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Abstract 
 
 The ELL poverty mapping method (Elbers, Lanjouw and Lanjouw, 2003) has been 
criticized because of the risk of underestimating the mean squared error (MSE) of the 
corresponding poverty estimates when the area homogeneity assumption is violated. Das and 
Chambers (2017) describe a robust ELL-based MSE estimation approach that assumes 
unit-level homoscedasticity. However, applications of the ELL approach are typically based 
on an assumption of unit-level heteroskedasticity. Ignoring this behavior can lead to 
underestimation of the MSE of the poverty estimates generated by the ELL approach. This 
paper extends the idea of Das and Chambers to ELL-based MSE estimation assuming 
unit-level heteroskedasticity. The proposed method is then applied to poverty estimation in 
Bangladesh in order to evaluate its usefulness in a realistic data scenario. 
 
Key words: Homoskedasticity, Small Area Estimation, Poverty Mapping, Stratification 
___________________________________________________________________________ 
 
1.  Introduction 
 
1.1  Poverty estimation in Bangladesh 
 
 Since 1983-84 Bangladesh poverty rates have been estimated at national and 
divisional levels using data collected in the Household Income and Expenditure Survey. To 
show the actual variation in poverty incidence (HCR) between local administrative units, the 
Bangladesh Bureau of Statistics (BBS) in conjunction with United Nation World Food 
Program (UNWFP) conducted a poverty mapping study using the Bangladesh 2001 
Population and Housing Census (hereafter referred as Census 2001) and the Bangladesh 2000 
Household Income and Expenditure Survey (hereafter referred as HIES 2000) datasets (BBS 
and UNWFP, 2004). This poverty map was updated using the HIES 2005 data (WB, BBS and 
WFP, 2009). Though the national level poverty incidence was about 40 percent in 2005 
(BBS, 2011), sub-district level poverty incidence varied from about 0 to 55 percent (WB, 
BBS and UNWFP, 2009). The ELL method developed by the World Bank was used to obtain 
these sub-district poverty estimates. Both poverty maps show that areas close to the capital 
city Dhaka have lower poverty rates but the actual size of the poor population in these areas 
is large. In comparison, the sub-districts in the Chittagong Hill Tracks (south-eastern part of 
Bangladesh) have high poverty incidence but their population sizes are relatively small. On 
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the other hand, the sub-districts in the northern part (well known for their seasonal food 
insecurity) have large population sizes as well as higher poverty rates (WB, BBS, and  WFP, 
2009).  
 
1.2  Data sources and model specifications  
 
 In the first poverty mapping study of Bangladesh (BBS and UNWFP, 2004), hereafter 
referred as the BBS-2004 study, the BBS systematically sampled 5% of the enumeration 
areas (EAs) from each sub-district of Census 2001 instead of using the full census data. This 
5% of Census 2001 covers 5 divisions, 64 districts (Zila), 507 sub-districts (Upzila), 12908 
EAs, 1258240 households (HHs), and 6,156,000 individuals. The target small domains are 
the sub-districts which are not considered in the survey sampling design. The structures of the 
full Census 2001 and the 5% of Census 2001 are detailed in BBS and UNWFP (2004). The 
HIES 2000 is used as the accompanying economic survey dataset required by the ELL 
methodology to fit models that are then used to simulate poverty data based on the 5% of 
Census 2001. This survey dataset covers 295 out of 507 sub-districts. The sample for HIES 
2000 is drawn following a standard two-stage stratified sampling design, where 442 EAs 
(clusters) are drawn from 16 strata at the first stage and 7428 HHs are drawn from the 
selected EAs (10-20 HHs per PSU) at the second stage. It should be noted that about 
two-thirds of sampled sub-districts (222 out of 295) had just a single sample cluster and so 
sub-district sample sizes are very small. The sampling design and the structure of HIES 2000 
data are detailed in BBS-2004 study. In this paper we will use the HIES 2000 and the 5% of 
Census 2001 datasets to examine the empirical performance of the estimators proposed in 
what follows. 
 
 The main task when applying ELL methodology for poverty mapping is to identify 
appropriate explanatory variables at different levels in the hierarchies present in the 
population data in order to reduce overall residual variation given the model specification. In 
the BBS-2004 study, 27 HH specific and 3 sub-district specific explanatory variables are used 
to fit a two-level random effects model with HH and cluster as levels 1 and 2 respectively. 
The between-area variation is ignored, most likely because about 75% of the sampled 
sub-districts have only a single sampled cluster. In this study, we examine the contributions 
to overall variability due to the presence of cluster and sub-district hierarchies in the survey 
data by fitting both 2-level (2L) and 3-level (3L) models to these data with sub-district 
corresponding to level-three in the data hierarchy. We note that about 20% of the variation in 
HH expenditure is due to between cluster and between sub-district variability (see set-1 in 
Table 1). In particular, the contribution of sub-district level variability is negligible (about 
5%) but statistically significant (p-value < 0.0001). The presence of negligible between-area 
variation and also lack of sufficient survey data to fit an appropriate 3-level model essentially 
enforce implementation of the standard 2-level model-based ELL method, which ignores sub-
district level random effects.  
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Table 1: Estimate of variance component parameters obtained by method of moment 
estimation under 2-level (2L) and 3-level (3L) homoskedastic models  

Data Set Model DF 2ˆ HV  2ˆ uV  2ˆ KV  2 2ˆ %ˆ  ,u eV V   2 2ˆ ˆ %,eKV V  MR CR p-value 
of LRT 

Set-1 
 All 

2L 33 0.1132 0.0253 - 18.28 - 59.84 67.18  
3L 34 0.1132 0.0192 0.0062 13.82 4.46 59.97 67.29 <0.00005 

Set-2  
Multiple 
Clusters 

2L 33 0.1091 0.0267 - 19.67 - 64.17 71.21 - 

3L 34 0.1091 0.0186 0.0082 13.69 6.03 64.50 71.50 0.00010 

Set-3  
Rural 
Clusters 

2L 27 0.1121 0.0222 - 16.52 - 47.83 56.45 - 

Set-4 
Urban  
Clusters 

2L 27 0.1143 0.0282 - 19.77 - 63.07 70.37 - 

3L 28 0.1143 0.0215 0.0066 15.12 4.68 63.34 70.60 0.00065 

Note: MR – Marginal R-squared, CR – Conditional R-squared 
 
 Scrutiny of the HIES 2000 data set out in Table 2 suggests that the sampled 
sub-districts with a single sampled cluster are mainly rural (197 out of 222 rural clusters), 
while sampled sub-districts with multiple sampled clusters are mainly urban (183 out of 220 
urban clusters). In order to investigate the presence of significant between area variability in 
the urban parts of Bangladesh, a new sample dataset (hereinafter, set-2) was created 
containing only sampled sub-districts with multiple clusters. This allowed both 2-level and 3-
level random effects models to be fitted and the significance of between-area variability to be 
tested. The results for set-2 in Table 1 confirm the presence of statistically significant 
sub-district level random effects in the urban parts of Bangladesh. Both survey and census 
datasets indicate that a significant number of sub-districts have both urban and rural parts 
(Table 2) and so it is reasonable to partition each dataset into rural and urban sub-sets, and 
then estimate between area variability using data from residential areas. In the rural sample  
data (hereafter set-3), only 35 out of 232 sub-districts have multiple clusters, while 71 out of 
96 sub-districts in the urban sample of HIES 2000 data (hereafter set-4) have multiple 
clusters. The results for set-4 in Table 1 confirm the significance of between area variability 
in the urban sample. These results therefore questions regarding the suitability of applying 
naïve ELL methodology (i.e. based on a 2-level model) to the data set as a whole since this 
might not capture the actual between area variability present in the HIES 2000 data. 
 
Table 2: Distribution of household (HH), cluster and sub-districts (area) by type of 
residence in HIES 2000 and Census 2001 

Type of 
Residence 

Census 2001 
HIES 2000 

Overall Single Cluster Multiple Cluster 
HH Cluster Area HH Cluster Area HH Area HH Cluster Area 

Urban 244849 2506 263 2775 208 96 489 25 2286 183 71 
Rural 1013241 10403 455 4653 234 232 3929 197 724 37 35 
Total 1258090 12908 507 7428 442 295 4418 222 3010 220 73 

Note: 1 Census EA has both rural (22) and urban (68) HHs  
 

1.3  Suggested alternatives to ELL methodology 
 
 Note that the ELL method of poverty estimation is typically based on an assumption 
of cluster-heterogeneity. If this assumption is violated, the method produces approximately 
unbiased poverty estimates, but with MSE estimates that are biased low, which in turn leads 
to poor coverage rates for the poverty estimates (Tarozzi and Deaton, 2009). The MSE 
estimates help to prioritize the small areas according to their corresponding poverty 
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estimates. An area with an underestimated MSE will receive less priority compared to an area 
with the same value of the associated poverty estimate, but with MSE estimated correctly. 
Estimation of MSE depends on several issues including specification of the fitted model, 
unexplained variation in the response variable after accounting for the explanatory variables, 
estimated variation at higher levels (e.g. cluster/area levels), and the population size of a 
small area. In typical applications of the ELL method, HH specific random errors are usually 
assumed to be heteroskedastic (HT) while the cluster random effects are usually assumed to 
be homoskedastic (HM), in large part because there are often few clusters per sampled area in 
the survey data. Ignoring level one heteroskedasticity generally leads to biased estimates of 
distribution functions and hence biased estimates of the Foster, Greer and Thorbecke (1984, 
hereafter FGT) measures of poverty incidence. In these cases the HM cluster-specific 
variance component is estimated assuming heteroskedasticity at HH-level, using a HH level 
heteroskedasticity model (typically referred as an “alpha” model) for between HH variances 
which is a function of the potential explanatory variables. Under either HM or HT level-one 
errors, a 2-level nested-error regression model is then fitted ignoring area-specific random 
effects. It is well known that if between area variation remains significant after incorporating 
area-level contextual variables in the regression model, then the ELL method leads to 
estimated MSEs that are biased low, and hence under coverage of the true population values 
of the poverty measures. The modified ELL (MELL) method of Das and Chambers (2017) 
will perform better in such situations. But the MELL is based on an assumption of HM level 
one errors. Consequently the MELL needs to be modified in order to account for 
heteroskedastic HH-level errors. Alternatively, one could consider implementing either the 
optimistic or the conservative ELL methods (Elbers, et al., 2008; World Bank, 2013) 
assuming HH-level heteroskedasticity at HH-level. Unfortunately, however, both these 
methods assume HM random effects for both 2-level and 3-level random effects models fitted 
to the survey data. Furthermore, both these approaches perform poorly when there is between 
area variability (Das and Chambers, 2017). In this article, we develop and test a modification 
to the MELL approach assuming heteroskedasticity at HH-level. In the next Section we 
review the ELL method and its modifications (including the modified MELL) for capturing 
potential between area variability under both HM and HT household-level errors. In Section 3 
we then demonstrate the application of these methods using the HIES 2000 data of 
Bangladesh.  Section 4 contains a discussion of our empirical results and summarizes our 
major findings. Finally, in Section 5 we provide some concluding remarks and indicate 
further research avenues. 
 
2.  The ELL Methodology and Its Extensions 
 

 To start, let ijkE  and ijkm  denote the per capita household expenditure (i.e. welfare 

measure) and the number of family members (i.e. family size) respectively of the thk  
household (HH) belonging to the thj  cluster in the thi  small area. Let log( )ijk ijky E  denote 
the log transformed per capita household expenditure. The area-specific FGT poverty 
indicators are then calculated as � � � �1 1

1 1= i ijC N
ijk ijkj ki i ijkm E tF M I E tD

D   
� � �¦ ¦ ; 0,1,2D   

where I ij iC N C
i ijk ijj k j

M m M  ¦ ¦ ¦  and iC  are respectively the total number of individuals 

and clusters in thi  area; ijN
ij ijkk

M m ¦  and ijN  are respectively the total number of 

individuals (population) and households (HHs) in the thj  cluster of the thi  area. When HH-
specific weights are ignored or equal, the FGT indicator becomes 
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� � � �1 1
1 1= i ijC N

ijkj ki i ijkE tF N I E tD

D   
� � �¦ ¦  with iC

i ijj
N N ¦ . Here, t is the threshold for 

ijkE  under which a person/HH is considered as being “in poverty”. In the standard ELL 
approach, a 2-level nested error regression model is considered assuming HHs at level-one 
and clusters at level-two as  
 � � � � � �2 2 2

T T
ijk ijk ij ijk ijk ij ijky u u HH V J � �  � �x β x β ,       (1) 

where  and  are identically and independently distributed 

cluster-specific and HH-specific random errors, 1,2,..., ;i D  1,2,..., ;  1,2,...,i ijj C k N  . 

Here, � �~ 0,1ijk NJ . The subscript � �l  is used to indicate any parameter under a perfectly 
specified l-level model. If the HH-specific random errors are assumed to be HT, the model 
(1) can be expressed as  
 � �

� �
� �
� �

� �2 2 2 ,
ht htT T

ijk ijk ij ijk ijk ij ijkijky u u HH V J � �  � �x β x β , (2) 

where ; and . Here the superscript ht stands 

for heteroskedasticity. When an additional area-specific random effect is also assumed in the 
above two models, the corresponding 3-level models can be expressed 
 � � � � � �3 3 3

T T
ijk ijk i ij ijk ijk i ij ijky u u HK H K V J � � �  � � �x β x β  , (3) 

with  and , and

� �
� �

� �
� �

� �3 3 3 ,
ht htT T

ijk ijk i ij ijk ijk i ij ijkijky u u HK H K V J � � �  � � �x β x β  ,  (4) 

with  and . 

 
 If the model (3) is true but the corresponding 2-level model (1) is used to implement 
the standard 2-level ELL, the resulting MSE estimates will be underestimates. A similar 
problem will occur if the HT 2-level model (2) is used instead of HT 3-level model (4) in the 
ELL. Since the area homogeneity assumption of the ELL method is violated in both 
situations, it is necessary to capture the level-three variability in order to prevent subsequent 
MSE underestimation. The MELL method of Das and Chambers (2017) is designed to 
account for HH-level heteroskedasticity. Note that estimation of variance components is 
difficult when the HH random errors are assumed to be HT. Estimation methods for HM 
variance components and for HT error variances are first described in what follows and then 
the ELL based methods are discussed under both 2-level and 3-level working models 
assuming HT level-one errors. Finally the 2-level model-based ELL type estimators are 
modified to account for the ignored between area variability of a 3-level true model. 
 
2.1.  Variance component estimation under heteroskedasticity 
 
 The variance components are estimated via the method of moments (MM) approach 
under both homoscedasticity and heteroskedasticity. The variance components under 2-level 
and 3-level HM models can be easily estimated, which is not the case under 
heteroskedasticity. Under the 2-level HT model (2), the MM estimator of � �

� �2
2
ht

uV  can be 
obtained under the assumption of known HH-level error variances as 

� �
� � � � � � � �

1
22 2

2
ˆ ˆˆ ˆ1 1ht

ij ij ij ij ij ij iju
ij s ij s ij s

w w w e e w w
�

� � �

 ½§ · ª º° °V  � � � � W® ¾¨ ¸ « »
° °© ¹ ¬ ¼¯ ¿

¦ ¦ ¦. ...  
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where ij ijw n n , 1ˆ ˆijn
ij ij ijkk

e n e� ¦. , 1ˆ
îjkjk s

e n e�
�

 ¦... , � � � �212 1
.

ˆˆˆ 1 ijn
ij ij ij ijk ijk

n n
��W  � H � H¦ , 

1
.

ˆ ˆijn
ij ij ijkk

n�H  H¦  and ˆ ˆijk ijk ijke y y � . In the similar manner, the MM estimators of � �
� �2
3
ht

uV  and 

� �
� �2
3
ht

KV  under (3) can be obtained as  

� �
� �

� � � � � � � �
2 2 2 2

. ... .. ...
2

3 1 2

ˆ ˆ ˆ ˆ ˆ ˆ1 1
ˆ

ij ij i i ij ij ij i i i
ht ij s i s ij s i s

u
ij i ij

ij i s j s

w e e w e e w w w w

w w w
� � � �

�

� �

� � � � � W � � W
V  

�

¦ ¦ ¦ ¦
¦ ¦ ¦  

and 

  

� �
� �

� � � � � �

� �

� � � �

2 2
.. ...

2
3

1 2

21 2
. ...

ˆ ˆ ˆ1 1
ˆ

1

                        

ˆ ˆ1
                              

ij ij i i i i i
ht ij s i s i

i i ij i ij
i s ij i s j s

i ij ij ij ij
i s j s ij s

w w w e e w w

w w w w w

w w w e e w

� �
K

�

� � �

�

� � �

 ½
� � � � W® ¾

¯ ¿V  
§ ·§ ·� �¨ ¸¨ ¸

© ¹© ¹

� � �
�

¦ ¦ ¦

¦ ¦ ¦ ¦

¦ ¦ ¦ � �

� �

2

1 2

ˆ1

1

                        

ij ij
ij

i i ij i ij
i s ij i s j s

w

w w w w w�

� � �

 ½
� W® ¾

¯ ¿
§ ·§ ·� �¨ ¸¨ ¸

© ¹© ¹

¦

¦ ¦ ¦ ¦

 

where i iw n n , � �
2 2 2

3 ,i i ijkjk s
n�

H�
W  V¦  and 1

.. .
ˆ ˆ
i i ij ijj s

e n n e�
�

 ¦ . Negative values of the 

estimator � �
� �2
3ˆ ht

KV  will be treated as zero. The derivations of these estimators with their 
properties are given in Appendices A.1 and A.2 respectively.  
 
 The HH-level error variances are estimated by fitting a heteroskedasticity model 
known as the “alpha model” in the ELL method. MM estimates of HH-level random errors 
are utilized to develop a logistic-type regression model to estimate the parameters of this 
alpha model. These estimated alpha parameters are then used to obtain estimated HH-level 
error variances using the estimator 

� �
� � � � � �

2
32 ,

ˆˆ (1 )1ˆ ˆ
21 1

ijk ijkELL ijk
ijk

ijk ijk

AD DAD
v r

D DH

ª º�ª º
« »V | �« »

� « »�« »¬ ¼ ¬ ¼
 

where 
 
ˆ = 1.05  maximum  ̂ 2{ }, 

 
= exp(  ̂ )  and = ( ). The estimated alpha 

parameters D̂  and the estimated mean squared error � �v̂ r  are obtained from the fitted alpha 
model. The procedure is detailed in Elbers et al. (2002) under 2-level HT working model. 
Under the 3-level model (4), the estimates of � �

2
3 ,ijkHV  can be estimated by the ELL estimator 

using the corresponding estimated HH-level residuals. 
 
2.2.  The ELL Method 
 
 After fitting the regression model and obtaining the corresponding parameters, the 
second stage of the ELL method is to conduct either a parametric bootstrap (PB) or a 
non-parametric bootstrap (NPB) procedure to obtain the area-specific poverty estimates of 
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interest and their corresponding estimated mean square errors (ESMEs). For both the PB or 
NPB procedures the basic steps are: (1) generate regression parameters *β  from a suitable 

sampling distribution, say the multivariate normal distribution � �� �ˆ ˆˆ,gls glsN β v β ; (2) generate 

level-specific random errors using an appropriate parametric distribution or by resampling via 
simple random sampling with replacement (SRSWR) from the estimated level-specific 
sample residuals; (3) generate bootstrap income values *

ijky  using the generated regression 
parameters and the level-specific random errors. The generated income values are used to 
estimate the area-specific parameter of interest say � �* 1 *

1 1
expi ijC N

i i ijkj k
F N I y t�
D   

ª º �¬ ¼¦ ¦  for a 

specific poverty line t . These steps are iterated a large number of times say B=500 and then 
the mean and variance of the B estimates are considered as the final estimates and their MSEs 
respectively. 
 
2.3. Modification of the ELL Method 
 
 The ELL approach based on a 2-level HM working model may produce 
underestimated MSE if the area variability is ignored. However, the approach can be 
modified to capture the potential area variability following the MELL approach of Das and 
Chambers (2017). This MELL approach is adapted here to allow for HT level-one random 
errors. The basis of the MELL methodology is the adjustment to the variance estimator of a 
weighted area mean 1

1 1
i ijC N

i i ijk ijkj k
Y M m y�

  
 ¦ ¦  under an incorrect 2-level model to make it 

unbiased under the corresponding 3-level model. Under the 3-level HM model (3), the 
variance of iY  and its plug-in estimator can be expressed  

� � � � � � � �
� �

� �
� �2 32 2 2

3 3 3 3Var Ui Uiui m mY K HV V V � �  and � � � � � � � �
� �

� �
� �2 32 2 2

3 3 3 3
ˆ ˆ ˆ ˆV Ui Uiui m mY K HV V V � �  

where � �2 2 2
1

1iC
Ui i ijj

m M M�
 

 �¦  and � �3 2 2
1 1

i ijC N
Ui i ijkj k

m M m�
  

 ¦ ¦ . Under an incorrect 2-level 

model (1), the variance of iY  and its plug-in estimator can be written as  

� � � � � �
� �

� �
� �2 32 2

2 2 2Var Ui Uiui m mY HV V �  and � � � � � �
� �

� �
� �2 32 2

2 2 2
ˆ ˆ ˆV Ui Uiui m mY HV V � . 

 
 The expectation of the variance estimator � � � �2V̂ iY  under the true 3-level model 

becomes � � � � � � � �^ ` � �
� �

� �2 32 2 2
3 2 3 3 3V̂ i Ui UiuE Y R m mK HV V Vª º  � �¬ ¼  which always underestimates the true 

variance � � � �3Var iY  since � �2 1Uim �  and � �� � � �� �3 2
0 0 1R n n n n � � � .  

 
 An unbiased plug-in estimator of  Var( ) is difficult to obtain under a multilevel 
model with HT level-1 random errors. However, a plug-in consistent estimator of this 
variance can be obtained if a consistent estimator of the HT error variances is available. 
Under the HT models (4) and (2), we have 

 
Var 3( ) ( ) =  

 3( )
2( ) +  3( )

2( ) 2( ) +  3( )  and 

 
Var 2( ) ( ) =  2( )

2( ) 2( ) +  2( ) , where � �
� �

3 2 2 2
3 ,1 1

i ijC N
ijk i ijk ijkj k

M m H[ V�
  

 ¦ ¦  and 
� �

� �
2 2 2 2

2 ,1 1
i ijC N

ijk i ijk ijkj k
M m H[ V�

  
 ¦ ¦ .  

 
 It can be shown that � �

� �2
3ˆ ht

KV , � �
� �2
3ˆ ht

uV , and � �
� �2
2ˆ ht

uV  are unbiased and consistent estimators 
under an assumption of known HH-level error variances (see Appendices A.1 and A.2). Now 
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suppose that the HH error variance estimators � �

2
2 ,ˆ ijkHV  and � �

2
3 ,ˆ ijkHV  are consistent estimators of 

� �
2

2 ,ijkHV  and � �
2

3 ,ijkHV  respectively. Then consistent plug-in estimators of � � � �3Var iY  and 

� � � �2Var iY  are 
 
V̂ 3( ) ( ) = ˆ 

 3( )
2 + ˆ 3( )

2 2( ) + ˆ 3( )  and 
 
V̂ 2( ) ( ) = ˆ 2( )

2 2( ) + ˆ 2( )  respectively where 
� �

� �
3 2 2 2

3 ,1 1
ˆ ˆi ijC N
ijk i ijk ijkj k

M m H[ V�
  

 ¦ ¦  and � �
� �

2 2 2 2
2 ,1 1

ˆ ˆi ijC N
ijk i ijk ijkj k

M m H[ V�
  

 ¦ ¦ . Under the assumption of 

known � �
2

2 ,ijkHV , it can be shown that � �
� �2

3 2ˆ ht
uE Vª º  ¬ ¼ � �

� � � �� � � �� � � �
� �2 3 2 2

0 03 3
ht ht

u n n n n KV V� � � . It follows 

that when the HT 3-level model (4) holds,  

� � � � � �
� �

� �
� �^ ` � � � �

� �
� �

� �
� � � � � �

� � � �2 2 2 3 2 2 2 3
3 32 3 3 3 3 3

ˆ ˆV   Vht ht ht ht
i Ui ijk Ui ijk iu uE Y R m m E YK KV V [ V V [ª º ª º| � � � � � |¬ ¼ ¬ ¼  

under the assumption of � � � � � �3 2 3
3 3

ˆ ˆ
ijk ijk ijkE E[ [ [ª º ª º| |¬ ¼ ¬ ¼ . That is, the estimator 

 
V̂ 2( ) ( ) might 

underestimate the true variance 
 
Var 3( ) ( ) in both the HM and HT cases. Two area-specific 

adjustments or robustifications of 
 
V̂ 2( ) ( ) that lead to an unbiased or approximately unbiased 

estimator of � � � �3Var iY  are  

 
V̂ 2( ) ( ) = 1 2( )( ) ˆ 

 3( )
2 + ˆ 3( )

2{ } 2( ) + ˆ 
 2( )
2 3( )  

and 

 
V̂ 2( ) ( ) = 1 2( )( ) ˆ 

 3( )
2( ) + ˆ 3( )

2( ){ } 2( ) + ˆ 
 2( )
2( ) 3( ), 

both of which are approximately unbiased under the true 3-level model. Note that in either 
case the variance estimator 

 
V̂ 2( ) ( ) would be robust under model misspecification, since 

� �
2

3ˆKV   might be very small (close to zero) under a true 2-level model, and hence the first term 
of � � � �2V̂M

iY  might be negligible. 
 
 Under the MELL approach, the main task is to adjust the cluster-level variance 
component in order to capture the potential area-level variability. As in Das and Chambers 
(2017), the adjustment factors for the cluster-variance component can then be defined as 
follows: 
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where � �2 2 2
1

iC
si i ijj

m m m
 

 ¦ , sD  is the number of sampled areas, im  is the total number of 

sampled individuals in the thi  sampled area and ijm  is the total number of sampled 

individuals in the thj  sampled cluster of the thi  sampled area. Note that when no household 
size information is available we set household sizes to one so that the adjustment factors then 
depend on the number of HHs. Since the adjustment factors are based on the area-specific 
sample and population sizes, there are no basic difference between the adjusted factors under 
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homoscedasticity and heteroskedasticity except for the estimated variance components. The 
MELL can be implemented via both PB and NPB procedures. In PB procedure, the cluster 
level residuals are generated from a suitable parametric distribution with the adjusted 
cluster-variance component, say � �� �2ˆ0, M

uN V  where � �2ˆ M
uV  is the adjusted cluster-specific 

variance component. In the NPB procedure, the cluster-level scaled residuals  need to be 

rescaled so that the ratio of bootstrap variations  approximates the ratio of 

corresponding estimated variance components � �
� �

2 2
2ˆ ˆM

u uV V , where the scaled residuals are 

 and  with . The procedure is 

similar for all variations of these proposed modifications. For the stratification-based MELL, 
the generation of cluster-specific residuals or resampling of sample cluster-specific residuals 
is carried out using stratum-specific adjusted cluster-variance components, say 

� � � �
� �

2
. 3 2ˆ ˆM h

u h ukV  V , 1,..,h H . These bootstrap procedures are explained in more detail in the 
next section. 
 
3. Implementation of ELL Method and Its Alternatives 
3.1.  First stage regression modelling  
 
 The first step when applying the ELL method is to fit a regression model utilizing the 
survey dataset. It is strongly recommended that this model incorporates a large number of 
explanatory variables at different levels of the data hierarchy in order to capture the potential 
between-cluster and between-area variabilities. However, overfitting this regression model 
can then become a problem. Furthermore, the inclusion of more individual level explanatory 
variables and contextual variables does not guarantee a significant reduction of the between-
area variability. In order to avoid this overfitting problem, the logarithm of HH per capita 
monthly consumption expenditure is first regressed on the same 30 explanatory variables that 
were used in BBS-2004 study. For the first two datasets (Set-1 and Set-2), these explanatory 
variables are next used to fit 2-level and 3-level models. The estimated variance-components 
from these fits are then used to calculate the generalized least squares (GLS) estimates of the 
regresion model parameters and their associated estimated variance-covariance matrix. 
Marginal and conditional R-squared values are calculated following Nakagawa and 
Schielzeth (2013) in order to compare the two multilevel models. Estimated values of 
parameters and level-specific random errors are stored for each model for use in the bootstrap 
procedure. Note that these models are fitted assuming both HM and HT variances for the HH-
specific random errors. 
 
3.2.  Heteroskedasticity Modelling 
 
 To examine the heteroskedasticity of the HH-level random errors, the squared least 
squares (LS) residuals obtained from both Set-1 and Set-2 are plotted against the 
corresponding predicted values (Figure 1). The plots suggest negligible monotone 
heteroskedasticity due to less information at the extreme tails. The “alpha” model is fitted 
with the explanatory variables that were used in the BBS-2004 study to avoid any extensive 
exploration of potential explanators of heteroskedasticity. Figure 1 shows that the HT error 
variances estimated by the ELL parametric approach under the 2-level model ( � �

2.
2 ,ˆ ELL

ijkHV ) 

fluctuate more than those under the 3-level model ( � �
2.

3 ,ˆ ELL
ijkHV ), which may be due to 2-level 

model ignoring the area variability in the survey dataset. The HT error variances are slightly 
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higher and with less variation when estimated under a 3-level model compared with a 2-level 
model. The estimated area-level and cluster-level HM variance components under the 
assumption of HT HH-level errors are set out in Table A1 in the Annex. The variance 
components estimated by MOM under the HT approaches are close to those estimated under 
the assumption of HM HH-level errors. This suggests that level-one heteroskedasticity has a 
negligible effect on estimation of higher level variance components. 
 
3.3.  Bootstrapping  
 
 Both the PB and NPB bootstrap procedures have been used to calculate the FGT 
poverty estimates and their MSEs. Under the HT model, the NPB procedure is a semi-
parametric bootstrap (SPB) since the HH-level error variances are generated on the basis of a 
parametric specification for the alpha parameters. In both types of bootstrap procedure, the 
regression parameters are generated from a multivariate � � � �� �� �. .ˆ,gls glsN vβ β  distribution. For the PB 

procedure, level specific random errors are generated from a normal distribution with zero 
mean and the corresponding estimated variances as variance. In the NPB and SPB 
procedures, the LS raw residuals are used to generate level-specific random errors via 
SRSWR. Under a 2-level model, the residuals can be drawn either from sample raw residuals 
or scaled residuals if the bootstrap variation is same as the estimated variance component. 
Under a 3-level model, the moment-based cluster-specific residuals and are-specific residuals 
are same for the 75% sub-districts and so all the residuals need to be re-scaled. We therefore 
use scaled residuals in all bootstrapping under both the 2-level and 3-level models. 
 
 Under HH-level heteroskedasticity there is no recommended way to re-scale the 
HH-level residuals when they are used for bootstrapping. In this paper we therefore scale the 
HH-specific HT residuals by the HH-level variance component, estimated by � �

� �22
2ˆ ˆ ht

e uV V�  

under a 2-level model, where 2ˆeV  is the MSE of the initial single-level linear model fitted by 

the LS method. The mean of the estimated HH-level residual variances (say, 
 

 1 ˆ 
 2( ),
2.  ) 

or the HM variance component � �
2

2ˆHV  can also be used for scaling. SRSWR resampling of the 

level-specific residuals can be implemented either unconditionally or conditionally when 
implementing the ELL (2002) method. Under unconditional sampling, the level-specific 
errors are assigned to census units from the full set of sample residuals. Under conditional 
sampling, the level-specific residuals are drawn following a nested approach. In this case, 
suppose a cluster-specific sample residual is randomly assigned to a census cluster. Then 
census HHs nested within that census cluster are assigned HH-level random errors from the 
subset of sample HHs nested within the selected sample cluster. Under a 3-level working 
model, conditional approach can be used if a sufficient number of sampled areas have 
multiple clusters. In our study, we have followed a conditional approach under a 2-level 
model and an unconditional approach under a 3-level model. We note that both the 
unconditional and conditional approaches behave similarly under a 2-level model, but the 
conditional approach produces unstable results under a 3-level model. Since ELL-based 
methods can be implemented in different ways based on (i) the adopted bootstrap procedure 
(PB/NPB/SPB), (ii) heteroskedasticity vs, homoskedasticity of HH-level random errors 
(HM/HT), and (ii) the assumed working model (2L/3L); the resulting estimators are denoted 
differently in Table A2 in the Annex. For example “PELL.HM.2L” stands for PB based ELL 
estimator under a 2-level HM working model. 
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3.4.  Application of modified ELL methods 
 
 Das and Chambers (2017) found that the stratification-based adjustment (Adjustment 
3) works well, and so this approach has been used when implementing the MELL methods 
under both HM and HT level-one errors. Sub-districts are grouped into six strata according to 
20th, 35th, 50th, 65th, and 80th percentile of the distribution of their population size. The 
cluster-level variance component  

ˆ 2( )
2  is adjusted within each stratum according to 

 
ˆ 2( )

2( ) = 3
( ) ˆ 2( )

2 ,  =1,...,6. Note that the same stratification has been used under both the 

HM and HT working models. As a consequence, stratum specific bootstrap procedures based 
on the stratum-specific adjusted cluster-level variance component are implemented when 
applying the ELL method. 
 
Figure 1: ELL-based estimates of unit-level heteroskedastic error variances under 2-
level and 3-level models 

 
 
4.  Results and Discussion 
 
 In the HIES 2000, lower (LPL) and upper (UPL) poverty lines were developed in 
order to calculate FGT poverty indices. These poverty lines were defined on the basis of the 
16 strata that were created for the survey sampling design. Since the HIES 2000 was based on 
the Bangladesh Population and Housing Census 1991, these poverty lines were therefore 
mapped to the 2001 Census in the poverty mapping study based on BBS-2004. However, it 
should also be noted that the poverty lines used in the BBS study are not exactly maintained 
in the study reported here because some sub-districts lacked information. Sub-district level 
poverty incidences in BBS-2004 were calculated using the ELL method with SPB via a 
conditional approach under a 2-level working model. In this study the similar approach is 
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followed using scaled residuals to estimate poverty indicators under a 2-level model 
(SPELL.HT.2L). The consistency of the resulting estimated FGT poverty indices was 
checked by comparing summary statistics for the estimated poverty measures and their MSEs 
with those obtained via BBS and UNWFP (2004, page 34). Table 3 shows that means of the 
estimated FGT measures are slightly lower with slightly higher standard deviation (SD) 
compared to those obtained in the BBS study, while means and SDs of the estimated MSEs 
are marginally smaller. The reasons of these differences may be (i) a different procedure was 
used to fit the regression model, (ii) a different approach to heteroskedasticity modelling, (iii) 
a different bootstrap procedure, (iv) slightly different poverty lines for some sub-districts, and 
(v) the number of resamples in the bootstrap procedure (500 instead of 100 bootstrap). We 
also noticed that two of the model covariates that were created for our study behaved 
differently in the fitted regression model. Summary values of the estimated MSEs generated 
by the 3-level model-based ELL (SPELL.HT.3L), and the modified ELL (MSPELL.HT) 
estimators are also shown in Table 3. It can be seen that the SPELL.HT.2L estimator 
produces underestimated MSEs in comparison to the SPELL.HT.3L estimator, while the 
MSPELL.HT estimator corrects this downward bias under an assumption of between area 
variability. We therefore conclude that the SPELL.HT.2L estimator might provide better 
accuracy if real between area variability is absent. 
 
 In the BBS-2004 poverty mapping study, MSEs were calculated for the FGT 
estimates as well as the number of households. For examining the relationship between these 
quantities, sub-district specific population sizes, estimated HCR at UPL, and estimated MSE 
(SPELL.HT.2L and MSPELL.HT) are plotted in Figure 2. The first three maps of Figure 2 
suggest that sub-districts with large populations and closer to the capital (Dhaka) or port 
cities (Chittagong) have lower HCRs with lower MSEs. Conversely, sub-districts with 
smaller populations in coastal and hilly regions have higher HCRs with higher MSEs. Some 
sub-districts in the north-western part of Bangladesh with large populations (Rangpur and 
Rajshahi divisions) have relatively higher HCRs with lower MSEs. The maps (c) and (d) in 
Figure 2 show that the values of the SPELL.HT.2L MSE estimator are generally lower than 
comparable MSE values generated by the MSPELL.HT estimator. In general, this good 
performance of SPELL.HT.2L is due to the population sizes of sub-districts. The higher the 
population size, the lower the MSE if there is no other potential source of variability. 
Ignoring between area variability is the main reason why the SPELL.HT.2L estimator has 
low MSEs. If real between area variability exists, this false accuracy will mislead policy 
makers. 
 
 Under the assumption of between area variability, it is clear that the SPELL.HT.2L 
estimator leads to underestimated MSEs particularly for large cities (e.g., blue points) 
because it ignores between area variability while the MSPELL.HT estimator corrects for this 
underestimation by allowing for potential between area variability. The SPELL.HT.2L and 
MSPELL.HT estimators lead to similar MSEs only for the significantly smaller sub-districts, 
particularly those in the south-eastern regions. The variation in the estimated MSEs is more 
explicit when Map (c) is compared to Map (d). The reason for this may be the tendency of 
lower MSEs for sub-districts with a modest population sizes (more than 13,000) and highest 
MSEs for the smaller sub-districts when using the SPELL.HT.2L estimator, compared with 
the MSPELL.HT estimator, which provides comparatively higher weight to the smaller 
sub-districts and comparatively lower weight to the larger sub-districts when accounting for 
between area variability. We conclude that when there is negligible between area variability, 
SPELL.HT.2L is highly optimistic while MSPELL.HT is reasonably conservative. More 
detailed comparisons are given in the following paragraphs.  
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Table 3: Summary statistics of the estimated HCR, PG, and PS at lower (LPL) and 
upper (UPL) poverty lines with their estimated MSEs by different estimators assuming 
unit-level heteroskedasticity (HT) with those of BBS-2004 study 

Parameter Poverty line Estimated by Min. Max. Mean SD 

HCR 
LPL 

BBS-2004 0.0014 0.5531 0.2930 0.1063 
SPELL.HT.2L 0.0089 0.5898 0.2810 0.1174 

UPL 
BBS-2004 0.0049 0.7081 0.4212 0.1238 
SPELL.HT.2L 0.0453 0.7239 0.4164 0.1280 

PG 
LPL 

BBS-2004 0.0001 0.1638 0.0679 0.0297 
SPELL.HT.2L 0.0012 0.1732 0.0622 0.0325 

UPL 
BBS-2004 0.0006 0.2441 0.1142 0.0421 
SPELL.HT.2L 0.0073 0.2462 0.1082 0.0443 

PS 
LPL 

BBS-2004 0.0000 0.0650 0.0228 0.0112 
SPELL.HT.2L 0.0003 0.0676 0.0201 0.0121 

UPL 
BBS-2004 0.0001 0.1091 0.0429 0.0182 
SPELL.HT.2L 0.0019 0.1079 0.0392 0.0190 

Estimated MSE of 
HCR 

LPL 

BBS-2004 0.0025 0.1145 0.0388 0.0146 
SPELL.HT.2L 0.0047 0.1047 0.0340 0.0122 
SPELL.HT.3L 0.0070 0.1152 0.0617 0.0159 
MSPELL.HT 0.0146 0.1533 0.0553 0.0146 

UPL 

BBS-2004 0.0062 0.1081 0.0416 0.0143 
SPELL.HT.2L 0.0127 0.1027 0.0371 0.0115 
SPELL.HT.3L 0.0226 0.1147 0.0680 0.0118 
MSPELL.HT 0.0304 0.1549 0.0596 0.0135 

Estimated MSE of 
PG 

LPL 

BBS-2004 0.0003 0.0436 0.0127 0.0054 
SPELL.HT.2L 0.0008 0.0313 0.0106 0.0045 
SPELL.HT.3L 0.0012 0.0401 0.0196 0.0071 
MSPELL.HT 0.0037 0.0549 0.0216 0.0061 

UPL 

BBS-2004 0.0009 0.0538 0.0169 0.0066 
SPELL.HT.2L 0.0027 0.0434 0.0144 0.0051 
SPELL.HT.3L 0.0045 0.0538 0.0269 0.0073 
MSPELL.HT 0.0085 0.0730 0.0270 0.0066 

Estimated MSE of 
PS 

LPL 

BBS-2004 0.0001 0.0203 0.0055 0.0026 
SPELL.HT.2L 0.0003 0.0125 0.0044 0.0021 
SPELL.HT.3L 0.0003 0.0210 0.0081 0.0035 
MSPELL.HT 0.0013 0.0250 0.0110 0.0035 

UPL 

BBS-2004 0.0002 0.0300 0.0082 0.0036 
SPELL.HT.2L 0.0009 0.0209 0.0068 0.0028 
SPELL.HT.3L 0.0014 0.0268 0.0126 0.0044 
MSPELL.HT 0.0033 0.0386 0.0149 0.0041 
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Figure 2:  Bangladesh maps of sub-district specific population, estimated poverty 
incidence at UPL and their estimated MSEs (EMSE) by SPELL.HT.2L and 
MSPELL.HT estimators 

 
 
 In what follows FGT poverty indicators at UPL are estimated assuming both HM and 
HT HH-level errors under 2-level and 3-level working models for data Set-1. The HCRs 
estimated by different ELL estimators are plotted against the HCRs estimated by the standard 
2-level model-based ELL estimator with PB procedure (PELL.HM.2L). Figure 3 shows that 
the NPB-based ELL estimators of HCR under a 2-level working model (NPELL.HM.2L) lead 
to almost same results as PELL.HM.2L estimator under homoskedasticity. The HT estimator 
SPELL.HT.2L leads to slightly larger HCRs compared to the PELL.HM.2L estimator 
particularly for the areas with higher HCRs. These values are most likely overestimates when 
3-level model is taken to be the working model. However, under homoscedasticity, the 3-
level model-based estimator performs similarly to the 2-level model-based estimator with 
some fluctuations. This suggests that the 3-level model-based estimators provide comparable 
unbiased poverty estimates to the 2-level model-based estimators. The observed differences 
in the performances of the estimators under homoscedasticity and heteroskedasticity indicate 
that the observed heteroskedasticity might have influence on the estimated poverty measures. 
This influence of level-one heteroskedasticity has already been noted in the MSE estimates 
displayed in Figure 4. Under both the 2-level and the 3-level model based approaches, 
estimators with heteroskedastic level-1 errors have slightly higher MSEs than their 
homoscedastic counterparts. 
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Figure 3: NPELL and SPELL estimates of HCR at UPL under 2-level and 3-level 
working model with homoskedastic (HM) and heteroskedastic (HT) level-one errors 

 
 
Figure 4: Comparison of estimated MSEs (EMSE) of the estimated HCRs at UPL under 
2-level and 3-level working model with homoskedastic (HM) and heteroskedastic (HT) 
level-one errors for the NPELL and SPELL estimates 

 
 
 The estimated MSEs of the estimated FGT indicators (HCR, PG, PS) obtained via the 
ELL estimators and their modified versions under the assumption of both HM and HT 
level-one errors are plotted against area-specific population sizes in Figure 5 for the data Set-
1. This shows a declining trend of estimated MSE as population size increases. As expected 
the 2-level model-based ELL MSE estimators are lower than the 3-level model-based MSE 
estimators, with the modified 2-level MSE estimators fixing this underestimation problem for 
all three indicators. For HCR, the modified estimators have estimated MSEs close to the 
naïve 3-level estimator for areas with smaller population, but have lower estimated MSEs for 
areas with larger population. The difference between the estimated MSEs calculated by the 2-
level and 3-level model-based estimators increases with population size. For PG and PS, the 
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performance of the modified estimators does not vary as much. Figure 5 shows that the 
modified estimators lead to estimated MSEs very close to those generated by the 3-level 
model-based estimators for PG and estimated MSEs that are slightly higher for PS. 
 
Figure 5: Estimated MSE (EMSE) of HCR at UPL under 2-level and 3-level models 
with homoskedastic (HM) and heteroskedastic (HT) level-one errors by ELL estimators 
with their modified versions for full data (set-1) 

 
 
 When between area variability is clear in the dataset Set-2, the modified estimators 
based on the PB procedure behave in the same way as in the dataset Set-1. See Figure 6. In 
particular, the modified ELL estimators of HCR exhibit some downward bias in estimated 
MSE when compared to the 3-level ELL estimator but still perform much better than the 
naïve 2-level ELL estimators. This downward bias disappears when the modified procedures 
are used to estimate PG and PS. 
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Figure 6: Estimated MSE (EMSE) of HCR at UPL under 2-level and 3-level models 
with homoskedastic (HM) level-one errors by PELL and NPELL estimators with their 
modified versions for sampled sub-districts with multiple clusters 

 
 
5.  Concluding Remarks  
 
 The empirical evidence presented in this paper shows that the ELL estimators based 
on a 2-level working model fail to capture the true MSE if the working regression model 
violates the area homogeneity assumption. In the Bangladesh dataset that is our focus, the 
area homogeneity assumption is clearly violated in urban small areas (sub-districts). Since 
use of ELL estimators based on a 3-level model is not realistic for this dataset (most sampled 
sub-districts have single sampled clusters), use of 2-level model-based ELL estimator leads to 
stable FGT estimates but underestimated MSEs. The proposed modified version of the 2-
level ELL estimator overcomes this underestimation problem, and seems to work well under 
both HM and HT level-one errors. We explore the empirical behavior of this modified 2-level 
approach where between area variability is obvious (set-2) and when it is negligible (set-1). 
In both situations, the modified estimators performed better than the naive 2-level ELL 
estimators. When used to estimate the HCR, the modified estimators appear to be slightly 
downward biased in terms of estimated MSE when compared to the 3-level estimators but 
much less biased than the naïve 2-level estimators. In particular, we noted that when there is 
significant between area variability, as occurs in the urban areas of Bangladesh, the 2-level 
model-based naïve MSE estimators provide an inaccurate impression of accuracy as far as 
estimation of FGT measures is concerned. In contrast, although the modified MSE estimators 
seem conservative because they allow for between area variability, they also considerably 



392                 SUMONKANTI DAS, HUKUM CHANDRA AND RAY CHAMBER             [Volume 16 Nos. 1 

 
reduce this problem of MSE underestimation. This is in accord with simulation results 
reported in Das and Chambers (2017). Since the cost of underestimating the MSE (i.e. 
incorrectly claiming higher precision) may be much higher than the premium for obtaining 
conservative precision (i.e. a slightly overestimated MSE), proper care and appropriate 
investigation should be undertaken before using a naïve 2-level model-based MSE estimator 
to obtain FGT estimates. 
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Annexure 1 
 

Table A1: Variance components under 2-level and 3-level models with homoskedastic 
(HM) and heteroskedastic (HT) level-one errors by method of moments (MOM) and 
stratified MOM for different datasets 

Skedasticity at HH-level Cluster Model DF 2ˆ HV  2ˆ uV  2ˆ KV  2 2ˆ ˆu eV V  2 2ˆ ˆ eKV V  

HM: MOM 

Single 2L 33 0.1153 0.0238 - 16.00 - 

Multiple 2L 33 0.1091 0.0267 - 19.67 - 
3L 34 0.1091 0.0186 0.0082 13.69 6.03 

All 2L 33 0.1132 0.0253 - 18.28 - 
3L 34 0.1132 0.0192 0.0062 13.82 4.46 

HT: MOM* 

Single 2L 33 0.1162 0.0220 - 15.90 - 

Multiple 2L 33 0.1123 0.0268 - 19.25 - 
3L 34 0.1122 0.0187 0.0082 13.65 5.95 

All 2L 33 0.1137 0.0254 - 18.26 - 
3L 34 0.1176 0.0195 0.0059 14.01 4.25 

HT: Stratified MOM (IGLS)* 

Single 2L 33 0.1155 0.0225 - 16.31 - 

Multiple 2L 33 0.1123 0.0288 - 20.41 - 
3L 34 0.1122 0.0201 0.0085 15.19 6.04 

All 2L 33 0.1137 0.0258 - 18.50 - 
3L 34 0.1176 0.0200 0.0058 14.53 4.04 

 *Under heteroskedasticity, 2 2 2 2ˆ ˆ ˆ ˆeH K KV  V �V �V  
 
Table A2: ELL estimators of FGT poverty indicators and their MSE based on different 
bootstrap procedures under 2-level (2L) and 3-level (3L) models with homoskedastic 
(HM) and heteroskedastic (HT) level-one errors 
Estimator  Description Parameter 
PELL.HM.2L PB-based ELL estimator under 2L HM model  FGT & MSE 
PELL.HM.3L PB-based ELL estimator under 3L HM model  FGT & MSE 
PELL.HT.2L PB-based ELL estimator under 2L HT model  FGT & MSE 
PELL.HT.3L PB-based ELL estimator under 3L HT model  FGT & MSE 
NPELL.HM.2L NPB-based ELL estimator under 2L HM model  FGT & MSE 
NPELL.HM.3L NPB-based ELL estimator under 3L HM model  FGT & MSE 
SPELL.HT.2L SPB-based ELL estimator under 2L HT model  FGT & MSE 
SPELL.HT.3L SPB-based ELL estimator under 3L HT model  FGT & MSE 
MPELL.HM Modified PB-based ELL estimator under 2L HM model  MSE 
MPELL.HT Modified PB-based ELL estimator under 2L HT model  MSE 
MNPELL.HM Modified NPB-based ELL estimator under 2L HM model  MSE 
MSPELL.HT Modified SPB-based ELL estimator under 2L HT model  MSE 
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Annexure 2 

 
A.1 Variance Component Estimation under 2-level Model with HT Level-1 Errors 
 
 Under the population model (2), the cluster and HH level random effects can be 
estimated at first by the moment estimators 1ˆ ˆij ij ijkk s

u n e�
�

 ¦  and ˆ ˆ ˆijk ijk ije uH  �  respectively 

using the LS residuals ˆ ˆijk ijk ijke y y � . Under the considered HT 2-level model, it can be 
shown that 
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 Then the expectation of HH and cluster level sample residual variances � �1s  and � �2s  
can be written as 
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Thus the ultimate plug-in estimator of � �
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A.2 Variance Component Estimation: 3-level Model with HT Level-1 Errors 
 
 Under the population model (4), the moment-based estimates of area, cluster and HH 
level random effects are calculated as 1ˆ ˆi i ijkjk s
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Now the expectation of the sample residual variances become 
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 The estimators � �
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simultaneous equations, as � �
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In similar way, putting new � �
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where � �� �1 1n sC DG  � � . Then the ultimate estimators of cluster and area level variance 
components become  
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 The estimators � �

� �2
3ˆ ht

uV  and � �
� �2
3ˆ ht

KV  shown in Section 2.1 can be obtained by replacing the 
complex terms with these expressions. The detail derivations of these two indices are given in 
Das (2016). 


