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Abstract
High dimensional inference problems are generating considerable interest due to the

availability and accessibility of massive amount of data in several fields. Modern sta-
tistical problems, however, involve natural constraints on model parameters. For such
estimation problems, it is not fitting to apply standard estimates designed for unre-
stricted alternatives and then to truncate it. Given a n dimensional independent normal
observation with common variance, we consider the classical normal mean estimation
problem where the mean vector lies in a non-negative orthant. We study the behav-
ior and risk properties of Bayesian estimators under two popular priors, the horseshoe
prior and Strawderman-Berger prior, originally developed in the unrestricted mean vec-
tor estimation regime and then restrict the distribution of prior to satisfy the parameter
constraint. The performance of posterior mean based on the horseshoe prior and the pos-
terior mean and posterior median based on Strawderman-Berger prior is compared with
the maximum likelihood estimator, numerically under different sparsity configurations.

Key words: Constrained normal means; Shrinkage estimators; Mixture distribution; Spar-
sity.

1. Introduction

Traditional statistical theory has mostly focused on methods developed for large
samples and a small number of features. The modern scientific world, however, is moving
fast towards the regime of high dimensional data. In the high dimensional setting, often
one deals with the case when only few variables are relevant. Thus, it has become
increasingly important to identify true signals as the data tends to be sparse. Probably
the most common of such high dimensional sparse estimation problems is estimation of
the mean of a normal distribution when sample size is small compared to the dimension.
It is the proverbial needle in a haystack problem that has received much attention in
the literature. The setting of the problem is simple. Given data y1, . . . , yn, arising
independently from the model

yi|µi, σ2 ∼ N(µi, σ2),
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one wishes to estimate the entire vector µ = (µ1, . . . , µn). Of course, given that there are
only n independent observations for (n+1) unknown parameters, additional assumptions
are needed for meaningful estimation of the mean vector. Usually some level of sparsity
is assumed for the true mean vector. Both Bayesian and frequentist estimators have been
developed for this problem, the most well known being the shrinkage estimators starting
with James and Stein (1961), thresholding estimators starting with Donoho and Johnston
(1994), penalized estimators such as Lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001)
and many other variants of them.

In the Bayesian setting, popular approaches include using the spike and slab priors
and continuous shrinkage priors for sparse mean estimation. Formulation of sparse mean
vector scenarios as a combination of two regimes where the mean values are zero or arising
from a measure which allows for possibly large values naturally leads to a mixture prior
of the form

p(µ) = pδ0 + (1− p)g(µ).

The point mass p as µ = 0 is the spike and the probability density g(·) allowing µ to take
possibly large non-zero values is the slab. Mitchell and Beauchamp (1988) considered
it in the context of variable selection in Gaussian regression. Since then such priors
have gained popularity in many contexts including variable selection, covariance matrix
estimation, false discovery rate estimation. Many authors have advocated the use of
such point mixture priors for normal mean estimation. Strawderman-Berger (SB) prior
(Strawderman and Berger, 1996) explicitly considered in this article is an example of such
a spike-and-slab prior in a hierarchical setting where the hyper-parameters governing the
slab g(·) are allowed to change according to some prior for each µi. Specifically, they
propose the following model

µi|τ, λi ∼ N(0, τ 2λ2
i ),

p(λi) ∝ λi(1 + λ2
i )1/2,

p(τ) ∼ C[σ, σ]I(τ > σ)

where C[a, b] is the Cauchy density with location and scale equal to a and b, respectively.

A version of the spike-slab prior considered recently is the non-local prior recom-
mended by Johnson and Rossell (2010, 2012) where the slab is well separated from the
spike at zero. Being a single component prior, horseshoe type priors are computationally
less demanding than the spike-slab priors.

Another class of priors considered for sparse estimation of mean are the shrinkage
priors or the global-local priors. Park and Casella (2008) proposed a scale mixture of
Gaussian prior that they called the Bayesian Lasso. However, these priors do not have
sufficient prior mass near zero to work well in the very sparse regime. Carvalho et al.
(2010) proposed the horseshoe (HS) prior defined as

µi|τ, λi ∼ N(0, τ 2λ2
i ),

p(λi) ∝ C[0, 1]+,
p(τ) ∼ σC[0, 1]+

where C[0, 1]+ is the half-Cauchy density, the standard Cauchy truncated to the positive
half. The horseshoe prior has only one component as opposed to the two separate com-
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ponents of the spike-and-slab priors but overcomes the deficiency of the Bayesian Lasso
in sparse regime by allowing infinite prior density at zero.

While full Bayesian analysis is possible, empirical Bayes solutions have also been
discussed for the two component mixture priors such as Strawderman-Berger and the
single component shrinkage priors such as horseshoe. Empirical Bayes solutions for high-
dimensional sparse mean estimation have been also looked at in the literature; see John-
ston and Silverman (2004), Brown and Greenshtein (2009).

Often one has prior knowledge on the range of possible values for the mean param-
eter, such as the parameter is non-negative. One way of estimating such a parameter
is to first obtain an unrestricted estimate of the parameter and then truncate it so that
the estimate lies in the constrained parameter space. Intuitively, the performance of the
estimator is expected to be much better if such constraint conditions are incorporated in
the model. Constrained estimation of normal mean restricted to convex cones has been
discussed in Sen and Silvapulle (2001). Danaher et al. (2012) provides an example of
Bayesian estimation of normal mean when the mean is constrained to a convex polytope.

In this paper we particularly look at the case when the dimension is large and
the mean vector is assumed to be sparse. We focus on the high dimensional normal
means estimation problem where the mean vector is constrained to be in a closed convex
polyhedral cone. Let y = (y1, . . . , yn)′ ∼ N(µ, σ2I) where the parameter of interest
µ = (µ1, . . . , µn)′ is assumed to belong to the convex cone

K = {µ ∈ Rn : Aµ ≥ 0}

where A is some fixed r×n matrix. We assume that K has non-zero interior volume with
respect to the n dimensional Lebesgue measure. Of course, one of the most interesting
question is how to specify sparsity in constrained spaces such as K. However, the scope of
this paper is very limited. Without getting into a discourse about sparsity in constrained
sets such as K, we simply compare the performance of sparsity generating spike-and-slab
priors such as Strawderman-Berger and shrinkage priors such as horseshoe, when the
priors are defined in terms of scale mixtures of truncated normal instead of normal. This
straightforward generalization is probably not optimal, particularly if the conic geometry
is very different from that of the entire space. However, given its special importance in
the applications, we will only consider K to be the positive orthant, Rd

+. The geometry of
the positive orthant is very similar to the unrestricted linear space, but there are subtle
differences in estimation due to the constraint and that is what we explore via numerical
investigation.

In Section 2 we discuss the Bayes estimators for the Strawderman-Berger and the
horseshoe priors when they are extended to the convex cone case. In Section 3 we present
results of a numerical experiment comparing the performance of posterior quantities
obtained using different priors along with that of the maximum likelihood estimator
(MLE) projected to the convex cone. We end with some discussions in Section 4.

2. Sparse Priors for the Non-negative Orthant

In this paper we consider the restriction µi ≥ 0 for all i and hence µ ∈ K = Rn
+. For

the horseshoe prior and the Strawderman-Berger prior for the non-negative orthant, we
simply replace the normal prior for µi with normal truncated to the positive half. To judge
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the performance of the estimators under different priors in the constrained case, we set
forth a list of desirable properties. These are analogous to desirable properties in a sparse
mean estimator in the unrestricted case, except adapted to the constrained mean case.
For example, one would want the estimators for µi to provide considerable shrinkage for
small to moderate yi whereas to leave yi nearly unperturbed for large positive yi. In the
constrained case, for negative yi one would expect the estimated mean to be nearly zero,
if not exactly zero. The maximum likelihood estimator for µi is exactly zero whenever yi
is negative.

Horseshoe prior

The extension for the horseshoe to the positive orthant considered here is then

µi|τ, λi ∼ N(0, τ 2λ2
i )+,

λi ∼ C(0, 1)+.

where N(θ, v)+ represent a N(θ, v) truncated from below at 0 and C(0, 1)+ represent a
standard half-Cauchy distribution on the positive reals. We use a Jeffrey’s prior on σ
and standard half-Cauchy prior with scale equal to σ on τ .

π(σ) ∝ 1
σ
,

τ |σ ∼ C(0, σ)+.

One could estimate σ and τ using an Empirical Bayes approach. However, here we
use a full Bayesian framework. Carvalho et al (2010) described λi as the local shrinkage
parameter and τ the global shrinkage parameter. For the positive orthant, the horseshoe
prior that we are considering is essentially a scale mixture of truncated normals, scale
being a function of a common variance component, τ and an individual variance compo-
nent, λi for each µi.

Conditional on σ, τ and λi’s, µi|y are independently distributed as

µi|λi, τ, σ,y ∼ N(mi, s
2
i )+

where mi = s2
i
yi

σ2 and s2
i = [ 1

σ2 + 1
τ2λ2

i
]−1. Then, we have

E(µi|λi, τ, σ,y) = mi +
φ(−mi

si
)

1− Φ(−mi

si
)si. (1)

The Bayes estimator of µi is given by

µ̂i = E(µi|y) = Eλi,τ,σ|yE(µi|λi, τ, σ,y).

From the bounds on the Mill’s ratio for the standard normal, we know that for t > 0,

t <
φ(t)

1− Φ(t) <
1 + t2

t
. (2)

This implies E(µi|λi, τ, σ,y) > 0 for all y. Also, for yi < 0, E(µi|λi, τ, σ,y) < σ2|yi|−1.
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Moreover, for large positive yi, E(µi|λi, τ, σ,y) ≈ [1− τ2λ2
i

σ2+τ2λ2
i
]yi. Hence, summarizing we

have

Result 1: For the horseshoe prior for the constrained case when the true mean is re-
stricted to the non-negative orthant:

1. E(µi|y) > 0 for all y.

2. For yi < 0, E(µi|y) = O(|yi|−1).

3. For large positive yi, E(µi|y) ≈ E([1− τ2λ2
i

σ2+τ2λ2
i
]|λi, τ, σ,y)yi.

Thus, the posterior mean of µi acts as a shrinkage estimator and its behavior is similar
to what observed in the unrestricted case.

Strawderman-Berger Prior

The extension of Strawderman-Berger prior for the non-negative orthant puts a
truncated normal distribution in place of the usual normal distribution.

π(µi) = pδo + (1− p) N(0, τ 2λ2
i )+,

π(λi) ∝ λi(1 + λ2
i )

3
2 ,

p ∼ Unif(0, 1).

Similar to horseshoe, we use a Jeffrey’s prior on σ and for τ and a truncated Cauchy
prior with location and scale both equal to σ bounded below at σ, which are

τ |σ ∼ C(σ, σ) 1(τ ≥ σ),

π(σ) ∝ 1
σ
.

Conditional on λi, τ, p, σ, the posterior distribution of µi is a mixture distribution

π(µi|λi, τ, p, σ,y) = c(θi, yi) δo +
(
1− c(θi, yi)

)
N(mi, s

2
i )+ (3)

where
c(θi, yi) =

p
σ
φ(yi

σ
)

p
σ
φ(yi

σ
) + 2(1−p)

li
φ(yi

li
)Φ(mi

si
)

is the posterior probability of µi = 0 which acts as local shrinkage, θi = {λi, τ, σ, p} and
l2i = σ2 + λ2

i τ
2 for i = 1, . . . , n.

Then, we have

E(µi|λ, τ, σ, p,y) =
(
1− c(θi, yi)

)mi +
φ
(
−mi

si

)
Φ
(
mi

si

) si
.

The Bayes estimator for µi is the posterior mean, E(µi|y) = Eλ,τ,p|yE(µi|λ, τ, σ, p,y).

Result 2: The following results hold for the posterior mean computed based on the
Strawderman-Berger prior in the constrained case:
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1. µ̂i > 0 since E(µi|λi, τ, p, σ,y) > 0 using the inequality in (2).

2. µ̂i is non-decreasing in yi.

3. For large positive yi, E(µi|y) ≈ E
[(

1− c(θi, yi)
)(

1− τ2λ2
i

σ2+τ2λ2
i

)
|λi, τ, σ,y

]
yi.

See the appendix for a proof of the above Result 2.

In the two component model, the posterior mean could be computed in a manner
similar to that computed for the horseshoe type prior. However, for the spike-and-slab
type prior, it is more interesting to look at the component-wise posterior median. For
the posterior median, we use the estimator,

µ̂iM(µi|y) = F−1
i (1/2)

where
Fi(t) = Eθ|y[P (µi ≤ t|θi, yi)]

and

P (µi ≤ t|θi, yi) = c(θi, yi) +
(
1− c(θi, yi)

)
Φ−1

(
mi

si

) [
Φ
(
t−mi

si

)
− Φ

(
− mi

si

)]
.

A more specific form of the posterior median is

µ̂iM(µi|y) =

0 if Eθ|y
(
c(θi, yi)

)
≥ 0.5,

inf{x ≥ 0 : Fi(x) ≥ 0.5} if Eθ|y
(
c(θi, yi)

)
< 0.5.

(4)

Thus, for an additive loss
L(µ, µ̂) =

∑
|µi − µ̂i|,

it makes sense to look at the component-wise posterior median, µ̂M .

One could also look at the Empirical Bayes estimator of the median which is the ex-
pectation of the posterior median expression with respect to p(y|θ). Let

Gi(t|θi, yi) = P (µi ≤ t|θi, yi).

Then the expression for the median is

µ̃i(θi, yi) = 1[c(θi, yi) ≤ 0.5] G−1
θi,yi

( 1
2 − c(θi, yi)
1− c(θi, yi)

)
. (5)

One could show that the posterior median defined in (5) is a continuous shrinkage soft
thresholding rule.

Result 3: For the Strawderman-Berger prior for the normal mean when the true mean
is constrained to the non-negative orthant, the component-wise posterior median in (5)
satisfies the following properties for a given value of the hyperparameter θ.

1. The posterior p(µi|θi, yi) is stochastically increasing in yi and hence the posterior
median of µi is a monotonically increasing in yi for each value of the hyperparameter.
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2. For each yi, there exists T (θi) such that µ̃i(θi, yi) = 0 iff yi < T (θi).

See the appendix for a proof of the above result.

3. Posterior Computation and Numerical Results

Let θ denote the set of all hyper-parameters. We use θ interchangeably for horseshoe
and Strawderman-Berger prior where θ = {λ, τ, σ} for the former and θ = {λ, τ, p, σ} for
the later. We use a Metropolis within Gibbs algorithm to generate random samples from
the marginal posterior distribution, π(θ|y) and thus compute posterior summaries for
the posterior π(µi|y) by averaging the value of the hyperparameters over the randomly
generated sample of θ. For the posterior mean E(µi|y) we use the estimator

E(µi|y) = L−1
L∑
l=1

E(µi|θl,y),

where θ1, . . . ,θL are samples from π(θ|y). For the posterior median, Med(µi|y), we use
the estimator

Med(µi|y) = F̂−1
i (1/2),

where F̂i(t) = L−1∑L
l=1 P (µi ≤ t|y,θl).

The conditional marginal of y can be factorized as

π(y|θ) =
n∏
i=1

π(yi|λi, τ, σ, p),

where π(yi|λi, τ, σ) = 1
li
φ(yi/li) Φ(mi/si) for the horseshoe prior and π(yi|λi, τ, p, σ) =

p
σ
φ(yi/σ) + 2(1−p)

li
φ(yi/li) Φ

(
mi

si

)
for the Strawderman-Berger prior. The distribution

of yi conditional on the hyperparameters is Skew-Normal for the horseshoe prior and a
mixture distribution of Normals for µi = 0 and Skew-Normal for µi > 0.

Hence the for the Gibbs sampling algorithm, the full conditionals are

1. π(λi|τ, σ,y) ∝ π(yi|λi, τ, σ) π(λi), i = 1, . . . , n

2. π(τ, σ|λ,y) ∝ π(y|λ, τ, σ) π(τ |σ) π(σ).

For the Strawderman-Berger prior we have in addition,

1. π(p|λ, τ, σ,y) ∝ π(y|λ, τ, σ, p) π(p).

The one-dimensional conditionals can be sampled using a standard Metropolis step.

3.1. Simulation results

We compare the performances of the Strawderman-Berger estimators, horseshoe es-
timator and Maximum Likelihood Estimator (MLE) under different degrees of sparsity.
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The MLE when µ ∈ K = Rn
+ for Σ = σ2I is simply the projection of y onto the non-

negative orthant i.e. µ̂i = max(yi, 0). For a general polyhedral cones, with Σ other than
σ2I, the MLE is not straightforward to compute.

We analyze the risk properties of the estimators when the mean vector is simulated
under strongly sparse signals and weakly sparse signals. For each of the sparsity level,
we further consider two scenarios described below.

Strong sparsity: We use a discrete mixture model to generate exact zero entries for the
mean vector using the model below:

yi|µi, σ2 ∼ N(µi, σ2),
π(µi) = pδo + (1− p) G(α, β),

where α is taken to be 5, β is 0.5 and 80% of the mean vector has exact zero entries. The
major concentration of µi’s is at 0 with an average concentration of µi > 0 at 10 with
variance 20. Two possible values of σ are considered: σ = 1 and σ = 3. The separation
between yi’s at µi = 0 and µi > 0 is more prominent for σ = 1 than σ = 3.

Weak sparsity: For weakly sparse signals, we generate µi which decays according to
the power law but none of its components are exactly zero. For this, we consider

yi|µi, σ2 ∼ N(µi, σ2),
µi|η, α ∼ Unif(0, ηci),

η ∼ Ex(2),
α ∼ Unif(a, b),

where ci = (n/i)1/α for i = 1, . . . , n. For simulation purposes, σ = 1 is chosen and two
possible scenarios of α ∼ Unif(a, b) are considered: a = 0.5, b = 1 and a = 1, b = 2. The
first scenario yields relatively large mean entries than the second scenario depending on
the randomly generated values of η and α. When α ∼ Unif(1, 2), one can expect the
concentration around 0 to be more dense than when α ∼ Unif(0.5, 1) depending on the
speed of decay, α.

For each of the scenarios, we simulate 1000 data sets from the corresponding model
of dimension n = 300 using MCMC with 50000 runs and a burn-in period of 10000. The
convergence is assessed using the standard MCMC diagnostic checks and all chains seem
to converge. We report the median risk under squared error loss and absolute error loss
along with the average risk ratios between the estimators in Table 1 and Table 2.

Figure 1 shows the plots for MLE estimates, posterior mean under horseshoe prior
and posterior mean and posterior median under Strawderman-Berger prior for a single
realization generated under strongly sparse signals with the variance set to σ = 1 or
σ = 3. The dimension of the mean vector is 300. Figure 2 presents the same under
weakly sparse signals for the two scenarios when α ∼ Unif(0.5, 1) and α ∼ Unif(1, 2).

From Figure 1 and Figure 2, we see that the posterior mean for the horseshoe
provides shrinkage near zero, but it is still significantly positive even when the realized y
is considerably negative. This is particularly undesirable in the constrained case when the
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Figure 1: Plots of µ̂ versus y under strong sparsity with σ = 1 (left) and σ = 3
(right)

true mean is known to be non-negative. From Result 1, we know that for negative y, the
horseshoe estimator decays as O(|y|−1). This induces considerable bias. The posterior
mean under the Strawderman-Berger prior shrinks more than the horseshoe posterior
mean estimator. However, for large positive y the horseshoe estimator seems to perform
better, and shrinks less than the posterior mean under the Strawderman-Berger prior.

The posterior median for Strawderman-Berger prior, as expected from the results
in Result 3, provides a soft thresholding estimator that is truncated to zero below the
truncation point T (y, p) and provides continuous shrinkage for y above the truncation
point. All estimators are monotonic in y and the shrinkage factor tends to one as y tends
to infinity, thereby satisfying the requirement to not perturbing the big realized values of
y.

Table 1 shows that the risk performance of Strawderman-Berger posterior median
and posterior mean is better than the MLE and horseshoe posterior mean both in terms
of squared error loss and absolute loss for the strong sparsity case. In particular, the
horseshoe posterior mean has at least 50% more risk than both the Strawderman-Berger
posterior mean and posterior median. However, the risk for horseshoe posterior mean
under squared error loss is 20%−35% less than the Strawderman-Berger estimators when
σ = 3.

From Table 2, we see that the risk of horseshoe posterior mean is consistently
less than that of MLE and Strawderman-Berger posterior mean and posterior median.
Specifically, horseshoe posterior mean has of 6%− 40% more risk than the Strawderman-
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Figure 2: Plots of µ̂ versus y under weak sparsity where α ∼ U(0.5, 1) (left)
and α ∼ U(1, 2) (right)

Berger estimators. However, when α ∼ U(1, 2), horseshoe estimator has 63% more risk
than the Strawderman-Berger posterior mean and approximately 411% more risk than
SB posterior median, although the median squared error risk is less for horseshoe than
the other estimators.

4. Real Data Analysis

We studied the performance of the estimators using the childhood acute lymphoblas-
tic leukemia (ALL) data set (GSE412) which includes gene expression information for 110
childhood acute lymphoblastic leukemia samples before and after treatment. From the
originally measured 12625 probe sets, genes that were not present in at least one sam-
ple were removed to obtain 8280 genes. After cleaning the data, we selected 250 genes
for 50 pediatric newly diagnosed children for our analysis. Our goal is to estimate the
standardized difference between post-treatment mean, θ2 and pre-treatment mean, θ1
regardless of the type of treatment used i.e. µ = θ2−θ1

σ
. For illustration purposes, we

assume up-regulation of gene expression level in ALL cells so that µ ∈ Rn
+. We further

assumed that the gene expression levels are uncorrelated and have same variance. The
observed data is the standardized difference of the average post-therapy and pre-therapy
gene expression.
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Table 1: Risk under squared error loss and absolute error loss for strongly
sparse signals in two scenarios: σ = 1 and σ = 3. The diagonal components are
median sum of squared error and absolute error. The off diagonal components
are average error ratios of estimator in row by estimator in column.

σ = 1 σ = 3

MLE HS SB
Mean

SB
Median MLE HS SB

Mean
SB

Median

Square
Error
Loss

MLE 171 1.39 2.23 2.33 1598 1.19 0.98 0.77
HS 131 1.6 1.67 1361 0.81 0.64

SB Mean 82 1.04 1636 0.78
SB Median 78 2129

Absolute
Error
Loss

MLE 143 0.92 1.97 2.6 428 0.95 1.43 1.42
HS 156 2.13 2.8 452 1.5 1.49

SB Mean 73 1.32 295 0.98
SB Median 56 299

Table 2: Risk under squared error loss and absolute error loss for weakly
sparse signals in two scenarios: α ∼ U(0.5, 1) and α ∼ U(1, 2). The diagonal
components are median sum of squared error and absolute error. The off
diagonal components are average error ratios of estimator in row by estimator
in column.

α ∼ U(0.5, 1) α ∼ U(1, 2)

MLE HS SB
Mean

SB
Median MLE HS SB

Mean
SB

Median

Square
Error
Loss

MLE 200.24 2.68 2.91 2.65 179 15.7 128.67 400
HS 122.52 0.73 0.6 63 1.63 5.11

SB Mean 185.7 0.81 128 0.92
SB Median 235.8 136

Absolute
Error
Loss

MLE 181.8 1.6 1.75 1.63 166 3.09 4.32 4.8
HS 136.39 0.94 0.85 86 0.91 0.93

SB Mean 162.67 0.89 128 0.95
SB Median 186.75 134
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Figure 3: Plot of µ̂ versus y for the standardized difference in post-treatment
and pre-treatment gene expression for 250 genes

The estimated MLE, posterior means and posterior median are shown in Figure 3.
The summary results for the observed data and the estimates are presented in Table 3.
We noticed that Horseshoe posterior mean is always positive whereas the MLE is 0 for
negative y’s. While the Strawderman-Berger posterior median is exactly 0 for y < 1.4,
the SB posterior mean is close to 0 for these values of y. All four estimates perform
similarly for larger values of y.

5. Discussion

In our simulation studies, we compared the performance of horseshoe posterior
mean, Strawderman-Berger posterior mean and posterior median for strongly sparse
signals and weakly sparse signals. While the posterior mean for both horseshoe and
Strawderman-Berger prior are shrinkage estimators, MLE and Strawderman-Berger pos-
terior median are truncation based estimators with exact zeros for small signals. When
the true sparsity regime is strong sparsity, then truncation type estimators maybe pre-
ferred. The non-negative constraint does impact the relative performance of the mean
and median estimators. It can be shown that the posterior mean under priors consid-
ered here are smooth differentiable functions of the observed value. Hence it cannot be
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Table 3: Summary statistics for the estimates under Horseshoe (HS) and
Strawderman-Berger prior

y MLE HS
Posterior Mean

SB
Posterior Mean

SB
Posterior Median

Minimum -0.0437 0.0000 0.0008 0.0000 0.0000
1st Quartile 0.0043 0.0043 0.0058 0.0000 0.0000

Median 0.0054 0.0054 0.0063 0.0000 0.0000
Mean 0.4618 0.4620 0.4630 0.4583 0.4592

3rd Quartile 0.0064 0.0064 0.0069 0.0000 0.0000
Maximum 5.6094 5.6094 5.6093 5.6094 5.6100

expected to capture the threshold like behavior present in the strongly sparse regime.

In this paper, the numerical studies for non-negative orthant is restricted to horse-
shoe prior and Strawderman-Berger prior. It would be interesting to consider other scale
mixture distributions, similar to Bayesian lasso, with hard thresholding properties for
non-negative mean vectors. Another interesting domain is the discrete mixture models
where the mixing kernel for the positive means could be chosen in a more flexible man-
ner, belonging to flexible families on the non-negative orthant, e.g. product of gamma
densities where heavy tailed priors are used for the hyperparamters. While the scope of
this paper is limited to non-negative orthant which has many popular applications, one
can think of exploring some of these priors to a general closed convex polyhedral cones.
Moreover, the observations maybe allowed to be correlated with a known low-dimensional
correlation structure. For example, one could use the model y|µ ∼ N(µ, σ2Σ) where the
positive definite matrix Σ is completely known. The mean vector is again assumed to be
in the non-negative orthant. A standard approach to dealing with general Σ matrix is to
transform the observations to Σ−1/2y so that the problem reduced to the case considered
here. However, the transformed mean Σ−1/2µ need not remain in the positive orthant
unless Σ is an M-matrix with an inverse that admits a positive square-root. Thus, for
general Σ further investigation is required.
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APPENDIX

Here we prove the claims in Results 2 and 3 about the posterior mean and median
of µi obtained using the Strawderman-Berger prior.

Result 2:

2. µ̂i is non-decreasing in yi.

For notational simplicity, we denote µi by µ and yi by y. Without loss of generality,
let us assume σ = 1.

y|µ ∼ N(µ, 1), µ ∼ g(µ)

g(µ) = πδo + (1− π)g1(µ)

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL8300
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An estimator of µ is then given by

l(y) = E(µ|y) =
∫
µφ(y − µ)g(µ)∫
φ(y − µ)g(µ)

= (1− π)
∫
µφ(y − µ)g1(µ)dµ

πφ(y) + (1− π)
∫
φ(y − µ)g1(µ)dµ

=
∫
µφ(µ)g1(µ)eµydµ

π
1−π +

∫
φ(µ)g1(µ)eµydµ

= a(y)
b(y) ,

where a(y) =
∫
µ φ(µ) g1(µ) eµy dµ and b(y) = π

1−π +
∫
φ(µ) g1(µ) eµy dµ.

Then a′(y) =
∫
µ2 φ(µ) g1(µ) eµy dµ and b′(y) = a(y)

l′(y) = b(y)a′(y)− a(y)b′(y)
b2(y)

=
( π

1−π +
∫
φ(µ) g1(µ) eµy dµ)(

∫
µ2 φ(µ) g1(µ) eµy dµ)− (

∫
µ φ(µ) g1(µ) eµy dµ)2

b2(y)

=
π

1−π
∫
µ2f ∗(µ) dµ+ q(y)

∫
µ2f ∗(µ) dµ)− (

∫
µf ∗(µ) dµ)2(

π
1−π + q(y)

)2 ,

where f ∗(µ) = φ(µ) g1(µ) eµy and q(y) =
∫
f ∗(µ)dµ.

Therefore l′(y) reduces to

l′(y) =
π

1−π
1
q(y)

∫
µ2 f∗(µ)

q(y) dµ+
∫
µ2 f∗(µ)

q(y) dµ)− (
∫
µ f∗(µ)

q(y) dµ)2(
π

1−π
1
q(y) + 1

)2

=
π

(1−π)q(y)E(µ2) + V (µ)(
π

1−π
1
q(y) + 1

)2 ≥ 0 ∀y.

Hence l(y) is non-decreasing function of y for any g1(µ) defined on positive µ.

Result 3:

1. The posterior p(µi|θi, yi) is stochastically increasing in yi and hence the posterior
median of µi is a monotonically increasing in yi for a given value of the hyperparameter
θ.

For notational simplicity, we denote µi by µ and yi by y. Without loss of generality,
let us assume σ = τ = λi = 1 for i = 1, . . . , n. From the expression for the posterior of
µ, we have,

π(µ|y) = c(p, y)δo(µ) + (1− c(p, y))f(µ|y),
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where

f(µ|y) = h(y)−1eµye−
1
2µ

2
g(µ),

h(y) =
∫ ∞

0
eµye−

1
2µ

2
g(µ)dµ,

c(p, y) = [1 + (1− p)
p

h(y)]−1.

To show that π(µ|y) is stochastically increasing (SI) in y, it is enough to show f(µ|y) is
SI in y since c(p, y) decreases with decrease in y.

Let µ1 < µ2 and y1 < y2. Then,

f(µ1|y1)f(µ2|y2)
f(µ2|y1)f(µ1|y2) = e(µ2−µ1)(y2−y1) ≥ 1.

Thus,

f(µ1|y1)f(µ2|y2) ≥ f(µ1|y2)f(µ2|y1).

Multiplying both sides by π(y1)π(y2) where π(y) is the marginal of y, we have,

f(µ1, y1)f(µ2, y2) ≥ f(µ1, y2)f(µ2, y1).

Hence, f(µ, y) is Totally Positive of order 2 (TP2). Hence, µ and y are SI in each other
(Theorem 6.1, Dharmadhikari and Joag-Dev 1988).

2. For each yi, these exists T (θi) such that µ̃i(θi, yi) = 0 iff yi < T (θi).

Since c(θi, yi) is monotonically decreasing in yi and

lim
yi→−∞

c(θi, yi) = 1,

lim
yi→∞

c(θi, yi) = 0.

For each θi, ∃ µ̃i(θi, yi) = 0 ⇐⇒ yi < T (θi).


