,

hi(y)
hj(y) = exp{β1(xi1 − xj1) + . . .+ βk(xik − xjk)}, (7)

does not depend on time nor on the base hazard function λ0(y). In his groundbreaking paper,
Cox (1972) showed that the regression coefficients can be estimated using partial likelihood
methods without knowing the form of the base hazard.

In the mixture modelling context the population density function of time to event has
the finite mixture form

f(y) =
G∑
j=1

πjfj(y), (8)
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where f1(y), . . . , fG(y) are the densities of the mixture components and π1, . . . , πG are the
mixing proportions which add up to one. Then the survival function of the time to the event
has the mixture form

S(y) =
G∑
j=1

πjSj(y), (9)

where S1(y), . . . , SG(y) are the survival functions of the mixture components. However, it
has been shown that the hazard function of the time to the event does not have a mixture
form under CPH (McLachlan and McGiffin, 1994; Ng et al., 2019). Another possibility is to
use a mixture specification of the hazard function

h(y) =
G∑
j=1

πjhj(y), (10)

where h1(y), . . . , hG(y) are the hazard functions of the mixture components, but in that case
the survival function of the time to the event does not have a mixture form (McLachlan and
McGiffin, 1994; Ng et al., 2019).

Eng and Hanlon (2014) have proposed a method where the mixture components are
estimated using EM-algorithm. If the observation y of the jth mixture component follows
PH model, it has the density

fj(y, δ|x) = [λ0j(y) exp(xTβj)]δ exp[−H0j(y) exp(xTβj)], (11)

where δ is the censoring indicator (δ = 1, if the survival time is observed), x is the covariate
vector, y is the survival time, λ0j(y) is the baseline hazard, H0j(y) is the cumulative hazard
and βj is the regression coefficient vector. The density of the complete data can then be
written as

f(y,∆|x,U) =
n∏
i=1

G∑
j=1

[πjfj(yi, δi|xi)]uij , (12)

where y = (y1, . . . , yn) are the survival times, ∆ = (δ1, . . . , δn) are the censoring indicators
(δi = 1, if the ith survival time is observed), xi = (xi1, . . . , xik)T is the covariate vector,
U = (U1, . . . , Un) are the latent mixture components (Ui = j, if the ith observation belongs
to the jth component), P (Ui = j) = πj and uij = 1{Ui=j}. Eng and Hanlon (2014) maximized
the mixture likelihood using EM-algorithm and called the method Cox-assisted clustering
(CAC).

2.2.3. The shared frailty PH model

The shared frailty model is defined as follows:

hij(y) = h0(y) exp(xTijβ + wj) = h0(y)uj exp(xTijβ), j = 1, . . . , G, i = 1, . . . , nj, (13)

where wj, j = 1, . . . , G, are i.i.d. random effects distributed as N(0, σ2), hij(y) is the
conditional hazard of individual i from the jth component (conditional on wj), xij is the
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vector of covariates, β are regression coefficients and h0(y) is the baseline hazard function.
The uj = ewj term is the frailty of the jth component, where j = 1, . . . , G. Note that now
log(uj) is normally distributed. It follows that the hazard ratio is

hi2j2(y)
hi1j1(y) = uj2

uj1
exp((xi2j2 − xi1j1)Tβ), j1 6= j2. (14)

From this expression, it is seen that the hazard ratio depends on the frailties. We can easily
see that if the individual i2 from the j2th component and the i1 from the j1th component
have identical covariate profiles (i.e. xi2j2 = xi1j1), then the hazard ratio simplifies to

hi2j2(y)
hi1j1(y) = uj2

uj1
. (15)

Note that if the number of components is the same as the number of individuals (i.e. n =
Σjnj = G), we get the following individual frailty model or random effects frailty model:

hi(y) = h0(y) exp(xTi β + wi) = h0(y)ui exp(xTi β), i = 1, . . . , n. (16)

3. Pension Insurance Mortality Data

The practical application of this study relates to pensioners and their mortality. The
research data was collected from the research register of the Finnish Centre for Pensions.
The register is a national databank of the Finnish population, including both the working age
population and retirees. The databank contains comprehensive socioeconomic information
on the population and statutory pensions.

The base population consisted of the subset of individuals born in 1940 who were still
alive in 1995 (i.e., aged 55). The data is cross-sectional from an analytical point of view
but entails longitudinal follow-up information on lifetime from 1995 to 2018 (i.e., from ages
55 to 78). Here, we used a 50-per-cent random sample from the selected cohort and this
translated into a total of 10,637 individuals. The remaining lifetime of this cohort underlines
the difference in mortality between men and women since, according to Official Statistics of
Finland (2020), the expected years alive after 2019 for men was 8.9 years and for women
10.9 years.

The research data contains individual-level information on the following variables:

• Lifetime in years (from 55th birthday until 31 Dec. 2018),

• Gender,

• Pension benefit (Disability Pension or Old-age Pension),

• Cause of permanent disability leading to disability pension (8 classes),

• Employer before retirement (Private Sector, Public Sector or Self-employed),

• Censoring (1=alive or 0=deceased on 31 Dec. 2018),
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• Highest Education (Basic Education, Secondary Education, Lower University Degree
or Higher University Degree), and

• Age at retirement (a continuous variable while the others are classifying variables).

Lifetime is the response variable that we analyzed in this study, using both finite mixture
and survival modelling techniques.

Our analysis focuses on mortality. We followed the individuals of the cohort born in
1940 for the 24-year-period from 1995 to 2018 (i.e., ages 55 to 78). This follow-up time
translated into a great share of the cohort alive at the end of the study period (over 72%),
disregarding possible illnesses. Furthermore, in the Finnish population (as in many other
western countries), the probability of permanent disability, which ends working lives for the
majority of the seriously ill people, increases rapidly after age 55. However, a vast majority
of the cohort survived without permanent illnesses and could retire on an old-age pension
at the agreed retirement age of the pension scheme (65 yrs.). From the perspective of SA,
the censoring rate in the population was 72.8 per cent.

The actual data analysis was performed using R software (R Core Team, 2019). Specif-
ically, the CensMixReg package (Sanchez et al., 2018) was used to identify mixture groups,
and the Survival (Therneau and Lumley, 2019) and Coxme (Therneau, 2020) survival anal-
ysis R packages. Furthermore, we have also used the cac R function of Eng and Hanlon
(2014) to fit the Cox PH model within the mixture model context.

Table 1 shows some basic descriptive statistics within the respective factor classes.
The counts indicate a reasonable number of cases in the classes in the sense that the chosen
categories are not so fine as to result in sparse data. Specifically, the smallest class, higher
university graduates (n = 134), is non-censored, and the other classes include more than 300
individuals.

The shares of the deceased (non-censored) indicate that mortality among men and
disability pensioners is high, as high share of these groups face death before age 78. The
share of non-censored is significantly lower among women (20%), old-age pensioners (19%)
and lower for university graduates (20%).

The same classes are reflected in the average lifetimes of the non-censored. When
comparing men and women, the lifetime (by age 78) of the non-censored women is 0.9
years longer than that of men. The same difference can be seen when comparing disability
pensioners with old-age pensioners. The lifetime of disability pensioners is 3.9 years shorter
than that of old-age pensioners. When comparing classes of education, the lifetimes are
relatively similar within the three lowest classes: basic education (15.6 yrs.), secondary
education (15.4 yrs.), and lowest university education (15.8 yrs.). The lifetime of high
university graduates is 1.1 years longer than that of those with a basic education. The classes
of employer before retirement indicate significant but small differences between classes.

Descriptive statistics indicate that we can expect significant differences between genders
and pension benefits in the statistical analyses given in the following section.
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Table 1: Descriptive statistics of cohort born in 1940

Non-censored Censored Total
Count % Average Life-

time, years*,**
Count Count

Men 1,803 36 15.3 [15.1–15.5] 3,269 5,072

Women 1,087 20 16.2 [15.9–16.4] 4,478 5,565

Old-age pension 1,300 19 17.8 [17.6–18.0] 5,635 6,935

Disability pen-
sion

1,590 43 13.9 [13.6–14.1] 2,112 3,702

Basic ed. 1,721 30 15.6 [15.3–15.8] 3,995 5,716

Secondary ed. 676 27 15.4 [15.1–15.8] 1,856 2,532

Low univ. 359 20 15.8 [15.3–16.3] 1,400 1,759

High univ. 134 21 16.7 [16.0–17.5] 496 630

Private Sector 1,490 30 15.3 [15.0–15.5] 3,481 4,971

Public Sector 1,005 24 15.9 [15.6–16.2] 3,247 4,252

Self-employed 395 28 16.1 [15.7–16.6] 1,019 1,414
Total 2,890 7,747 10,637
*90% confidence limits in parentheses.
**Average lifetime from 55th birthday until 31 Dec. 2018.

4. Data Analysis Using Various Modelling Techniques

4.1. The Cox model

The first step of our study was to analyze our data using a Cox proportional haz-
ards model. The response variable was Lifetime and the explanatory variables were Gender,
Pension benefit, Age at retirement, Highest education and Employer. The model estimates
(Hazard ratios) are given in Table 4 (under the column titled ”Cox PH Fit”). The analysis
was done both for the whole data set and for the data set with censored cases excluded.
The first analysis includes 10,637 individuals, of which 2,890 are non-censored. The results
are reasonable and mirror much of what was demonstrated in Table 1. From the descriptive
statistics given in Table 1, significant differences in lifetime in two variables, Gender and
Pension benefit, are observed. From the Cox PH model analysis (Table 4) we observe that
women’s mortality rate is significantly lower (i.e., hazard ratio 0.5) compared to men’s mor-
tality rates. Also, disability pensioners have a much higher hazard ratio of mortality (2.42)
than old-age pensioners. In comparison with individuals in the basic education level, those
with a higher university education have a slightly lower mortality rate (the coefficient for
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higher university education (0.82) is statistically significant). Employer is not a statistically
significant variable in this model.

The second analysis was done for the non-censored data set to make the analysis and
goodness-of-fit measures comparable to the results of the Cox PH with ex ante (in the SA,
we call the groups as ”ex ante groups” since they are constructed using the survival model
underlying equation (17) below. The concordance statistics is an established measure of the
goodness-of-fit in survival models (see Harrell et al., 1996); for the basic Cox model, the
concordance value is 0.61. Subsequent sections show differences between other models and
Cox PH model.

4.2. Modelling mixture components

The second step of our analysis was to first study the distribution of the lifetime.
The lifetime is largely centered around 23–24 years, indicating the still living individuals.
Furthermore, the long left tail indicates increasing mortality with age. The first step of finite
mixture modelling was to search for possible mixture components or sub-groups from the
outcome. In general, choice of the number of mixture components is a key central question in
finite mixture modelling, and it is usually determined via statistical information criteria (e.g.,
Bayesian Information Criteria, BIC) and with the subjective consideration of the modeller.
In our application, the number of groups was based on the sizes of the mixture components,
as we did not want possible artefact or too small groups in the further steps of the analysis.

When using the CensMixReg R package (and included functions), which takes account
of right-censoring on the outcome, a regression model must be specified. To this end, we
defined the following simple regression model:

Lifetime = PensionBenefit+RetirementAge+HighestEducation (17)

The distribution of the outcome Lifetime is such that the R implementation standard
assumption of the normal distribution was switched to the T distribution, which behaved
slightly more stable in our analyses. Some experiments with gender as a factor indicated
that the model is somewhat sensitive to the underlying regression model (factors), and so
we chose to use a simple model, which provided us with a reasonable number of mixture
components and which could be estimated with the EM algorithm. The BIC values for
k = 2, 3, 4 groups were respectively 28757.09, 28799.61 and 28955.36. As is often the case,
choices of a larger number of mixture components/groups led to convergence problems of
the EM algorithm, and were therefore not considered here. Overall in the BIC analysis the
model solution was stable between several model runs.

The four-component solution yielded the group sizes as shown in Table 2. We named
the groups based on average lifetime, counted from the data using the group-assignments.
The No risk group included those who were alive at the end of the 23-year study period, and
thus had censored measurements in the survival modelling analysis.

To further illustrate the above lifetime analysis, we draw the distribution of lifetimes by
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Table 2: Mixture group sizes and lifetimes

Estimated
Counts

% Average Lifetimes
(years)

No Risk (NR) 7,747 72.8 > 23.6
Low Risk (LR) 169 1.6 22.7
At Risk (AR) 325 3.1 20.1
High Risk (HR) 2,396 22.5 14.5

mixture component. The boxplot of lifetimes for the mixture components are shown in Figure
1. As demonstrated by Figure 1 and Table 2, the components or sub-groups have greatly
different mortalities. The vast majority of the sample (72.8%) are in the No Risk group, and
alive at the end of study period. The Low Risk and At Risk groups show a slightly increased
mortality with an average lifetimes of 22.7 years and 20.1 years and relatively narrow range
of lifetimes. The average lifetime in High Risk group is only 14.5 years and the Figure shows
also a wide range of lifetimes. The overall conclusion from Figure 1 is that the distribution
between mixture components barely overlap indicating a clear group assignment of the above
mixture analysis.

Although the distribution of lifetimes barely differ for men and women within com-
ponents, the shares or proportions of men and women within the components are different,
as there are significantly more men in the High Risk group (see Table 3 below). These
additional results give further assurance for the group-based correlation of survival times
and we will utilize this information in conjunction with the Cox PH regression model in the
following section.

Table 3: Mixture groups by gender

Men Women Total
Count % Count % Count %

No Risk (NR) 3,269 64.5 4,478 80.5 7,747 72.8
Low Risk (LR) 104 2.1 65 1.2 169 1.6
At Risk (AR) 196 3.9 129 2.3 325 3.1
High Risk (HR) 1,503 29.6 893 16.0 2,396 22.5
Total 5,072 5,565 10,637

The mixture groups can be further dissected and parsed by analyzing the cause of re-
tirement on a disability pension. The cause of permanent disability gives a clear indication or
a proxy of an individual’s health, and some causes of disability are more life-threatening than
others. For example, in examining Figure 2, we see that neoplasms are often life-threatening
in the sense that those presenting with neoplasms are represented to a large degree in the
High Risk mortality group. Indeed, approximately 74 per cent of individuals with neoplasms
were in the High Risk mortality group. Conversely, individuals with depression or diseases
of the musculoskeletal system were somewhat over-represented in the No Risk group. In-
terestingly, although the cause of disability was not used in mixture analysis, this analysis
revealed substantial agreement with these results.
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Figure 1: Box plot of lifetime by mixture component. Box widths are propor-
tional to sample sizes. The notches indicate the sample medians and the dots
indicate the sample means. The dashed line indicates the sample median of the
censored observations.

4.3. The Cox model with mixture components as a factor

The third step in our analysis was to combine the four-class factor obtained in the
preceding section with the basic Cox PH model developed in Section 4.1. To achieve this,
we used the risk groupings from the information of ex ante defined mixture groups. The
hazard ratios are also presented in Table 4 in the column labelled ”Cox PH + Ex Ante
Fit”. For those individuals who died before the end of the 23-year follow-up period, we
select one class of the mixture components as a reference group, and in this analysis, the
chosen reference group was the Low Risk group. As noted in Table coefficients, the fitted
results have changed in some meaningful ways as compared with the Cox PH model fit.
For example, now the hazard ratio of disability pensioners is much higher (7.00) compared
to old-age pensioners. The mixture-component-based classes are statistically significant in
the model. The coefficients are reasonable and confirm that the mixture groups capture
interesting sub-populations. The estimates for the At Risk group (3.03), and especially for
the High Risk group (24.00), are large compared to the reference (Low Risk) group, as is to
be expected.
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Figure 2: Cause of disability by mixture component, %

In comparing the basic Cox PH model fit with the Cox PH combined with Ex Ante fit
(treating groups as a factor), the LR test statistic χ2 value is 1754.9 on 2 degrees of freedom.
This difference is highly significant and this indicates that adding the group component
information significantly increases the predictive power of the Cox PH model. Similarly, the
concordance statistic (0.73) for the latter model is higher than the value corresponding to
the Cox PH model (0.61), which also indicates an improved model fit.

4.4. The frailty model with random effects

The fourth step of our analysis included fitting a frailty model with individual random
effects. The results are listed in Table 4 (Column titled ”Frailty with Random Effects Fit”).
Note that in this analysis we did not use the mixture component factor developed in Section
4.2 and used in Section 4.3. The results can be summarized by noting that the hazard ratios
are quite similar to the basic Cox PH model. The coefficient for women (0.47) is slightly
smaller than in the Cox PH model (0.50) and significantly smaller than in the Cox model
with mixture components as a factor (0.92), and the coefficient for the disability pension
(2.67) is slightly higher than in the Cox PH model (2.42). As was the case for the basic Cox
PH model, the Frailty model disability pension estimate differs greatly from the Cox PH
model with mixture components, which yields the estimated hazard ratio of 7.0.
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Table 4: Cox and frailty regression estimates (hazard ratios)

Cox PH + Frailty with
Cox PH Fit Ex Ante Fit Random

Effects Fit

Censored
included

Censored
excluded

Censored
excluded

Censored
included

Gender: Women 0.50∗∗∗ 0.91∗ 0.92∗∗∗ 0.47∗∗∗

Men ref ref ref ref

Pension: Old-age ref ref ref ref
Disability 2.42∗∗∗ 1.50∗∗∗ 7.00∗∗∗ 2.67∗∗∗

Pension age 0.98∗∗∗ 0.99 0.97∗∗∗ 0.98∗∗∗

Education: Basic ed. ref ref ref ref
Secondary ed. 0.92 1.05 0.88∗∗ 0.91∗

Low univ. 0.77∗∗∗ 0.99 0.78∗∗∗ 0.75∗∗∗

High univ. 0.82∗ 0.95 0.84 0.79∗

Employer: Private sector ref ref ref ref
Public sector 1.06 0.97 0.95 1.06
Self-employed 0.94 0.96 0.94 0.93

Group: No Risk N/A N/A N/A
Low Risk N/A N/A ref N/A
At Risk N/A N/A 3.03∗∗∗ N/A
High Risk N/A N/A 24.00∗∗∗ N/A

RE Variance 0.60
Concordance 0.61 0.73
The number of cases (n) 2890 2890 2890 2890
Significance codes: ∗ ∗ ∗ < 0.001, ∗∗ < 0.01, ∗ < 0.05

The basic Cox PH model test against the frailty mode were compared with a LR test.
The value of the statistic was 33.978 (1 degrees of freedom), which clearly indicates that the
frailty model with individual effects increases the predictive power of the Cox model.

To further develop and illustrate this model, we provide the estimated random coeffi-
cients (i.e., individual frailties) in Figure 3 in the Appendix. The estimated values for the
No Risk group (mean = -0.16) are all negative highlighting that the individuals in this group
survived until the end of the study period (i.e., until age 78). Essentially all of the High Risk
(0.48), At Risk (0.24) and Low Risk (0.13) group estimates are positive. Not surprisingly,
the range of the coefficients do not differ appreciably between the Low-Risk and At-Risk
groups, but the coefficients for the High Risk group are notably higher (mean and median
around 0.5) than in the other groups.
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4.5. The mixture Cox model

Our last analysis consists of mixture modelling of lifetime using the finite mixture form
of the Cox PH model as shown in section 2.2.2. The number of mixture groups is more
complicated in our application as far more groups are separated or indicated as compared
to the ex ante modelling of lifetime as in section 4.2. The BIC analysis focusing on non-
censored cases indicate at least 15 groups with relatively similar survival patterns. The
survival times of the groups are similar and near each other. To simplify the results, we
selected a three-group solution with relatively equal sizes. Also 4 group solution was tested,
but the magnitude of the estimates obtained was no longer at a plausible level.

Table 5 shows the Cox model estimates within the mixture groups. The gender
(woman) effect is highly group-specific and estimates also differ compared to basic Cox
model (Table 4, Censored excluded). Estimates on disability pension and pension age are
in the same range between groups and, similar to basic Cox model. Estimates of level of
education differ greatly between groups. Overall the statistical significance of most of the
covariates is high, especially in groups two and three. Figure 4 in the Appendix shows the
corresponding distribution of lifetime within mixture groups. The figure shows that the
lifetimes are relatively similar between groups. In the high mortality group one the average
lifetime is 14.1 years and correspondingly 15.8 years and 18.2 years in groups two and three.
The model selected here includes three sub-groups (Non-censored only). However, we can see
that the groups are different from the ex ante mixture analysis (see Table 2) where groups
indicate very different mortalities. The ex ante mixture analysis showed a large High Risk
group (N = 2, 396) with high mortality (average lifetime 14.5 yrs.) and two smaller groups
with moderate mortality. In the mixture Cox model the groups are somewhat more similar
and not easily comparable with the ex ante groups.

5. Concluding Remarks

Survival analysis (SA) techniques are appealing approaches in many fields of research
and application because of their simplicity, their nonparametric nature, and their accommo-
dation of the presence of censoring. The key question regarding the ubiquitous Cox model
is whether the resulting model estimates are unbiased. To address such deficiencies, frailty
models have been developed to include a random factor for unknown covariates, and the
frailties aim to capture effects which are not explicitly included in the model. Furthermore,
the merit of the finite mixture modelling approach is that it reveals possible latent classes
from a given outcome distribution. As a starting point, as is demonstrated in our work here
it is noteworthy and interesting to bring the sub-groups or mixture components into the
context of SA. Using these techniques in parallel will continue to provide new insights into
the Cox model, especially regarding estimates and dealing with any related biases.

In this study, we analyzed a simple empirical data, including information on lifetimes
and some background factors of a Finnish cohort. The focus of the analysis was on modelling
lifetime at ages 55 to 78. The basic Cox model revealed differences in mortality with respect
to gender, pension benefit and education. The results indicate that women face a smaller
likelihood of death compared to men, and disability pensioners face a far greater likelihood
of death than old-age pensioners.
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Table 5: Mixture Cox model regression estimates by mixture group (hazard
ratios)

Group 1 Group 2 Group 3
Gender: Women 0.01∗∗∗ 7.91∗∗∗ 14.93∗∗∗

Men ref ref ref

Pension: Old-age ref ref ref
Disability 4.26∗∗∗ 2.64∗∗∗ 4.63∗∗∗

Pension age 0.99 0.86∗∗∗ 1.04∗∗∗

Education: Basic ed. ref ref ref
Secondary ed. 0.94 0.02∗∗∗ 24.17∗∗∗

Low univ. 3.14∗∗∗ 0.004∗∗∗ 11.35∗∗∗

High univ. 0.01∗∗∗ 0.07∗∗∗ 82.79∗∗∗

Employer: Private sector ref ref ref
Public sector 1.04 1.55∗∗∗ 1.16
Self-employed 0.10∗∗∗ 3.57∗∗∗ 1.01

The number of cases (n) 1037 923 930

More importantly, we analyzed the outcome lifetime with a finite mixture technique
and discovered that it consists of four distinct sub-populations with different level of mor-
talities. In the application considered here, the frailty model with individual random effects
yields estimates approximately the same as in the basic Cox PH model. Clearly Cox model
estimates change when adding mixture component as a factor. Thus, the results show
some discrepancy in parameter estimates, or bias, in basic Cox PH model estimates. Both
goodness-of-the fit statistics and likelihood-ratio tests improve using the extensions provided
here. Nonetheless, the frailty model yields estimates that are close to the basic Cox model.
The results for Cox-mixture analysis show differences between groups regarding gender and
level of education. Results on disability pension are similar compared to other models. It is
likely that the group-composition, which is different compared to ex ante groups, affects the
estimates.

These analyzes indicate substantially that, at this stage of the life course, there are
significant differences in mortality between men and women, and indeed the expected lifetime
for women of the studied cohort is known to be about two years longer than that for men.
The eligibility rules of disability pension are strict because there must be a severe and long-
term illnesses in order to get a pension. Therefore, the increased likelihood of premature
death indicated by the models is no surprise.

Our ongoing work includes analytically merging the Cox PH model with mixture mod-
elling techniques, with an eye to developing a much-needed open-source (e.g., R) package to
facilitate use by practitioners and statistical modellers. As noted previously, the cac function
is designed to this kind of analysis and it can be useful in analyzing Cox mixture models.
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APPENDIX

Figures

Figure 3: Box plot of individual frailty coefficients by mixture component. Box
widths are proportional to sample sizes. The notches indicate the sample medi-
ans and the dots indicate the sample means.
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Figure 4: Box plot of lifetimes in mixture Cox model by mixture component.
Box widths are proportional to sample sizes. The notches indicate the sample
medians and the dots indicate the sample means.


