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Abstract

In order to reduce both computational and publication burdens, Generalized Variance Func-
tion (GVF) was introduced in official statistics production. Subsequently, the GVF found its way
into the production of smoothed variance estimates of survey-weighted estimates for small areas,
which are inputs in area level models. Parallel to the GVFs, a different approach, which we call
variance modeling, was introduced in small area estimation. While the concept was introduced in
an integrated area level model in order to account for an additional level of uncertainty in making
inferences on small area means, such a model has the ability to make inferences about the small
area sampling variances as well. In this paper, we develop a theoretical framework for variance
modeling of survey-weighted count estimates for domains with the goal to estimate design-based
variances of survey weighted count estimates for domains — small and large. We then propose a
few variance models and compare them using the American Community Survey (ACS) data.

Key words: Area level modeling; design-based; design-effect; effective sample size; generalized
variance function (GVF); small area estimation.

1 Introduction

National statistical offices routinely publish numerous tables of estimates on different socio-
economic, health, and other measures to keep the public informed about the well-being of a nation.
There is also a great demand to report certain estimated measures of uncertainty such as variance
estimates so that reliability of the published estimates can be ascertained. Computation of the
variance estimates by a traditional survey method (e.g., Cochran 1977) generally imposes heavy
computational as well as publication burden on the national statistical offices. Generalized Vari-
ance Function (GVF) method has been proposed to address this issue. Variables are placed into
groups such that they are similar within a group in terms of intra-class correlation or design effects.
A GVF is then proposed for each group by fitting a model that relates design-based variance es-
timates to the corresponding survey-weighted estimates and possibly some design variables. The
GVFs then replace numerous variance estimates to save publication costs of outputs from the
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survey used to develop GVFs and both publication and computation costs of outputs for future
surveys. Researchers have also found the use of GVF in improving traditional variance estimators
for domains; see, e.g., Eltinge et al. (2000), Elinge and Sukasih (2001) and Hinrichs (2003). For
ongoing surveys, GVFs can be updated from time to time. For a good review of the GVF method,
the readers are referred to Wolter (1985, Chapter 5). Researchers at the U.S. Census Bureau have
been using GVF for the Current Population Survey (CPS) since 1947 (see, Hansen et al. 1953).

The use of GVF in small area estimation can be traced back to the pioneering paper by
Fay and Herriot (1979), who proposed an empirical Bayes method for producing per-capita in-
come estimates for small areas. Using standard survey-weighted estimates and their associated
design-based variance estimates for a few large areas, they developed a GVF that establishes a
relationship between the design-based variance estimate of survey-weighted per-capita income for
an area and the corresponding population size estimate and the survey-weighted per-capita esti-
mate. They assumed the GVF thus developed for large areas to hold for small areas and then
used this synthetic assumption to motivate an approximate relationship between the true sampling
variance of survey-weighted per-capita income estimator and the true per-capita income for small
areas. They used such an empirical relationship in suggesting a variance stabilizing transformation
of the survey-weighted estimator of per-capita income for their sampling model, which simplified
their resulting empirical Bayesian methodology considerably. We note that a reasonable variance
stabilizing transformation can be also motivated without using GVF; see, for example, Carter and
Rolph (1974), Efron and Morris (1975), Jiang et al. (2001), Raghunathan et al. (2007), and Casas-
Cordero et al. (2016).

For small areas (domains), traditional design-based variance estimation techniques are known
to be unreliable due to small sample sizes in the areas; see Rao and Molina (2015) for a comprehen-
sive review of different small area estimation theory and applications. While GVF was initiated to
address the computational and publication issues, its potential utility to improve on the traditional
variance estimates for small areas cannot be overemphasized. However, there are a number of chal-
lenges in developing reasonable GVF for small areas because of noisy survey-weighted estimates
and their associated design-based variance estimates. We note that Fay and Herriot (1979) and
others who used variance stabilizing transformations on survey-weighted estimators (e.g., Casas-
Cordero et al. 2016) did not, however, explicitly discuss the issue of estimation of design-based
variance of a survey-weighted estimator. A suitable method applied on their hierarchical models
may lead to variance estimators that are more reliable than the traditional design-based variance
estimators for some small area estimation problems, but this claim needs further research.

Maples et al. (2009) and others extended the GVF approach for estimating sampling variance
of a survey-weighted estimator for small areas. Unlike Fay and Herriot (1979), the method pro-
posed by Maples et al. (2009) does not restrict their GVF fitting based on a subset of large areas
and incorporates sampling errors of the traditional design-based variance estimator and borrows
strength from relevant area specific auxiliary variables. To elaborate, they examined the sampling
distribution of the design-based variance estimators for the logarithm of survey-weighted counts.
Maples et al. (2009) suggested a parametric model applied directly to the design-based direct
estimates and claimed reasonable performance in their Small Area Income and Poverty (SAIPE)
application. Earlier Otto and Bell (1995) considered a multivariate version where sampling co-
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variance matrices were also directly modeled using Current Population Survey (CPS) data. In the
context of consumer expenditure survey, Hinrichs (2003) proposed both univariate and multivari-
ate hierarchical models to improve the GVF methodology for variance estimation for domains.

In the context of a small area estimation problem associated with the U.S. consumer expen-
diture survey, Arora and Lahiri (1997) proposed a joint modeling of means and variances in order
to capture different sources of variations. Though not discussed in their paper, Bayesian estimates
of sampling variances of direct survey-weighted estimators can be produced in a straightforward
way using the Monte Carlo Markov Chain (MCMC) applied on their joint hierarchical model. We
stress that this approach is different from the traditional GVF or its extensions described in the pre-
vious paragraph as design-based variances are not directly modeled. To elaborate, Arora and Lahiri
(1997) considered a multiplicative model for sampling variance of the direct survey-weighted es-
timator in which the first factor is a known function of different area specific design variables and
the second factor is an area specific random variance component on which a hierarchical model is
assumed. Similar ideas can be found in You (2002). In some cases, area specific random variance
components can be modeled as a function of means, which simplifies the modeling. For example,
in the context of estimating small area proportions, different functions of unknown area specific
random proportion have been proposed for the area specific random variance component; see, e.g.,
Liu et al. (2007, 2014), Hawala and Lahiri (2010), Maples (2016).

In this paper, we propose a simple method to estimate the sampling variances of survey-
weighted counts for domains – small or large. This calls for first modeling the sampling variance
of survey-weighted count for a domain as a known function of domain specific unobserved true
proportion, domain specific observed design variables and unknown global parameters. The global
parameters can be estimated by fitting the assumed model for similar large domains. One may
substitute the unobserved true proportion in the assumed variance model by its survey-weighted
estimate to obtain variance estimate for large domains. For small areas, a hierarchical model for
the unobserved area specific proportions can be assumed in order to borrow strength from different
area specific auxiliary data sources and to explain different sources of variations. Under a Bayesian
approach, MCMC can be applied on this hierarchical model to produce the posterior distribution
of true unknown sampling variances, which can be used for all inferential purposes for the true
unknown sampling variancse, including point estimation.

In section 2, we introduce notations used in the paper. In section 3, we first provide an
analytical argument for inclusion of certain design factors in variance modeling for a sample design
in common use. In this section, we also discuss different possible models for sampling variances of
survey-weight counts and the estimation of global parameters. In section 4, we compare different
variance models using data from the American Community Survey. We end the paper by offering
a few concluding remarks and prospect for future work in this area.

2 A Table of Notations

The following notations are for a given domain i. For notational simplicity, we supress the
domain index i for developing a variance model for the domain.
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U : the set of all units (e.g., persons) in the survey population for the domain,

N : number of units in U ,

For unit k ∈ U ,

yk =

{
1 if unit k satisfies an attribute of interest (e.g., a binary poverty status),
0 otherwise,

Y =
∑

k∈U yk, total number of units in U satisfying the attribute, the main parameter of interest,

P = Y
N
, proportion of units in U satisfying the attribute,

s: a sample of all units,

sh: set of all units nested within a larger compound unit h in s (e.g., the compound unit could be
a household if the unit is a person),

Nh: number of units in sh,

n =
∑

hNh: number of units in s, where
∑

h denotes summation over all compound units in s,

wk: survey weight associated with unit k in s,

Ŷ =
∑

k∈swkyk, survey-weighted estimator of Y ,

V ≡ V (Ŷ ) : true design-based variance that incorporates all sources of variabilities, including
variability due to design and weighting,

V̂ ≡ V̂ (Ŷ ) : a suitable estimator of V (Ŷ ) (e.g., Fay’s successive difference replication variance
estimator; see Fay and Train, 1995),

N̂ =
∑

k∈swk,

P̂ = Ŷ /N̂ .

We use lower case letters to indicate the value of a given estimator from a given sample. For
example, we obtain p̂ from P̂ for a given sample.

3 Variance Modeling

In this section, we first illustrate modeling of a binary variable for a simple design. We then
discuss how such a model helps proposing different variance models that can be used to produce
variance estimates for domain survey-weighted estimator Ŷ . To this end, we introduce a binary
variable zh for the compound unit h ∈ s. We assume the following model:

Model M: yk = zh,∀k ∈ sh with E(zh) = πh, V (zh) = σ2
h = πh(1− πh) and

Cov(zh, zh′) = 0,∀h 6= h′, (3.1)
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where πh can be interpreted as a superpopulation true proportion of units satisfying the attribute
in the compound unit h. This assumption that zh’s are uncorrelated across h may be reasonable
for a design with mild effect due to possible clustering of the compound units (e.g., design used
in the American Community Survey). The assumption yk = zh, ∀k ∈ sh can be justified for some
variables. For example, if yk denotes the poverty status of person k in household h, then the as-
sumption is justified if poverty status of a person is determined by that of the household where
he/she lives. Such an example can be found in National Socioeconomic Characterization Survey
(CASEN) CASEN in Chile (see, e.g., Casas-Cordero et al. 2016), American Community Survey
in USA, and surveys in other countries.

Noting that Ŷ =
∑

h zh(
∑

k∈sh wk), we obtain VM(Ŷ ), variance of Ŷ under model M, as

VM(Ŷ ) = n

[∑
h

qhπh(1− πh)

]∑
h

γh
(
∑

k∈sh wk)2

Nh

, (3.2)

where

qh =
Nh∑
hNh

, γh =
Nhπh(1− πh)∑
hNhπh(1− πh)

. (3.3)

Using the concavity of the function f(x) = x(1−x), 0 ≤ x ≤ 1, and the Jensen’s inequality,
we obtain the following upper bound from equation 3.2

VM(Ŷ ) ≤ nπ(1− π)
∑
h

γh
(
∑

k∈sh wk)2

Nh

, (3.4)

where π =
∑

h qhπh. We can interpret π as a superpopulation proportion of units in the domain
satisfying the attribute. Let n∗ = n × deff, where deff =

∑
h(
∑

k∈sh wk)2/n denotes the design
effect. The upper bound in equation 3.4 reduces to n∗P (1− P ) when γh and π are substituted by
qh and P , respectively. This motivates the following variance model:

V1 ≡ V1(P ;n∗) = n∗P (1− P ). (3.5)

Note that the model M does not incorporate the possible variability due to the weighting
process. The upper limit may take care of this additional variation, but it may be subject to bias.
In order to reduce bias, one may apply a multiplicative factor b to 3.5 and obtain the following
alternative variance model:

V2 ≡ V2(P ;n∗) = bn∗P (1− P ) = dP (1− P ), (3.6)

where d = b × n∗ and b is the average size of the compound unit. It may be possible to correct
for the bias by considering a more complex variance model that involves P and different design
factors such as n, deff, and one or more calibration factors b. We shall now elaborate on this.
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Bringing back the domain index i, the variance model 3.5 motivates the following variance
model for domain i:

V1i ≡ V1i(Pi; di) = ni;∗Pi(1− Pi), (3.7)

where ni;∗ = ni × deffi and deffi =
∑

h(
∑

k∈sih wk)2/ni, the summation being over all sampled
compound units in domain i. The design effect deffi could be free of i, especially for small area
(domain) applications.

We propose Model I-III and Model V to correct for possible bias in the variance model 3.5.
Model IV is used by the U.S. Census Bureau.

Model I : Vi1 = exp(b0)P
b1
i (1− Pi)

b2(di)
b3 , (3.8)

Model II : Vi2 = exp(b0)P
b1
i (1− Pi)

b2ab3i , (3.9)
Model III : Vi3 = exp(b0)[Pi(1− Pi)]

b1(di)
b3 , (3.10)

Model IV : Vi4 = b1Yi + b2Y
2
i , (3.11)

Model V : Vi5 = diPi(1− Pi), (3.12)

where di = bni;∗.

Remark 1: Note that in the above the coefficients (b0, b1, b2 and b3) have different interpretations
across different models. We use the same notation for simplicity.

Remark 2: In a logarithmic scale, Model I-III and Model V can be viewed as a multiple linear re-
gression model. In the log-transformed Model I, the independent variables are logPi, log(1−Pi),
and log di. Model II, motivated from Maples et al. (2009), is obtained from Model I when log(di) is
replaced by log ai, where ai is the number of compound units in the sample for domain i. Note that
logPi and log(1−Pi) are likely to be correlated. So in order to avoid the possible multicollinearity
problem, we consider Model III where we replace the two independent variables of Model I, i.e.,
logPi and log(1 − Pi) by a single independent variable log[Pi(1 − Pi)]. In the log-transformed
Model V, the coefficients of all the independent variables are 1.

Remark 3 To estimate the model parameters b0, b1, b2, and b3 for Model I-III, one may use stan-
dard design-based variance estimates V̂i for the dependent Vi and survey-weighted estimates pi for
Pi for similar large domains and use least squares method for the models in the logarithmic scale.
The fitted model can be used for producing variance estimates for similar items. Small area (do-
main) model fitting and variance estimation are challenging because the direct estimates of both Vi
and Pi are unreliable due to small domain sample sizes. For small domains, one may estimate the
model parameters using estimates for large domains. The sampling variance may then be viewed
as a function of Pi and so Bayesian method using an appropriate hierarchical model such as the
models used by Liu et al. (2007, 2014) can be used to make inferences about the sampling variance
of survey-weighted estimator.
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4 Evaluation of Different Variance Modeling using American Community Survey Data

For evaluation of our proposed methodology, we treat U.S. states. We choose these domains
so standard survey-weighted estimates and their associated Fay’s successive difference replication
variance estimates are reliable. Model V is the simplest adjustment of 3.7. So it will be interesting
to compare variance estimates resulting from Model V with the Fay’s successive difference repli-
cation variance estimates. Figure 1 provides a scatter plot of these two estimates for the states. In
the plot, we denote estimates from Model V by Vapprox and Fay’s estimates by V .

Figure 1: Scatter plot of Vapprox obtained from Model V vs. the Fay’s variance estimate for the
U.S. states

From Figure 1, we observe that Vapprox approximates the Fay’s estimates well. This suggests
that Model V is reasonable because at the state level the Fay’s method usually provides reasonable
variance estimates. Since Models I-III are all in the same logarithmic scale in the same dependent
variable, we can compare these three models in terms of the usual model selection criteria. Table 1
displays these model selection statistics. For a review of model selection, the readers are referred
to the IMS monograph edited by Lahiri (2001).

Table 1: Models on Log (V̂ ) :
Criteria Model I Model II Model III
Adj. R2 0.9735 0.9019 0.9741
AIC −14.90 51.90 −16.88
BIC −5.24 61.56 −9.15
PRESS 2.14 7.82 2.07
RPRESS 0.9709 0.8939 0.9719



406 SAM HAWALA AND PARTHA LAHIRI [Vol. 16, Nos. 1

From Table 1, we can see that Model I and III both outperform Model II in terms of the model
selection statistics considered. Model III appears to be slightly better than Model I. This suggests
that the design factor di is a reasonable component of the variance model. We cannot use the model
selection criteria given in Table 1 to compare variance estimates motivated from Model I-III with
the variance estimates from Model IV since the dependent variables are in different scales.

To compare all the five models, we compute relative differences of the variance estimates
from the Fay’s estimate for all the 50 states and the District of Columbia. We define the relative
difference as

RD = (ṽ − v̂)/v̂,

where ṽ is one of the five variance estimates obtained from the five GVF models. Figure 2 dis-
plays the box-plots for each of the five models. Model I and Model III emerge as the two best
performers. Model II and IV seem to have some underestimation problem. The variance estimate
derived from Model V, i.e. b̄V̂approx (Figure 2) seems promising, although there is a tendency for
possible overestimation. This conservative approach may be reasonable when we do county level
estimation as we do not know how good the Fay’s variance estimator is in terms of capturing all
sources of variabilities from the sampling and weighting processes.

Figure 2: Comparisons of variance estimates based on Relative Difference

5 Concluding Remarks

In this paper, we propose different variance models for survey-weighted domain totals. The
theoretical framework suggested in the paper could be potentially extended to deal with non-binary
data and for more complex designs such as the design considered in Gabler et al. (1999). This could
be a good future research topic. Small area variance modeling is a challenging research topic.
The synthetic approach proposed in this paper could introduce considerable bias in the variance
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estimates, if the synthetic assumptions are not reasonable. It may be possible to reduce the bias
of the synthetic variance estimation bias by using an integrated model that combines a synthetic
model such as the one proposed in this paper for large areas with a more elaborate hierarchical
model such as the ones considered by Liu et al. (2007, 2014) for the small areas. We plan to
pursue this research area in the future.
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