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Abstract
It is becoming increasingly clear that complex interactions among genes and environ-

mental factors play crucial roles in triggering complex diseases. Thus, understanding such
interactions is vital, which is possible only through statistical models that adequately ac-
count for such intricate, albeit unknown, dependence structures. In this article, we propose
and develop a novel nonparametric Bayesian model for case-control genotype data using
hierarchies of Dirichlet processes that offers a more realistic and nonparametric dependence
structure among the genes, induced by the environmental variables. In this regard, we pro-
pose a novel and highly parallelisable MCMC algorithm that is rendered quite efficient by
the combination of modern parallel computing technology, effective Gibbs sampling steps,
retrospective sampling and Transformation based Markov Chain Monte Carlo (TMCMC).
We devise appropriate Bayesian hypothesis testing procedures to detect the roles of genes
and environment in case-control studies. Applying our ideas to 5 biologically realistic case-
control genotype datasets simulated under distinct set-ups, we obtain encouraging results in
each case. We finally apply our ideas to a real, myocardial infarction dataset, and obtain
interesting results on gene-gene and gene environment interaction, that broadly agree with
the results reported in the literature, but provide further important insights.

Key words: Case-control study; Hierarchical Dirichlet process; Gene-gene and gene-environm-
ent interaction; Myocardial Infarction; Parallel processing; Transformation based MCMC.

1. Introduction

In spite of much research on gene-gene interaction, including genome-wide associa-
tion studies (GWAS), it has become increasingly clear that gene-gene interaction alone is
insufficient for explaining most complex diseases. Investigating environmental factors inde-
pendently of the genetic factors is not sufficient either – biomedical research points towards
the importance of interactions between genes and the environment in explaining complex
diseases. Indeed, according to Hunter (2005) (see also Mather and Caligary (1976)), consid-
ering only the separate contributions of genes and environment to a disease, ignoring their
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interactions, will lead to incorrect estimation of the disease proportion (the “population
attributable fraction”) that is explained by genes, the environment, and their joint effect.
In particular, environmental exposures are expected to influence gene-gene interactions of
the individuals. A comprehensive overview of gene-environment interaction with various
examples is provided in Bhattacharya and Bhattacharya (2020).

Since no simple relationship exists between the genes and environment, it is clear
that linear or additive models, as are mostly used so far, are inadequate for modeling gene-
environment interactions. Also, the logistic model based approaches, (see for example Ahn
et al. (2013), Wen and Stephens (2014) and Liu et al. (2015)) resting on Fisher’s definition
of interaction result in the inclusion of a large number of interaction terms even with a
moderate number of genetic and environmental factors.

The fact that the genetic data may arise from a stratified population with an unknown
number of subpopulations makes the problem all the more demanding. Wen and Stephens
(2014), in their attempt to study the genetic association with respect to genetic data arising
from multiple potentially-heterogeneous subgroups, assume the number of subgroups to be
known in advance. Also, the problem of quantifying the strength of heterogeneity, as acknowl-
edged by Wen and Stephens (2014), remains unanswered due to the above considerations and
the need of an appropriate prior. The Bayesian semiparametric model proposed by Bhat-
tacharya and Bhattacharya (2020) takes care of the above mentioned problems by proposing
a model based on Dirichlet Processes (DP) and a hierarchical matrix-normal distribution,
which encapsulates the mechanism of dependence among genes under environmental effects
with respect to genotype data arising out of a possibly stratified population. In a somewhat
similar spirit, Urbut et al. (2019) and Yang et al. (2024) propose mixture of multivariate
nornal distributions with appropriate covariance matrices relevant for the phenomenon under
study.

We now elaborate on a possible drawback of the dependence structure induced by the
modeling strategy of Bhattacharya and Bhattacharya (2020), which motivated us to develop
our present work based on Hierarchical Dirichlet Processes.

In their model, the relevant gene-gene covariance matrix for individual i is σ̃iiA,
where A is the gene-gene interaction matrix common to all the individuals in the absence
of environmental variables, and σ̃ii = σii + ϕ, with σii being the i-th diagonal element of a
symmetric, positive definite matrix not associated with the environmental variable, and ϕ is
a non-negative parameter, to be interpreted as the effect of the environmental variable E on
gene-gene interaction. Note that Bhattacharya and Bhattacharya (2020) assumed that the
covariance matrices for all the individuals are affected in the same way by the environmental
variable, which seems to be a limitation of the covariance structure. The environmental
variables may affect the gene-gene interactions of individuals differently depending on the
extent and type of their exposure to the environmental factors.

In this article, we introduce a novel Bayesian nonparametric model for gene-gene
and gene-environment interactions for case-control genotype data that solves the issues de-
tailed above. Our model represents the individual genotype data as finite mixtures based
on Dirichlet processes as before, but instead of the hierarchical matrix normal distribu-
tion, we introduce a hierarchy of Dirichlet processes that create appropriate nonparametric
dependence among the genes induced by the environment, case-control dependence, and de-
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pendence among the individuals. As we show, our modeling strategy satisfies all the desirable
properties, bypassing the drawbacks of the matrix-normal based model of Bhattacharya and
Bhattacharya (2020). The key idea of inducing such nonparametric dependence is to ensure
that the minor allele frequencies associated with every sub-population, individual, gene and
case/control status share a global pool of random parameters, in such a manner that only
the dependence structure is influenced by the environmental variables, not the marginal dis-
tributions of the minor allele frequencies. The last point is important biologically and so, it
requires care to model such intricate dependence.

Although our hierarchical Dirichlet process (HDP) model has parallels with the HDP
introduced by Teh et al. (2006), our HDP has one more level of hierarchy compared to Teh
et al. (2006). Moreover, the aforementioned special and intricate dependence structure has
not been considered in any previous HDP application.

Exploiting conditional independence structures of our Bayesian model, we develop a
novel and highly parallelisable Markov Chain Monte Carlo (MCMC) methodology that com-
bines the efficiencies of modern parallel computing infrastructure, Gibbs steps, retrospective
sampling methods, and Transformation based Markov Chain Monte Carlo (TMCMC). For
the hypothesis testing procedures, we essentially adopt and extend the ideas provided in
Bhattacharya and Bhattacharya (2020). Application of our model and methods to five
simulation experiments for the validation purpose yielded quite encouraging results, and ap-
plication to a real myocardial infarction (MI) case-control type dataset yielded results that
are broadly in agreement with the results reported in the literature, but provided new and
interesting insights into the mechanisms of gene-gene and gene-environment interactions.

The rest of our paper is structured as follows. We introduce our model in Section
2, and in Section 3 discuss the relevant dependence structures induced by our model. In
Section 4 we extend the Bayesian hypothesis testing procedures proposed in Bhattacharya
and Bhattacharya (2020) to learn about the roles of genes, environmental variables and their
interactions in case-control studies. In Section 5 we briefly discuss the results of application
of our model and methodologies to 5 biologically realistic simulated data sets, the details of
which are provided in the Annexure, described below. In Section 6 we analyze the real MI
dataset using our ideas, demonstrating quite interesting and insightful outcome. Finally, we
summarize our work with concluding remarks in Section 7.

Additional details are provided in the Annexure, whose sections have the prefix “A-”
when referred to in this paper.

2. A new Bayesian nonparametric model for gene-gene and gene-environme
nt interactions

2.1. Case-control genotype data

For s = 1, 2 denoting the two chromosomes, let ys
ijkr = 1 and ys

ijkr = 0 indicate the
presence and absence of the minor allele of the i-th individual belonging to the k-th group
(either control or case), for k = 0, 1, with k = 1 denoting case; at the r-th locus of j-th gene,
where i = 1, . . . , Nk; r = 1, . . . , Lj and j = 1, . . . , J ; let N = N1 +N2. Let Ei denote a set of
environmental variables associated with the i-th individual. In what follows, we model this
case-control genotype and the environmental data using our Bayesian nonparametric model,
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described in the next few sections.

2.2. Mixture models based on Dirichlet processes

Let yijkr = (y1
ijkr, y2

ijkr), and if L = max{L1, . . . , LJ}, let Yijk = (yijk1, yijk2, . . . , yijkLj
)

and Ỹijk = (ỹijk,Lj+1, . . . , ỹijkL), where Ỹijk are unobserved and assumed to be missing. We
introduce these unobserved variables to match the number of loci for all the genes, which
is required so that the vectors of minor allele frequencies come from the distribution having
the same dimension. This “dimension-matching” is required for the theoretical development
of our modeling ideas; see (5) and (6).

We assume that for every triplet (i, j, k), Xijk = (xijk1, . . . , xijkL) = (Yijk, Ỹijk) have
the mixture distribution

[Xijk] =
M∑

m=1
πmijk

L∏
r=1

f (xijkr|pmijkr) , (1)

where f (·|pmijkr) is the Bernoulli mass function given by

f (xijkr|pmijkr) = {pmijkr}x1
ijkr+x2

ijkr {1 − pmijkr}2−(x1
ijkr+x2

ijkr) . (2)

In the above, M denotes the maximum number of mixture components and pmijkr stands
for the minor allele frequency at the r-th locus of the j-th gene for the i-th individual of
the k-th case/control group. Note that minor allele frequency is the frequency at which the
second most common allele occurs in a given population.

Allocation variables zijk, with probability distribution

[zijk = m] = πmijk, (3)

for i = 1, . . . , Nk and m = 1, . . . , M , allow representation of (1) as

[Xijk|zijk] =
L∏

r=1
f
(
xijkr|pzijkijkr

)
. (4)

Following Majumdar et al. (2013), Bhattacharya and Bhattacharya (2018), we set πmijk =
1/M , for m = 1, . . . , M , and for all (j, k).

Letting pmijk = (pmijk1, pmijk2, . . . , pmijkL), we next assume that

p1ijk, p2ijk, . . . , pMijk
iid∼ Gijk; (5)

Gijk ∼ DP (αG,ikG0,jk) , (6)

where DP (αG,ikG0,jk) stands for Dirichlet process with expected probability measure G0,jk

having precision parameter αG,ik, with

log(αG,ik) = µG + βT
GEik, (7)

where Eik is a d-dimensional vector of continuous environmental variable for the i-th indi-
vidual in the k-th group, βG is a d-dimensional vector of regression coefficients, and µG is
the intercept term. The model can be easily extended to include categorical environmental
variables along with the continuous ones.
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2.3. Hierarchical Dirichlet processes to induce dependence between the genes
and case-control status

We further assume that for k = 0, 1,

G0,jk
iid∼DP (αG0,kHk) ; j = 1, . . . , J, (8)

where
log(αG0,k

) = µG0 + βT
G0Ēk, (9)

with

Ēk = 1
Nk

Nk∑
i=1

Eik. (10)

We postulate the last level of hierarchy as

Hk
iid∼ DP

(
αHH̃

)
; k = 0, 1, (11)

where
log(αH) = µH + βT

H
¯̄E, (12)

with
¯̄E = Ē0 + Ē1

2 . (13)

We specify the base probability measure H̃ as follows: for m = 1, . . . , M , i =
1, . . . , Nk, k = 0, 1, and r = 1, . . . , L,

pmijkr
iid∼ Beta (ν1, ν2) , (14)

under H̃ , where ν1, ν2 > 0.

This completes the specification of a hierarchy of Dirichlet processes to build depen-
dence among the genes and the distributions of genotypes of cases-controls given data. Note
that our model consists of one more level of hierarchy of Dirichlet processes than consid-
ered in the applications of Teh et al. (2006), who introduce hierarchical Dirichlet processes
(HDP). Specifically, for given k and Hk, our hierarchy levels are comparable to that of Teh
et al. (2006), but our extra level of hierarchy comes from (11), which creates dependence
between case and control; details and reasons for insisting on such dependence structure are
provided in Section 3.3.

Moreover, our likelihood based on Dirichlet processes ensuring at most M mixture
components, is significantly different from those considered in the applications of Teh et al.
(2006), which are based on the traditional DP mixture; see Mukhopadhyay et al. (2011),
Mukhopadhyay et al. (2012), Mukhopadhyay and Bhattacharya (2013) for details on the
conceptual, computational and asymptotic advantages of our modeling style over the tradi-
tional DP mixture.
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2.4. The Chinese restaurant analogy

An extended version of the Chinese restaurant metaphor used by Teh et al. (2006)
may be considered to illustrate our model. For k = 0, 1, the set of random probability
measures {G0,jk; j = 1, . . . , J} can be associated with J restaurants. Letting τijk denote the
number of tables at the j-th restaurant associated with the i-th individual, we denote by
ϕlijk the dish being served at table l of the j-th restaurant for the i-th individual. Note that
{ϕlijk; l = 1, . . . , τijk; i = 1, . . . , Nk} is a set of iid realizations from G0,jk. Thus, we have
different sets of realizations from G0,jk for different individuals i.

For k = 0, 1, we also let ΞRkk = {ξ1k, . . . , ξRkk} denote a set of Rk iid realizations
from Hk. Then it follows that for l = 1, . . . , τijk, i = 1, . . . , Nk, and for j = 1, . . . , J ,
ϕlijk ∈ ΞRkk. In other words, ΞRkk is the set of distinct elements in the set {ϕlijk; l =
1, . . . , τijk; i = 1, . . . , Nk; j = 1, . . . , J}, and, from the Chinese restaurant perspective, is the
set of global dishes among all the restaurants, given k.

Finally, let ζS = {η1, . . . , ηS} denote a set of S iid realizations from H̃ . Then it
follows that ζS is the set of distinct elements in {ΞRkk : k = 0, 1}. In other words, ζS is the
set of global dishes served in all the restaurants, irrespective of k = 0 or k = 1.

3. Discussion of the dependence structure induced by our HDP-based model

3.1. Dependence among individuals

It follows from the discussion in Section 2.4 that {ϕlijk; l = 1, . . . , Tmijk; i = 1, . . . , Nk}
∈ {ξ1k, . . . , ξRmkk}, where ξ1k, . . . , ξRmkk

iid∼ Hk. This shows that {ϕlijk; l = 1, . . . , Tmijk; i = 1,
. . . , Nk} in (15) are shared among the individuals, thus creating dependence among the sub-
jects.

For more precise insights regarding the dependence structure, let us first marginalize
over Gijk to obtain the joint distribution of PMijk = {p1ijk, . . . , pMijk} using the following
Polya urn distributions: given G0,jk, p1ijk ∼ G0,jk, and for m = 2, . . . , M ,

[pmijk|plijk; l < m] = αG,ik

αG,ik + m − 1G0,jk (pmijk) + 1
αG,ik + m − 1

Tmijk∑
t=1

ñtmijkδϕtijk
(pmijk) ,

(15)
where ∑Tmijk

t=1 ñtmijk = m − 1. Here ñtmijk = # {l < m : plijk = ϕtijk}.

Since conditionally on G0,jk, the marginal distribution of pmijk, for m = 1, . . . , M
and i = 1, . . . , Nk, is G0,jk, the marginal is unaffected by the environmental variable, but
the joint distribution of PMijk implied by the Polya urn distributions (15) shows that the
dependence structure of PMijk is influenced by the regression on Eik through αG,ik. This is
a very desirable property of our modeling approach, since, in reality, the population minor
allele frequencies for the case-control group are not expected to be affected by environmen-
tal variables, although environmental exposure is expected to influence dependence among
individuals and gene-gene interactions in individuals. Note that marginal distributions de-
pending upon environmental variables may be envisaged only under mutation, but since it
is an extremely rare phenomenon and the type of case control type genotype data we are
dealing with is not appropriate for such studies, we do not include mutational effects in our
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model.

3.2. Dependence among the genes

We now show that the gene-gene interactions of the i-th individual are affected by
Eik, but not the marginal effects of the genes.

Dependence among the genes for the i-th individual is induced by {ϕtijk; t = 1, . . . , τijk;
j = 1, . . . , J}, where, for t = 1, . . . , τijk, ϕtijk

iid∼ G0,jk, with G0,jk ∼ DP (αG0,kHk). In fact,
marginalizing over G0,jk yields the following Polya urn scheme for {ϕtijk; t = 1, . . . , τijk}:

[ϕtijk|ϕlijk; l < t] = αG0,k

αG0,k + t − 1Hk (ϕtijk) + 1
αG0,k + t − 1

Rtk∑
l=1

n̄ltikδξlk
(ϕtijk) , (16)

where n̄ltik = # {ℓ < t : ϕℓijk = ξlk}. Note that ∑Rtk
l=1 n̄ltik = t − 1.

It is clear from (16) that {ϕtijk; j = 1, . . . , J} share {ξlk; l = 1, . . . , Rk}, so that the
latter set creates dependence among the genes. Moreover, it is also clear from (16) that
the dependence structure does not depend directly upon Eik, but upon Ēk, through the
regression of log(αG0,k) on Ēk; see (9). In other words, the gene-gene dependence structure
of any individual is not directly influenced by the corresponding environmental variable.
However, the dependence structure is also influenced by n̄ltik, which depends upon the i-
th individual in the k-th case-control group through τijk, which is directly influenced by
Eik through αG,ik. Thus, as is desirable, our modeling style induces gene-gene interactions
that are specific to the individuals and are influenced by the corresponding environmental
variables and the averages of the environmental variables within the case-control groups that
the individuals belong to.

It is also interesting to observe that in spite of the individual-specific gene-gene inter-
actions, the marginal distributions of ϕtijk remains G0,jk for the non-marginalized version
and Hk for the marginalized version characterized by (16), signifying that the individual
genes are not affected by Eik.

3.3. Case-control dependence

Finally, we note that

[ξsk|ξlk; l < s] = αH

αH + s − 1H̃ (ξsk) + 1
αH + s − 1

Ssk∑
l=1

n̆lskδζl
(ξsk) , (17)

where n̆lsk = # {ℓ < s : ξℓk = ζl} and ∑Ssk
l=1 n̆lsk = s − 1. So, {ξsk; s = 1, . . . , Rk; k = 0, 1}

share {ζl; l = 1, . . . , S}, creating dependence between case and control status. Dependence
between case and control status are likely to be caused by various implicit factors and envi-
ronmental variables that are not accounted for in the study. These factors and environmental
variables may be insignificant individually, but together may exert non-negligible influence
on cases and controls.

A schematic diagram of our HDP-based model and the dependence structure is de-
picted in Figure 1. We remark that in a much simpler set-up, the original HDP proposed
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Figure 1: Schematic diagram of our HDP-based Bayesian model.
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in Teh et al. (2006) has also been used by De Iorio et al. (2015) for inferring population
admixture, allowing for correlations between loci due to linkage disequilibrium.

In Section A-1 we propose an MCMC procedure for the inferential purpose, and in
Section A-2 we provide a parallel algorithm for implementing the MCMC method.

4. Detection of the roles of environment, genes and their interactions with
respect to our HDP based model

4.1. Formulation of the tests and interpretation of their results

4.1.1. Bayesian test for the impact of the genes on case-control

To test if genes have any effect on case-control, we formulate as in Bhattacharya and
Bhattacharya (2018) and Bhattacharya and Bhattacharya (2020), the following hypotheses:

H01 : h0j = h1j; j = 1, . . . , J, (18)

versus
H11 : not H0, (19)

where

h0j(·) = 1
M

M∑
m=1

Lj∏
r=1

f
(
·|pr

mi0jk=0

)
; (20)

h1j(·) = 1
M

M∑
m=1

Lj∏
r=1

f
(
·|pr

mi1jk=1

)
. (21)

In the above, for k = 0, 1, ik is the index such that PMikjk = {p1ikjk, p2ikjk, . . . , pMikjk} is
some measure of central tendency of {PMijk = {p1ijk, p2ijk, . . . , pMijk} ; i = 1, . . . , Nk}. Ap-
propriate measures of central tendency, based on clusterings, is discussed in Section 4.2.1.

4.1.2. Bayesian test for significance of the environmental variables

To check if the environmental variables are significant, we shall test the following: for
ℓ = 1, . . . , d,

H02ℓ : βG,ℓ = 0 versus H12ℓ : βG,ℓ ̸= 0, (22)

H03ℓ : βG0,ℓ = 0 versus H13ℓ : βG0,ℓ ̸= 0, (23)

and
H04ℓ : βH,ℓ = 0 versus H14ℓ : βH,ℓ ̸= 0. (24)

4.1.3. Bayesian test for significance of gene-gene interaction

In our HDP based nonparametric model there is no readily available quantification
of gene-gene interaction unlike the models of Bhattacharya and Bhattacharya (2018) and
Bhattacharya and Bhattacharya (2020). Thus, in order to test for gene-gene interaction, it
is necessary to first reasonably define such a measurement.
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A measure of gene-gene interaction influenced by environmental variables

For our purpose, we first define

p̄mijk =
∑Lj

r=1 pmijkr

Lj

. (25)

With the above definition, for subject i belonging to case-control group k, we consider the
following covariance

C(i, j1, j2, k) = cov
(
logit(p̄zij1kij1k), logit(p̄zij2kij2k)

)
, (26)

as quantification of subject-wise gene-gene dependence that accounts for population mem-
berships of subject i with respect to genes j1 and j2, through zij1k and zij2k, where for any
p ∈ (0, 1), logit(p) = log

(
p

1−p

)
. Thus, gene-gene interaction associated with our model is

subject-specific.

While implementing our model using our parallelised MCMC methodology, we sim-
ulate C(i, j1, j2, k) at each iteration by generating {pmijkr : r = 1, . . . , Lj} as many times as
required from the respective full conditionals holding the remaining parameters fixed, and
then compute the empirical covariance corresponding to (26) using the generated iid samples
conditionally on the remaining parameters to approximate (26).

Formulation of the Bayesian tests for gene-gene interactions

To test for subject-wise gene-gene interaction, we consider the following tests: for
i = 1, . . . , Nk, k = 0, 1, and for j1, j2 ∈ {1, . . . , J},

H05ij1j2k : C(i, j1, j2, k) = 0 versus H15ij1j2k : C(i, j1, j2, k) ̸= 0. (27)

4.1.4. Interpretations of the results of the above tests

The cases that can possibly arise and the respective conclusions are the following:

• For some appropriate divergence measure d between two distributions, if max
1≤j≤J

d(h0j,

h1j), is significantly small with high posterior probability, then H01 is to be accepted.
If h0j and h1j are not significantly different, then it is plausible to conclude that the
j-th gene is not marginally significant in the case-control study.

• Suppose that H01 is accepted (so that genes have no significant role) and that at least
one of βG,ℓ or βG0,ℓ or βH,ℓ is significant, at least for some ℓ. This may be interpreted
as the environmental variable E having some altering effect on all the genes in a way
that doesn’t affect the disease status. If C(i, j1, j2, k) turns out to be significant, then
this would additionally imply that the environmental variable E influences interaction
between genes j1 and j2 for the i-th individual, but not in a way that is responsible for
the case/control status.

• If H01 is rejected, indicating that the genes are significant, but none of the βG,ℓ, βG0,ℓ,
βH,ℓ or C(i, j1, j2, k) are significant, then only the genes, not E, are responsible for the
disease. In that case, one may conclude that the disease is of purely genetic nature.
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• Suppose that H01 is rejected, none of βG,ℓ, βG0,ℓ, βH,ℓ is significant, but C(i, j1, j2, k) is
significant for at least some i, j1, j2, k. Then the environmental variable is not signif-
icant, and the case/control status of the individuals associated with significant gene-
gene interactions can be attributed to purely genetic causes triggered by gene-gene
interactions of the individuals.

• Now suppose that H01 is rejected, and at least one of βG,ℓ, βG0,ℓ, βH,ℓ is significant, but
none of the subject-wise gene-gene interactions is significant. Then the environmental
variable E does not significantly affect the interactions to determine the case/control
status, and marginal effects of the individual genes are responsible for the case/control
status of an individual.

• If, on the other hand, H01 is rejected, at least one of βG,ℓ, βG0,ℓ, βH,ℓ is significant,
and C(i, j1, j2, k) is significant for at least some i, j1, j2, k, then the environmental
variable is significant and is responsible for influencing gene-gene interactions within
the individuals with significant C(i, j1, j2, k), which, in turn, affects the case/control
status of the individuals.

4.2. Methodologies for implementing the Bayesian tests

4.2.1. Hypothesis testing based on clustering modes

As in Bhattacharya and Bhattacharya (2018) and Bhattacharya and Bhattacharya
(2020), here we exploit the concept of “central” clustering introduced by Mukhopadhyay
et al. (2011). Briefly, central clustering may be interpreted as a suitable measure of cen-
tral tendency of a set of clusterings. Mukhopadhyay et al. (2011) particularly consider
the mode(s) of the set of clusterings, and provide methods for appropriately obtaining the
mode(s) using a suitable metric that they propose to quantify distances between any two
clusterings. Their proposed metric is also computationally inexpensive, which makes the
concept based on central clusterings extremely useful in practice.

For k = 0, 1, let ik denote the index of the central clusterings of PMijk = {p1ijk, p2ijk,
. . . , pMijk}, i = 1, . . . , Nk. We then study the divergence between the two clusterings of

PMi0jk=0 = {p1i0jk=0, p2i0jk=0, . . . , pMi0jk=0}

and
PMi1jk=1 = {p1i1jk=1, p2i1jk=1, . . . , pMi1jk=1} ,

for j = 1, . . . , J . A schematic diagram illustrating the idea can be found in Bhattacharya
and Bhattacharya (2020).

Significantly large divergence between the two clusterings clearly indicates that the
j-th gene is marginally significant.

4.2.2. Enhancement of clustering metric based inference using Euclidean distance

As argued in Bhattacharya and Bhattacharya (2018), significantly large clustering dis-
tance between PMjk=0 and PMjk=1 indicates rejection of H0, but insignificant clustering dis-
tance does not necessarily provide strong evidence in favour of the null. In this regard, Bhat-
tacharya and Bhattacharya (2018) (see also Bhattacharya and Bhattacharya (2020)) argue
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that the Euclidean distance is an appropriate candidate to be tested for significance before ar-
riving at the final conclusion. Briefly, we first compute the averages p̄mijk = ∑Lj

r=1 pm,ijkr/Lj,
then consider their logit transformations logit (p̄mijk) = log {p̄mijk/(1 − p̄mijk)}. Then, we
compute the Euclidean distance between the vectors

logit
(
P̄Mi0jk=0

)
= {logit (p̄1i0jk=0) , logit (p̄2i0jk=0) , . . . , logit (p̄Mi0jk=0)}

and
logit

(
P̄Mi1jk=1

)
= {logit (p̄1i1jk=1) , logit (p̄2i1jk=1) , . . . , logit (p̄Mi1jk=1)} .

We denote the Euclidean distance associated with the j-th gene by

dE,j = dE,j

(
logit

(
P̄Mi0jk=0

)
, logit

(
P̄Mi1jk=1

))
,

and denote max
1≤j≤J

dE,j by d∗
E.

4.2.3. Formal Bayesian hypothesis testing procedure integrating the above de-
velopments

In our problem, we need to test the following for reasonably small choices of ε’s:

H0,d∗ : d∗ < εd∗ versus H1,d∗ : d∗ ≥ εd∗ ; (28)

H0,d∗
E

: d∗
E < εd∗

E
versus H1,d∗

E
: d∗

E ≥ εd∗
E
; (29)

for ℓ = 1, . . . , d,
H0,βG,ℓ

: |βG,ℓ| < εG,ℓ versus H1,βG,ℓ
: |βG,ℓ| ≥ εG,ℓ, (30)

H0,βG0,ℓ
: |βG0,ℓ| < εG0,ℓ versus H1,βG0,ℓ

: |βG0,ℓ| ≥ εG0,ℓ, (31)

H0,βH,ℓ
: |βH,ℓ| < εH,ℓ versus H1,βH,ℓ

: |βH,ℓ| ≥ εH,ℓ, (32)
and, for i = 1, . . . , Nk, k = 0, 1, j1, j2 ∈ {1, . . . , J},

H0,Ci,j1,j2,k
: |Ci,j1,j2,k| < εC,ij1j2k versus H1,Ci,j1,j2,k

: |Ci,j1,j2,k| ≥ εC,ij1j2k, (33)

If H0 is rejected in (28) or in (29), we could also test if the j-th gene is influen-
tial by testing, for j = 1, . . . , J , H0,d̂j

: d̂j < εd̂j
versus H1,d̂j

: d̂j ≥ εd̂j
, where d̂j =

d̂ (PMi0jk=0, PMi1jk=0); we could also test H0,dE,j
: dE,j < εdE,j

versus H1,dE,j
: dE,j ≥ εdE,j

.

4.2.4. Null model and choice of ε

To obtain the null posterior distribution, we fit our HDP-based Bayesian model to
the dataset generated from the HDP-based model where the genes are independent and
not influenced by the environmental variable, and where there is no difference between
the probabilities associated with case and control. For the null data we chose the same
number of genes, the same number of loci for each gene, and the same number of cases
and controls as the non-null data. We also choose the same value M as in the non-null
model, but set βG = βG0 = βH = 0. To generate the data from the null model, we first
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simulate, independently for j = 1, . . . , J , the set {pm1j0 : m = 1, . . . , M}, using the Polya urn
scheme involving H̃ and αH , and set {pm1j1 : m = 1, . . . , M} = {pm1j0 : m = 1, . . . , M},
so that there is no difference between the probabilities associated with case and control,
and that the genes are independent. Since the simulation method is independent of the
environmental variable, it is clear that the genes are not influenced by the environment.
Given the probabilities {pm1j1 : m = 1, . . . , M} and {pm1j0 : m = 1, . . . , M}, we then
simulate the data using our Bernoulli model. To the data thus generated, we fit our full
HDP-based Bayesian model, to obtain the null posterior.

As in Bhattacharya and Bhattacharya (2018) here also we specify ε’s as F −1 (0.55),
where F is the distribution function of the relevant benchmark null posterior distribution.
Bhattacharya and Bhattacharya (2018) showed that the choice F −1 (0.55), rather than the
median, ensures that the correct null hypothesis is accepted under the “0 − 1” loss. Note
that, for the median, the posterior probability of the true null is 0.5, while under the “0 − 1”
loss, the true null will be accepted if its posterior probability is greater than 1/2.

5. Simulation studies

For simulation studies, we first generate realistic biological data for stratified popu-
lation with known gene-environment interaction from the GENS2 software of Pinelli et al.
(2012). To this data, we then apply our model and methodologies in an effort to detect
gene-environment interaction effects that are present in the data. We consider simulation
studies in 5 different true model set-ups: (a) presence of gene-gene and gene-environment
interaction, (b) absence of genetic or gene-environmental interaction effect, (c) absence of
genetic and gene-gene interaction effects but presence of environmental effect, (d) presence
of genetic and gene-gene interaction effects but absence of environmental effect, and (e)
independent and additive genetic and environmental effects. The details of our simulation
experiments are provided in Section A-3 of the supplement. Here we briefly summarize the
results of our experiments.

In case (a), we correctly obtained clear significance of the influence of genetic effects.
Also, βH turned out to be very significant, demonstrating significant overall impact of the en-
vironmental variable on the genes. Interestingly, as one may expect, there are more instances
of significant gene-gene interactions in the case group compared to the control group. The
posteriors of the number of sub-populations gave high probabilities to the correct number of
sub-populations in all the 5 simulation experiments. Quite importantly, we demonstrate in
cases (a), (d) and (e) where the genes are relevant, that our HDP model can detect disease
predisposing loci (DPL) with more precision compared to the matrix-normal-inverse-Wishart
model for gene-environment interactions proposed in Bhattacharya and Bhattacharya (2020).
In case (b) using our ideas in conjunction with significance testing in a simple logistic re-
gression framework, we are correctly able to conclude that the genetic or gene-environmental
effects are insignificant. As in Bhattacharya and Bhattacharya (2020), the right conclusion
is arrived at in case (c) by utilizing our ideas in conjunction with the Akaike Information
Criterion (AIC) in the context of simple logistic regression. Using our Bayesian testing
procedure along with the aid of logistic regression, we have been able to correctly obtain
insignificance of the environmental variable and significance of the genes. In this experiment,
we found no gene-gene interaction in the control group and found two (marginal) instances of
gene-gene interaction among the cases. As regards case (e), we note as in Bhattacharya and
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Bhattacharya (2020) that additivity of genetic and environmental effects is not supported
even by our current HDP-based Bayesian model. In spite of this, we correctly obtained
significance of the environmental variable and precisely obtained the DPLs. But the lack
of the additivity criterion in our model seems to have forced gene-environment interactions.
Bhattacharya and Bhattacharya (2020) report similar results, who obtained, after eventually
resorting to logistic regression, the AIC-based best model consisting of the additive marginal
effects of the first gene and the environmental variable, along with an additive intercept,
which is broadly consistent with the data-generating mechanism.

6. Application of our HDP based ideas to a real, case-control dataset on
Myocardial Infarction

We now consider application of our model and methods to a case-control dataset
on early-onset of myocardial infarction (MI) from MI Gen study, obtained from the db-
GaP database http://www.ncbi.nlm.nih.gov/gap. The same dataset has been analyzed
by Bhattacharya and Bhattacharya (2018) without considering the sex variable as the co-
variate, and by Bhattacharya and Bhattacharya (2020), who incorporate the sex variable in
their gene-environment interaction model. Although Bhattacharya and Bhattacharya (2018)
obtained significant genetic and gene-gene interaction effects, their later study after consid-
ering sex as the environmental variable, revealed strong effects of the sex variable but no
significant gene-gene interaction, although many of the genes turned out to be individually
significant. In our current HDP based analysis, we once again obtain strong effects of the
sex variable, but in contrast with Bhattacharya and Bhattacharya (2020), although we ob-
tain significant genetic effects, none of the genes turned out to be significant individually.
Moreover, the subject-wise gene-gene interactions, although of small magnitude, turned out
to be significant in some cases, and interestingly (and apparently counter-intuitively) seem
to be instrumental in counter-acting the disease rather than provoking it.

6.1. Data description

We recall that the MI Gen data obtained from dbGaP consists of observations on
presence/absence of minor alleles at 727478 SNP markers associated with 22 autosomes and
the sex chromosomes of 2967 cases of early-onset myocardial infarction, 3075 age and sex
matched controls. The average age at the time of MI was 41 years among the male cases
and 47 years among the female cases. The data broadly represents a mixture of four sub-
populations: Caucasian, Han Chinese, Japanese and Yoruban. Using the Ensembl human
genome database (http://www.ensembl.org/) we could categorize 446765 markers out of
727478 with respect to 37233 genes.

As in Bhattacharya and Bhattacharya (2020) we considered 32 genes covering 1251
loci, for 200 individuals. These 1251 loci include 33 SNPs that are believed to be associated
with MI and also those that are believed to be associated with different cardiovascular end
points like LDL cholesterol, smoking, blood pressure, body mass, etc. Other than the 33
SNPs, the remaining 1218 SNPs are not known to be associated with the disease. See
Bhattacharya and Bhattacharya (2020) for the details and the relevant references.

Since the four broad sub-populations are not unlikely to admit further genetic sub-
divisions, it makes sense to set the maximum number of mixture components, M , to a
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value much larger than 4. As before, we set M = 30; we also set ν1 = ν2 = 1, so that
H̃ is the uniform distribution on [0, 1]. As in the simulation experiments, here also the
structures αG,ik = 0.1× exp (100 + µG + βGEik), αG0,k = 0.1× exp

(
100 + µG0 + βG0Ēk

)
and

αH = 0.1×exp
(
100 + µH + βH

¯̄E
)
, where µG, µG0 , µH

iid∼ U(0, 1) and βG, βG0 , βH
iid∼ U(−1, 1),

ensured adequate number of sub-populations and satisfactory mixing of MCMC. For the null
data and model, we follow the same procedure as discussed in Section 4.2.4.

6.2. Remarks on model implementation

Our parallel MCMC algorithm detailed in Section A-2 takes about 7 days to generate
30,000 iterations on our VMware consisting of 50 double-threaded, 64-bit physical cores,
each running at 2493.990 MHz. We discard the first 10, 000 iterations as burn-in, using the
subsequent 20,000 iterations for our Bayesian inference. Satisfactory mixing properties are
indicated by informal convergence diagnostics such as trace plots.

6.3. Results of the real data analysis

6.3.1. Effect of the sex variable

We obtain P (|βG| < εβG
|Data) ≈ 0, P (|βG0 | < εβG0

|Data) ≈ 0 and P (|βH | <

εβH
|Data) ≈ 1. In other words, although ¯̄E (here E being the sex variable) is insignificant,

both Eik and Ēk are very significant. Thus, in this study, sex seems to play an important
role in influencing the genes.

6.3.2. Roles of individual genes

With the clustering metric we obtained P (d∗ < ϵ1|Data) ≈ 0.030 while that with the
Euclidean distance we obtained P (d∗

E < ϵ2|Data) ≈ 0.540. That is, the maximum of the
gene-wise clustering metrics turns out to be significant, while the maximum of the gene-
wise Euclidean metrics is seen to be insignificant. The same ambiguity was also obtained by
Bhattacharya and Bhattacharya (2020). The tests of the marginal genes are expected to shed
some light regarding this dilemma. The posterior probabilities of the null hypotheses (of no
significant genetic influence) reveal that none of the individual genes are significant, for either
the clustering metric or the Euclidean metric. Our result is not much different from that of
Bhattacharya and Bhattacharya (2020) who also note that their marginal probabilities, at
least for the clustering metric, are not significantly small to provide strong enough evidences
against the nulls.

Now, at least from the clustering metric perspective, it is necessary to explain the issue
that all the genes are insignificant individually but still the maximum of the gene-wise clus-
tering metric values is significant. The key to this issue seems to be the correlations between
the distances, which are induced by gene-gene interactions. We explain this phenomenon
using a bivariate normal example. Let (X1, X2) have a bivariate normal distribution with
means 0, variances 1, and correlation ρ. Figure 2 depicts the median of max{X1, X2} as a
function of ρ, which is seen to be increasing as ρ decreases from 1 to -1. On the other hand,
the medians of the marginal distributions of X1 and X2 remain zero, irrespective of the value
of ρ. Thus, it seems that gene-gene interaction does have some role to play in this study.
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Figure 2: Bivariate normal example: Plot of the median of max{X1, X2} with
respect to the correlation ρ.

6.3.3. Gene-gene interactions

Unlike Bhattacharya and Bhattacharya (2020), where there is a single gene-gene cor-
relation structure for all the individuals, our current model has provision for subject-specific
gene-gene correlations. Figures 3 and 4 show the typical gene-gene correlations represen-
tative of cases and controls in all males and females respectively. Essentially, the pictures
represent the gene-gene correlation patterns for all the subjects. The color intensities cor-
respond to the absolute values of the correlations. Although the correlations are small in
all the subjects, the tests of hypotheses reveal some interesting structures. Figures 5 and
6 represent the all possible interacting patterns found in the study. Panel (a) of Figure 5
represents 9 male cases where no gene-gene interaction is significant. Panel (b) shows the
genetic interaction pattern in some male cases where AP006216.10 and C6orf106, interact
with all the other genes. Panel (c) shows the results of significance tests of gene-gene inter-
actions for some male cases, for whom only AP006216.10 interacts with all the other genes
in the study. A representative interaction pattern for the male controls shown in panel (d),
indicates that only C6orf106 or only AP006216.10 interacts with every gene, but in a few
subjects both AP006216.10 and C6orf106 interact with all the genes.

Even for the females, the two genes, AP006216.10 and C6orf106, play significant roles
in gene-gene interactions. Indeed, in our data, unlike the 9 male cases, there is no female for
whom all gene-gene interactions are insignificant. The relevant representative plots for the
females, given by Figure 6, shows that for all the female cases, only AP006216.10 interacts
with the other genes. For the female controls, either only AP006216.10 or only C6orf106
interacts with the other genes, or both AP006216.10 and C6orf106 interact significantly
with the other genes included in the study.

The messages gained from our analysis seem to be somewhat counter-intuitive but
perhaps quite insightful. Our tests indicate that the genes have insignificant marginal effect.
Thus, some external or non-genetic factors might have some significant role to play. But
for most of the subjects, at least one of the genes AP006216.10 and C6orf106 interact
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(a) Male case.
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(b) Male control.

Figure 3: Typical median gene-gene posterior correlation plot for male cases and
male control.

with every other gene. The subjects, for whom no significant genetic interactions involving
AP006216.10 and C6orf106 were detected, turned out to be male cases, indicating that the
lack of genetic interaction in these males failed to get them any preventive measure against
MI. On the other hand, the interactions of the genes AP006216.10 and C6orf106 with all
the genes seemed to reduce the risk of the disease for the other subjects. Thus, in this study,
the gene-gene interactions seem to have a beneficial effect on the subjects. It also seems
that only a small proportion of males are prone to the risk of having no beneficial gene-gene
interactions.

Note that our results are broadly consistent with those obtained by Bhattacharya
and Bhattacharya (2020) but are more precise and informative. Indeed, they also noted
relatively small impact of the individual genes and small gene-gene correlations. Our current
ideas and analyses also support their conclusion that external factors (in particular, sex) are
perhaps playing a bigger role in explaining case-control with respect to MI. We recall (see
Bhattacharya and Bhattacharya (2020)) that with respect to the data that we used, the
empirical conditional probability of a male given case is about 0.38, and that of a male given
control is about 0.50, so that females seem to be more at risk, given our data. The inherent
coherence of the Bayesian paradigm upholds the sex factor by attaching little importance to
the individual genes. However, in contrast with Bhattacharya and Bhattacharya (2020) who
found no interacting genes, here it turns out that the genes AP006216.10 and C6orf106 in
interaction with other genes generally lower the risk of the individuals with respect to MI.
Importantly, each of the few males having no such interactions turned out to be a case. This
seems to be roughly in accordance with the popular belief that males are more susceptible
to MI than females. Our Bayesian model coherently weaves together the prior and the data
and brings out this information in spite of the data-driven information that females are more
prone to MI than males. We also note that Lucas et al. (2012), who analyzed the same MI
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(a) Female case.
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(b) Female control.

Figure 4: Typical median gene-gene posterior correlation plot for female cases
and female controls.

dataset using logistic regression, reached the conclusion that there is no significant gene-gene
interaction. Thus, their result completely supports that of Bhattacharya and Bhattacharya
(2020) and are also very much in keeping with our current results.

6.3.4. Posteriors of the number of sub-populations

The posterior distributions of the number of sub-populations for the males and females
turned out to be quite similar, irrespective of case and control, with the mode at 3 and 4
components receiving the next highest probability. Thus, the 4 sub-populations, irrespective
of sex, are well-supported by our model, showing that these can not be further sub-divided
genetically. This is not unexpected, since the roles of the individual genes are not significant
in our study. Our result broadly agrees with Bhattacharya and Bhattacharya (2020) who
obtained for different genes, the modes at 5 components, with 4 components receiving the
next highest posterior mass.

7. Summary and conclusion

In this paper, we have proposed a novel Bayesian nonparametric gene-gene and gene-
environment interaction model based on hierarchies of Dirichlet processes. This model is a
significant improvement over that of Bhattacharya and Bhattacharya (2020) in the sense of
much clear interpretability and accounting for subject-specific gene-gene interactions. More-
over, the interactions arise as natural by-products of our nonparametric structure based
on HDP, and are not based on matrix normal distributions, as in Bhattacharya and Bhat-
tacharya (2018) and Bhattacharya and Bhattacharya (2020), and hence, are more realistic.
We propose a novel parallel MCMC algorithm to implement our model, that combines pow-
erful technology with conditionally independent structures inherent within our HDP based
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(d) Male control.

Figure 5: Presence/absence of gene-gene interactions for typical male cases and
controls: Blue denotes presence and white represents absence of gene-gene in-
teraction.
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(a) Female case.
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(b) Female control.
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(d) Female control.

Figure 6: Presence/absence of gene-gene interactions for typical female cases
and controls: Blue denotes presence and white represents absence of gene-gene
interaction.
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model and efficient TMCMC methods. The Bayesian tests of hypotheses that we employ in
this paper are are appropriately modified versions of those proposed in Bhattacharya and
Bhattacharya (2020).

Applications of our ideas to biologically realistic datasets generated under 5 differ-
ent set-ups characterized by different combinations and structures associated with gene-gene
and gene-environment interactions demonstrated encouraging performance of our model and
methods. Our analysis of the MI dataset showed strong impact of the sex variable, which is
consistent with the results of Bhattacharya and Bhattacharya (2020). Our tests showed no
effect of the individual genes, which is also in keeping with Bhattacharya and Bhattacharya
(2020) who obtained relatively weak marginal effects. But most interestingly, even though
we obtained very weak gene-gene correlations in accordance with Bhattacharya and Bhat-
tacharya (2020) and Lucas et al. (2012), our tests on gene-gene interaction showed that two
genes, AP006216.10 and C6orf106, generally interact with all the other genes in a benefi-
cial way so as to fight the disease. Moreover, the only situations where all the gene-gene
interactions turned out to be insignificant, were the male cases, showing that the usual be-
lief that males are more prone to heart attack than females may hold some value from this
perspective.

Although many standard methods are commonly used in GWAS to identify the ge-
netic and the environmental effects, there are several reasons that point towards the fact
that our approach is not comparable with the existing methods.

So far, due to insufficient computational resources, we are compelled to restrict focus
on a relatively small portion of the data. For improving our computing infrastructure, we
have already taken the initiative of procuring supercomputing facilities from the Govt. of
India, a project led, on behalf of Indian Statistical Institute, by the second author of this
paper. With such a facility, we will be able to analyze the entire MI dataset with much ease.
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ANNEXURE

A-1. An MCMC method using Gibbs sampling and TMCMC

A-1.1. Full conditionals

Full conditional of Hk

First observe that for k = 0, 1, the full conditional of Hk is given by

[Hk| · · · ] ∼ DP

(
αH + n·k,

αHH̃ +∑S
s=1 nskδηs

αH + n·k

)
, (34)

where nsk = #{r ∈ {1, . . . , Rk} : ξrk = ηs} and n·k = ∑S
s=1 nsk.

Full conditional of G0,jk

Similarly, the full conditional of G0,jk is given, for j = 1, . . . , J and k = 0, 1, by

[G0,jk| · · · ] ∼ DP

(
αG0,k + n·jk,

αG0,kHk +∑Rk
l=1 nljkδξlk

αG0,k + n·jk

)
, (35)

where nljk = #{(t, i) ∈ {1, . . . , τijk} × {1, . . . , Nk} : ϕtijk = ξlk} and n·jk = ∑Rk
l=1 nljk.

The full conditionals of Hk and G0,jk given by (34) and (35) indicate generating
the infinite-dimensional random probability measures using Sethuraman’s characterization
of Dirichlet processes (see Sethuraman (1994)). However, in our case, forming the infinite-
dimensional Sethuraman’s construction is not necessary; instead, it will be required to simu-
late from the random probability measures having distributions (34) and (35). Such simula-
tions are possible using the retrospective method (see Papaspiliopoulos and Roberts (2008))
which avoids dealing with infinitely many objects.

Full conditional of pmijk

The associated Polya urn distribution of pmijk given PMijk\{pmijk}, derived by marginalizing
over Gijk, is the following:

[pmijk|PMijk\{pmijk}] = αG,ik

αG,ik + M − 1G0,jk (pmijk) + 1
αG,ik + M − 1

M∑
m2̸=m=1

δpm2ijk
(pmijk)

(36)

where Mtijk = #{m2 ∈ {1, . . . , M}\{m} : pm2ijk = ϕtijk} and δϕtijk
(·) denotes point mass

at ϕtijk.

Given zijk = m, on combining the Polya urn distribution with the likelihood∏L
r=1 f(xijkr|pmijkr) we obtain the following full conditional of pmijk:

[pmijk| · · · ] ∝ αG,ik

L∏
r=1

f(xijkr|pmijkr)G0,jk (pmijk) +
τijk∑
t=1

Mtijk

L∏
r=1

f(xijkr|ϕtijkr)δϕtijk
(pmijk) .

(37)
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Note that in (37), G0,jk, drawn from (35), is not available in closed form and only admits
the form dictated by Sethuraman’s construction, given, almost surely, by

G0,jk =
∞∑

l=1
p̃lδξ̃ljk

, (38)

where p̃1 = V1, p̃l = Vl
∏

s<l(1 − Vs), for l ≥ 2, with V1, V2, . . .
iid∼ Beta (αG0,k + n·jk, 1), and

for l = 1, 2, . . ., ξ̃ljk
iid∼ αG0,kHk+

∑Rk
l=1 nljkδξlk

αG0,k+n·jk
.

In (37), the posterior proportional to ∏L
r=1 f(xijkr|pmijkr)G0,jk (pmijk), which we de-

note by [G0,jk|Xijk], is the discrete distribution that puts mass Cijkp̃t
∏L

r=1 f(xijkr|ξ̃tjkr) to
the point ξ̃tjk, for t = 1, 2, . . ., where

Cijk =
( ∞∑

t=1
p̃t

L∏
r=1

f(xijkr|ξ̃tjkr)
)−1

(39)

is the normalizing constant. Combining these with (37) it follows that

[pmijk| · · · ] = αG,ikC̄C−1
ijk [G0,jk (pmijk) |Xijk] + C̄

τijk∑
t=1

Mtijk

L∏
r=1

f(xijkr|ϕtijkr)δϕtijk
(pmijk) ,

(40)

where

C̄ =
αG,ikC−1

jk +
τijk∑
t=1

Mtijk

Lj∏
r=1

f(xijkr|ϕtijkr)
−1

is the normalizing constant of [pmijk| · · · ].

A-1.2. Retrospective sampling methods

Retrospective method for simulating from [pmijk| · · · ]
From (40) it follows that, to draw from [pmijk| · · · ], it is required to simulate from [G0,jk (pmijk)
|Xijk] with probability proportional to C−1

ijk . However, since Cijk involves an infinite series,
its calculation is infeasible. The same issue also prevents the traditional simulation methods
to draw from the discrete distribution [G0,jk|Xijk]. In this case, the retrospective sampling
method proposed in Section 3.5 of Papaspiliopoulos and Roberts (2008) is the appropriate
method for our purpose. We first briefly discuss the role of such method in simulating from
[G0,jk|Xijk], and then argue that a by-product of the method can be used to estimate Cijk

arbitrarily accurately.

Retrospective method to draw from [G0,jk (pmijk) |Xijk]
Note that the retrospective method requires ∏L

r=1 f(xijkr|ϕtijkr) in our case to be uniformly
bounded for all ϕtijk, which holds in our case, as f(xijkr|ϕtjkr) represents the Bernoulli
distribution, which is bounded above by 1. We briefly describe the method as follows. Let

cℓ(K) =
K∑

a=1
p̃a

L∏
r=1

f(xijkr|ξ̃ajkr) (41)
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and
cu(K) = cℓ(K) + (1 −

K∑
a=1

p̃a). (42)

Let us also define p̆ℓ,a(K) = p̃a
∏L

r=1 f(xijkr|ξ̃ajkr)/cℓ(K) and p̆u,a(K) = p̃a
∏L

r=1 f(xijkr|ξ̃ajkr)
/cu(K). To simulate from [G0,jk|Xijk] we first generate U ∼ Uniform(0, 1), and given U ,
choose ξ̃tjk when

t−1∑
a=1

p̆u,a(K) ≤ U ≤
t∑

a=1
p̆ℓ,a(K). (43)

In fact, K needs to be increased and p̃t and ∏L
r=1 f(xijkr|ξ̃ajkr) simulated retrospectively, till

(43) is satisfied for some t ≤ K.

Retrospective method for estimating Cijk arbitrarily accurately

By choosing K to be large enough, the quantities cℓ(K) and cu(K) given by (41)
and (42), respectively, can be made arbitrarily close. In other words, for any ϵ > 0, there
exists K0 ≥ 1 such that |cℓ(K) − cu(K)| < ϵ, for K ≥ K0. Thus, for any such K ≥ K0,
one may approximate Cijk with [cℓ(K)]−1. In practice, it is only required to simulate Ũ ∼
Uniform(0, 1) and simulate from [G0,jk (pmijk) |Xijk] if Ũ ≤ C̄C−1

ijk . For sufficiently small ϵ

and for finite number of simulations, it will generally hold that Ũ ≤ C̄C−1
ijk if and only if

Ũ ≤ C̄ϵcℓ(K), for K ≥ K0, where

C̄ϵ =
[
c−1

ℓ (K) +
τijk∑
t=1

Mtijk

L∏
r=1

f(xijkr|ϕtijkr)
]−1

.

Retrospective method to simulate from αG0,kHk+
∑Rk

l=1 nljkδξlk

αG0,k+n·jk

The retrospective simulation method requires simulation of ξ̃ljk
iid∼ αG0,kHk+

∑Rk
l=1 nljkδξlk

αG0,k+n·jk
, for

l = 1, 2, . . .. This requires simulation from Hk with probability proportional to αG0,k. For
this, we first simulate U ∼ Uniform(0, 1). We then simulate a realization from Hk after
generating Hk from the Dirichlet process given by (34). Note that we do not have to
generate the entire random probability measure Hk for this; we only need to generate as
many realizations η∗

lk’s from αHH̃+
∑S

s=1 nskδηs

αH+n·k
and as many p∗

lk = V ∗
lk

∏
s<l(1−V ∗

lk); l = 1, 2 . . .,
with p∗

1k = V ∗
1k, with V ∗

lk
iid∼ Beta (αH + n·k, 1), as required to satisfy ∑t−1

l=1 p∗
lk < U ≤ ∑t

l=1 p∗
lk,

for some t ≥ 1 (with p∗
0 = 0). We then report ξ̃1jk = η∗

tk with probability proportional to
αG0,k and ξ̃1jk = ξl̃jk with probability proportional to nl̃jk, for l̃ ∈ {1, . . . , Rk}. We repeat
this procedure for generating ξljk; l ≥ 2, by sequentially augmenting the existing simulations
of η∗

lk’s and p∗
lk’s with new draws from H̃ and Beta (αH + n·k, 1), if needed. Indeed, note

that for augmentation of p∗
lk’s, only extra V ∗

lk’s need to be generated from Beta (αH + n·k, 1).

A-1.3. Updating the allocation and proportion variables

Updating procedure for zijk and pmijk
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The full conditional of zijk is given by the following:

[zijk = m| · · · ] ∝ πmijk

Lj∏
r=1

f (xijkr|pmijkr) ; (44)

for m = 1, . . . , M .

Recall that we have devised a method of simulating from the full conditional of pmijk

given the data and the remaining variables. For our convenience, we re-formulate the full
conditional in terms of the dishes ϕtjk and the indicators of the dishes, which we denote by
tmijk, where tmijk = t if and only if pmijk = ϕtijk; t = 1, . . . , τijk.

Now let τ
(m)
ijk denote the number of elements in PMijk\ {pmijk} that arose from

[G0,jk|Xijk]. Also let ϕm∗
tijk =

{
ϕm∗

tijkr; r = 1, . . . , L
}

; t = 1, . . . , τ
(m)
ijk denote the parameter

vectors arising from [G0,jk|Xijk]. Further, let ϕm∗
tijk occur Mmtijk times.

Then we update tmijk using Gibbs steps, where the full conditional distribution of
tmijk is given by

[tmijk = t| · · · ] ∝

 q∗
t,mijk if t = 1, . . . , τ

(m)
ijk ;

q0,mijk if t = τ
(m)
ijk + 1,

(45)

where
q0,mijk = αG,ikC−1

ijk ; (46)

q∗
t,mijk = Mmtijk

Lj∏
r=1

{
ϕm∗

tijkr

}n1mijkr
{
1 − ϕm∗

tijkr

}n2mijkr
. (47)

In (46) and (47), n1mijkr and n2mijkr denote the number of “a” and “A” alleles, respectively,
at the r-th locus of the j-th gene of the i-th individual, associated with the m-th mixture
component. In other words, n1mijkr = x1

ijkr + x2
ijkr and n2mijkr = 2 −

(
x1

ijkr + x2
ijkr

)
.

Let n∗
1tijkr = ∑

m:tmijk=t n1mijkr and n∗
2tijkr = ∑

m:tmijk=t n2mijkr. Then, for t =
1, . . . , τijk; r = 1, . . . , Lj; j = 1, . . . , J and k = 0, 1, update ϕ∗

tijk by simulating from its
full conditional distribution, given by

[ϕ∗
tijk| · · · ] ∼ [G0,jk|Xijk]. (48)

The above simulation from [ϕ∗
tijk| · · · ] is to be carried out by the retrospective method as

discussed above.

A-1.4. Updating the missing data

Updating Ỹijk

From (4) it follows that

[Ỹijk|zijk] =
L∏

r=Lj+1
f
(
yijkr|pzijkijkr

)
. (49)

Hence, given the other unknowns, Ỹijk can be updated by simply simulating from the
Bernoulli distributions given by (49).
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A-1.5. Relevant factor aggregations for updating the fixed-dimensional param-
eters

Relevant factors for updating µG and βG

Let

LG(µG, βG) =
1∏

k=0

Nk∏
i=1

J∏
j=1

M∏
m=2

[pmijk|plijk; l < m],

where [pmijk|plijk; l < m] is given by (15). Let πG(µG, βG) denote the prior on (µG, βG). Note
that πG(µG, βG)LG(µG, βG) is the product of the only factors in the joint model consisting
of µG and βG.

Relevant factors for updating µG0 and βG0

Now let

LG0(µG0 , βG0) ==
1∏

k=0

Nk∏
i=1

J∏
j=1

τijk∏
t=2

[ϕtijk|ϕlijk; l < t],

where [ϕtijk|ϕlijk; l < t] is given by (16).

Let πG0(µG0 , βG0) denote the prior on (µG0 , βG0). Then πG0(µG0 , βG0)LG0(µG0 , βG0)
is the functional form associated with µG0 and βG0 .

Relevant factors for updating µH and βH

Finally, we let

LH(µH , βH) =
1∏

k=0

Rk∏
s=2

[ξsk|ξlk; l < s],

where [ξsk|ξlk; l < s] is given y (17).

Let πH(µH , βH) be the prior on (µH , βH). Then πH(µH , βH)LH(µH , βH) is the func-
tional form to be considered for updating µH and βH .

A-1.6. Mixture of additive and multiplicative TMCMC for updating the fixed-
dimensional parameters in a single block

We shall update all the parameters µG, βG, µG0 , βG0 , µH and βH using a mixture
of additive and multiplicative TMCMC, where all the aforementioned parameters are given
either the additive move or the multiplicative move with equal probability, and where the
acceptance ratio will be calculated by evaluating the functional form

πG(µG, βG)LG(µG, βG) × πG0(µG0 , βG0)LG0(µG0 , βG0) × πH(µH , βH)LH(µH , βH)

at the numerator and the denominator corresponding to the proposed and the current values
of µG, βG, µG0 , βG0 , µH and βH , with all other unknowns held fixed at their current values,
multiplied by an appropriate Jacobian whenever the multiplicative move is chosen. For
details regarding mixture of additive and multiplicative TMCMC, see Dey and Bhattacharya
(2017).
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A-2. A parallel algorithm for implementing our MCMC procedure

Recall that the mixtures associated with gene j ∈ {1, . . . , J}, and individual i ∈
{1, . . . , Nk} and case-control status k ∈ {0, 1}, are conditionally independent of each other,
given the interaction parameters. This allows us to update the mixture components in
separate parallel processors, conditionally on the interaction parameters. Once the mixture
components are updated, we update the interaction parameters using a specialized form of
TMCMC, in a single processor. Furthermore, the parameters of the HDP are also amenable
to efficient parallelization. The details are as follows.

(1) (a) In processes numbered 0 and 1, simultaneously obtain the set of distinct elements
ΞRk,k; k = 0, 1, from {ϕtijk; t = 1, . . . , τijk; i = 1, . . . , Nk; j = 1, . . . , J}; k = 0, 1.

(b) Communicate ΞRk,k; k = 0, 1, to all the processes.

(2) (a) In process 0, obtain the set of distinct elements ζS from {ΞRk,k; k = 0, 1}.
(b) Communicate ζS to all the processes.

(3) In processes numbered 0 and 1, do the following in parallel for k = 0, 1:

(a) Simulate, following the retrospective method. η∗
lk

iid∼ αHH̃+
∑S

s=1 nskδηs

αH+n·k
; l = 1, 2,

. . . , L, for sufficiently large L.
(b) Communicate the simulated values to all the processes.

(3) Split {(j, k) : j = 1, . . . , J ; k = 0, 1} in the available parallel processes.

(a) For each (j, k), simulate, following the retrospective method.
ξ̃ljk

iid∼ αG0,kHk+
∑Rk

l=1 nljkδξlk

αG0,k+n·jk
; l = 1, 2, . . . , L.

(b) Communicate the simulated values to all the processes.

(4) (a) Split the triplets {(i, j, k) : i = 1, . . . , Nk; j = 1, . . . , J ; k = 0, 1} in the available
parallel processes sequentially into

T1 = {(i, j, 0) : i = 1, . . . , N0; j = 1, . . . , J}

and
T2 = {(i, j, 1) : i = 1, . . . , N1; j = 1, . . . , J} .

(b) Then parallelise updating of the mixtures associated with T1, followed by those
of T2.

(c) If, for any (i, j, k), retrospective simulation from [G0,jk|Xijk] requires more than
L simulations of ξ̃ljk in step (3) (a), then increase L to L∗, and
(i) For k = 0, 1, augment the simulations of {η∗

lk; l = 1, . . . , L} with new simula-
tions {η∗

lk; l = L + 1, . . . , L∗}.
(ii) For j = 1, . . . , J and for k = 0, 1, augment the simulations of

{
ξ̃ljk; l = 1, . . . , L

}
with new simulations

{
ξ̃ljk; l = L + 1, . . . , L∗

}
.
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(iii) Repeat (4) (a) and (4) (b).

(5) During each MCMC iteration, for each (i, j, k) in each available parallel processor,
update the allocation variables zijk, the proportions pmijk; m = 1, . . . , M , and the
missing data Ỹijk, using the methods proposed in Sections A-1.3 and A-1.4.

(6) Communicate the results of updating in (4) and (5) to all the processes.

(7) (a) During each MCMC iteration, update the parameters µG, βG, µG0 , βG0 , µH and
βH in a single block using a mixture of additive and multiplicative TMCMC, as
proposed in Section A-1.6, in process number 0.

(b) Communicate the updated results to all the processes.

A-3. Simulation studies

For simulation studies, we first generate realistic biological data for stratified popu-
lation with known gene-environment interaction from the GENS2 software of Pinelli et al.
(2012). To this data, we then apply our model and methodologies in an effort to detect
gene-environment interaction effects that are present in the data. We consider simulation
studies in 5 different true model set-ups: (a) presence of gene-gene and gene-environment
interaction, (b) absence of genetic or gene-environmental interaction effect, (c) absence of
genetic and gene-gene interaction effects but presence of environmental effect, (d) presence
of genetic and gene-gene interaction effects but absence of environmental effect, and (e)
independent and additive genetic and environmental effects.

As we demonstrate, our model and methodologies successfully identify the effects
of the individual genes, gene-gene and gene-environment interactions, and the number of
sub-populations. In all our applications, we set M = 30, ν1 = ν2 = 1, so that H̃ is
the uniform distribution on [0, 1]. We set αG,ik = 0.1 × exp (100 + µG + βGEik), αG0,k =
0.1 × exp

(
100 + µG0 + βG0Ēk

)
and αH = 0.1 × exp

(
100 + µH + βH

¯̄E
)
, where we assumed

µG, µG0 , µH
iid∼ U(0, 1) and βG, βG0 , βH

iid∼ U(−1, 1). This structure ensured adequate number
of sub-populations and satisfactory mixing of MCMC.

A-3.1.First simulation study: presence of gene-gene and gene-environment in-
teraction

A-3.1.1.Data description

As in Bhattacharya and Bhattacharya (2020) we consider two genetic factors as al-
lowed by GENS2 and simulated 5 data sets with gene-gene and gene-environment interaction
with a one-dimensional environmental variable, associated with 5 sub-populations. One of
the genes consists of 1084 SNPs and another has 1206 SNPs, with one disease pre-disposing
locus (DPL) at each gene. There are 113 individuals in each of the 5 data sets, from which
we selected a total of 100 individuals without replacement with probabilities assigned to
the 5 data sets being (0.1, 0.4, 0.2, 0.15, 0.15). Our final dataset consists of 46 cases and 54
controls. Since, in our case, the environmental variable is one-dimensional, d = 1.
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A-3.1.2.Model implementation

We implemented our parallel MCMC algorithm on 50 cores in a 64-bit VMware with
64-bit physical cores, each running at 2793.269 MHz. Our code is written in C in conjunction
with the Message Passing Interface (MPI) protocol for parallelisation.

The total time taken to implement 30, 000 MCMC iterations, where the first 10, 000
are discarded as burn-in, is approximately 20 hours. We assessed convergence informally
with trace plots, which indicated adequate mixing properties of our algorithm.

A-3.1.3.Specifications of the thresholds ε’s using null distributions

Following the method outlined in Section 4.2.4 and setting M to be 30, we obtain
εd∗ = 0.200, εd̂1

= 0.167, εd̂2
= 0.167, εd∗

E
= 0.250, εd∗

E,1
= 0.185, εd∗

E,2
= 0.173, εβG

= 0.874,
εβG0

= 0.128, εβH
= 0.219.

A-3.1.4.Results of fitting our model

The posterior probabilities P (d∗ < εd∗ |Data), P
(
d̂1 < εd̂1

|Data
)

and P
(
d̂2 < εd̂2

|
Data) empirically obtained from 20, 000 MCMC samples, turned out to be 0.378, 0.317
and 0.324, respectively. Hence, H0,d∗ , H0,d̂1

and H0,d̂2
are rejected, suggesting the influence

of significant genetic effects in the case-control study.

However, P
(
d∗

E < εd∗
E
|Data

)
, P

(
d̂E,1 < εd̂E,1

|Data
)

and P
(
d̂E,2 < εd̂E,2

|Data
)

are
given, approximately, by 0.558, 0.561 and 0.550, respectively, which seem to contradict
the results of the clustering based hypothesis tests. This can be explained as follows. Since
G0,jk are discrete, the parameters pmijk, even if generated from G0,jk, coincide with positive
probability, so that the effective dimensionalities of logit

(
P̄Mi0jk=0

)
and logit

(
P̄Mi1jk=1

)
are

drastically reduced, so that the Euclidean distance between these two vectors is substan-
tially small. As such, the Euclidean distance fails to reject the null even if it is false. As
noted in Bhattacharya and Bhattacharya (2020), even the clustering metric in this scenario
is not completely satisfactory since this involves clustering distance between two empirically
obtained central clusterings which may not be very accurate unless the sample sizes for case
and control are very large. However, compared to the Euclidean distance, the clustering
metric turns out to be far more reliable.

To check the influence of the environmental variable on the genes we compute the
posterior probabilities P (|βG| < εβG

|Data), P
(
|βG0| < εβG0

|Data
)

and P (|βH | < εβH
|Data).

The probabilities turned out to be 0.544, 0.550 and 0.191, respectively, showing that βH is
very significant. That is, the environmental variable has a significant overall effect on the
genes.

The posterior probabilities of no gene-gene interactions for the controls and cases,
showed the prominence of several gene-gene interactions in both control and case groups. As
to be expected, in the case group, more instances of gene-gene interactions turned out to be
significant compared to the control group.

Also, encouragingly, The posteriors of the number of sub-populations gave high prob-
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(a) Index plot for the first gene
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(b) Index plot for the second gene.

Figure A-1: Presence of gene-gene and gene-environment interaction: Plots of
the Euclidean distances

{
dr

j

(
logit

(
pr

i0jk=0

)
, logit

(
pr

i1jk=1

))
; r = 1, . . . , Lj

}
against

the indices of the loci, for j = 1 (panel (a)) and j = 2 (panel (b)).

abilities to 5, the true number of sub-populations.

A-3.1.5.Detection of DPL

The correct positions of the DPL, provided by GENS2, are rs13266634 and rs7903146,
for the first and second gene respectively. Due to the LD effects implied by the highly cor-
related structure of our current HDP based model, the actual DPL are difficult to locate.
Notably, our model is considerably more structured than those of Bhattacharya and Bhat-
tacharya (2018) and Bhattacharya and Bhattacharya (2020), and any inappropriate depen-
dence structure would render the task of DPL finding far more difficult than our previous
models. Nevertheless, we demonstrate that our HDP model can detect DPLs with more pre-
cision compared to our previous matrix-normal-inverse-Wishart model for gene-environment
interactions.

Following Bhattacharya and Bhattacharya (2018) and Bhattacharya and Bhattacharya
(2020), and writing pr

ijk = {pmijkr : m = 1, . . . , M}, we declare the r-th locus of the j-th gene
as disease pre-disposing if, for the r-th locus, the Euclidean distance
dr

j

(
logit

(
pr

i0jk=0

)
, logit

(
pr

i1jk=1

))
, between logit

(
pr

i0jk=0

)
and logit

(
pr

i1jk=1

)
, is significantly

larger than dr2
j

(
pr2

i0jk=0, pr2
i1jk=1

)
, for r2 ̸= r. We adopt the graphical method as in our pre-

vious works. The red, horizontal lines in the panels of Figure A-1 represent the cut-off
value such that the points above the horizontal line are those with the highest 2% Euclidean
distances. The actual DPLs of the two genes, as well as their nearest neighbours with Eu-
clidean distances on or above the red, horizontal lines, are shown in the figures. That even
such small sets of SNPs with highest 2% Euclidean distances consist of close neighbours of
the true DPLs, is quite encouraging. Observe that the DPL detection is more precise for
the second gene in the sense that the closest neighbour of the actual DPL above the red,
horizontal line is closer to the true DPL than for the first gene.
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The above results on DPL detection is also a significant improvement over Bhat-
tacharya and Bhattacharya (2020) where highest 10% Euclidean distances were considered,
suggesting that our current HDP based model is more appropriate compared to our previous
matrix-normal-inverse-Wishart model for gene-environment interaction.

A-3.2.Second simulation study: no genetic or environmental effect

Here we use the same case-control genotype data set as used by Bhattacharya and
Bhattacharya (2018) in their second simulation study where genetic effects are absent, con-
sisting of 49 cases and 51 controls and 5 sub-populations with the mixing proportions
(0.1, 0.4, 0.2, 0.15, 0.15). We use the same environmental data set generated in our first
simulation study described in Section A-3.1, which is unrelated to this genotype data.

Here we obtain P (d∗ < εd∗|Data) ≈ 0.407. Although this does not cross the 0.5
benchmark, there is significant evidence in favour of the null, and falling short of 0.5 can
be attributed to the slight deficiency of the distance between the two approximate central
clusterings associated with case and control, as already discussed in the context of the first
simulation study.

Also, in this study, P (|βG| < εβG
|Data), P

(
|βG0 | < εβG0

|Data
)

and P (|βH | < εβH
|

Data) are given by 0.549, 0.550 and 0.649, respectively, suggesting insignificance of the
effect of the environmental variable on gene-gene interaction. As noted in Bhattacharya
and Bhattacharya (2020), however, it is not straightforward to test whether or not the
environment is responsible for the case-control status. This is because we have modeled
the genotype data conditionally on case-control instead of modeling the case-control status
conditionally on the environmental variable. Bhattacharya and Bhattacharya (2020) use
significance testing in a simple logistic regression framework to show insignificance of the
environmental variable. As before, our model assigned high posterior probability to 5 sub-
populations. Note that since there is no genetic effect in this study, the question of detecting
DPLs does not arise here.

A-3.3.Third simulation study: absence of genetic and gene-gene interaction ef-
fects but presence of environmental effect

In this study we consider a case-control genotype data set simulated from GENS2
where case-control status depends only upon the environmental data. The number of cases
here is 47 and the number of controls is 53. This is the same case-control genotype data set
as used by Bhattacharya and Bhattacharya (2020) in their third simulation study.

In this case, we find that P (d∗ < εd∗ |Data) ≈ 0.400, which provides reasonable ev-
idence in favour of the null, even though the 0.5 benchmark is not crossed. Moreover,
P (|βG| < εβG

|Data) ≈ 0.536, P
(
|βG0| < εβG0

|Data
)

≈ 0.518 and P (|βH | < εβH
|Data) ≈

0.504, suggesting that the environmental variable does not affect the genetic structure.
Bhattacharya and Bhattacharya (2020) show by means AIC, in the context of simple lo-
gistic regression, that the best model consists of the marginal effects of the second gene
and the environment. In conjunction with our HDP-based model which produces reasonable
evidence in favour of accepting the hypothesis of no genetic effect, it may be possible to
conclude that the environmental variable is responsible for the case-control status.
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(a) Index plot for the first gene
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(b) Index plot for the second gene.

Figure A-2: Presence of genetic and gene-gene interaction effects
but absence of environmental effect: Plots of the Euclidean distances{
dr

j

(
logit

(
pr

i0jk=0

)
, logit

(
pr

i1jk=1

))
; r = 1, . . . , Lj

}
against the indices of the loci, for

j = 1 (panel (a)) and j = 2 (panel (b)).

As before, 5 subpopulations get significant weight by our posterior distribution, and
again, the question of DPL detection is irrelevant here since there is no genetic effect.

A-3.4.Fourth simulation study: presence of genetic and gene-gene interaction
effects but absence of environmental effect

Here we use the same genotype data set as used by Bhattacharya and Bhattacharya
(2018) in their first simulation study associated with genetic and gene-gene interaction effects,
consisting of 41 cases and 59 controls and 5 sub-populations with the mixing proportions
(0.1, 0.4, 0.2, 0.15, 0.15). We use the same environmental data set generated in our first
simulation study described in Section A-3.1, which is unrelated to this case-control genotype
data.

Here we obtain P (|βG| < εβG
|Data) ≈ 0.549, P

(
|βG0| < εβG0

|Data
)

≈ 0.542 and
P (|βH | < εβH

|Data) ≈ 0.552, correctly suggesting insignificance of the environmental vari-
able with respect to its effect on the genetic structure. Using logistic regression, Bhat-
tacharya and Bhattacharya (2020) conclude that the environmental variable has no role
to play in the case-control status. Furthermore, we obtain P (d∗ < εd∗|Data) ≈ 0.390,
P
(
d̂1 < εd̂1

|Data
)

≈ 0.336 P
(
d̂2 < εd̂2

|Data
)

≈ 0.324. so that importance of genes is
correctly indicated by our tests. Interestingly, study of the posterior probabilities of no
gene-gene interactions for controls and cases showed no gene-gene interaction in the control
group and only two (marginal) instances of gene-gene interaction among the cases.

Figure A-2 shows the plots of Euclidean distances between cases and controls for the
loci of the two genes. In this case, Gene-1 has been located quite precisely, and for Gene-2 the
Euclidean distance for even the true DPL is very close to the red, horizontal line, indicating
encouraging performance.
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(a) Index plot for the first gene
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(b) Index plot for the second gene.

Figure A-3: Independent and additive genetic and environmental effects: Plots
of the Euclidean distances

{
dr

j

(
logit

(
pr

i0jk=0

)
, logit

(
pr

i1jk=1

))
; r = 1, . . . , Lj

}
against

the indices of the loci, for j = 1 (panel (a)) and j = 2 (panel (b)).

A-3.5.Fifth simulation study: independent and additive genetic and environmen-
tal effects

As in Bhattacharya and Bhattacharya (2020), we consider the situation where the
genetic and environmental effects are independent of each other and additive; the data
consists of 57 cases and 43 controls.

Note that, as in Bhattacharya and Bhattacharya (2020), in our current HDP-based
Bayesian model also there is no provision for additivity of genetic and environmental ef-
fects. As such, it is not expected to capture the true data-generating mechanism accu-
rately. Indeed, here we obtain P (d∗ < εd∗ |Data) ≈ 0.389, P

(
d̂1 < εd̂1

|Data
)

≈ 0.337 and
P
(
d̂2 < εd̂2

|Data
)

≈ 0.331, indicating significance of the genes. However, the test with
d∗

E does not yield overwhelming evidence against the null. Our tests of gene-gene in-
teraction indicated significant interactions for controls and particularly for cases. Also,
P (|βG| < εβG

|Data), P
(
|βG0| < εβG0

|Data
)

and P (|βH | < εβH
|Data) are given, approximately,

by 0.547, 0.550 and 0.367, the last value showing that the environmental variable does affect
gene-gene interaction. The lack of the additivity provision in our model seems to have forced
the gene-environment interaction in this case.

In spite of the lack of additivity of our model the Euclidean distances between cases
and controls for the gene-wise SNPs are not adversely affected, and the actual DPLs are
detected quite accurately; see Figure A-3. This brings forth the generality and usefulness of
our nonparametric dependence structure. As before, 5 sub-populations received significant
posterior probabilities.
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