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Abstract
Gamma-ray bursts are intense, energetic explosions of gamma rays that are usually

accompanied by an afterglow, which is a longer-lived emission that is detected at longer
wavelengths, like X-ray, infrared, and radio. Classic gamma-ray burst data is often analyzed
using some sort of regression model (e.g., linear, piecewise linear, or a broken-power law
model) to relate the flux of the burst to the time since the event. While these models
may provide good fits, there is also often a “flaring” phenomena that tends to noticeably
deviate from the fitted model. One way we can characterize such a phenomena relative to
the underlying general trend is through a mixture-of-regressions model. Some applications in
astronomy, like color-luminosity relations for field galaxies, are known to have the variables
in the models prone to both intrinsic scatter and measurement error. This assumption is
also tenable for gamma-ray burst data where the variance of heteroscedastic measurement
errors can be reasonably known. Thus, we introduce a mixture-of-linear-regressions model
where the variance of the measurement error is roughly known. Estimation is accomplished
using an expectation-maximization (EM) algorithm framework with a weighted least squares
estimator that was developed for the non-mixture setting. The finite-sampling behavior of
our proposed model’s estimates is examined by a simulation study. We also demonstrate the
efficacy of this approach on a dataset involving the flux measurements of gamma-ray bursts,
where the variance of the measurement error for the flux measurements (the response) are
known. Our results for this data problem are compared with estimates obtained using
other traditional models, including the linear regression model and the mixture-of-linear-
regressions model.
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1. Introduction

Variability is an inherent part of the results of measurements and of the measurement
process. Measurement error models, also called errors-in-variables models, account for the
difference between a measured value of a quantity and its true value. The effect of such mea-
surement error and how to incorporate it into a statistical model has been long investigated,
with authoritative texts devoted to this topic, including Fuller (1987), Carroll et al. (2006b),
and Buonaccorsi (2010). Some issues that arise due to the presence of measurement error
include bias in parameter estimation for statistical models, loss of power, and masking the
features of the data, thus making graphical model analysis difficult. Specifically, the text
by Carroll et al. (2006b) covers measurement error in nonlinear models, with a special focus
on bias reduction, also called approximate consistency. For linear regression models with
measurement error in the predictors, it can cause an underestimate of the slope coefficients,
known as attenuation bias. In nonlinear models, the direction of the bias is likely to be more
complicated as treated in Carroll et al. (2006b). Such biases can of course lead to a loss of
power as well as mask certain important features of the data.

The statistical analysis of data with measurement error has a long history, especially
in econometrics, with Frisch (1935) being one of the earliest references. Measurement error
models are also employed in other diverse research areas, including nutrition (Carroll et al.,
2006a; Murillo et al., 2019), finance (Carmichael and Coën, 2008; Maddala and Nimalen-
dran, 1996), and astrostatistics (Kelly, 2007, 2012). With respect to astronomical research,
measurement error problems are widely employed due to the presence of intrinsic scatter,
a type of measurement error regarding variations in the physical properties of astronomical
sources that are not completely captured by the variables included in the (regression) model.
Feigelson and Babu (1992) provided an early introduction to measurement error models for
use in astronomical regressions. Morrison et al. (2000) studied galaxy formation with a
large survey of stars in the Milky Way using star velocities, which contained heteroscedas-
tic measurement errors. To verify galaxy formation theories, one can estimate the density
function from contaminated data that are effective in unveiling the numbers of bumps or
components. Kelly (2007) described a Bayesian method to account for measurement errors
in linear regression of astronomical data. In another study, Andrae (2010) presented an
overview of different methods for error estimation that are applicable to both model-based
and model-independent parameter estimates in astronomy.

The focus of the present work will be on developing a model for gamma-ray bursts
(GRBs), where we relate the flux of the burst to the time since the event. The flux mea-
surement is prone to both intrinsic scatter and measurement error, where the variance of
the measurement errors are available. Moreover, there is a “flaring” phenomena that tends
to noticeably deviate from traditional models that are fit to the data; e.g., linear regression
models. We propose a novel mixture-of-linear-regressions model with measurement error in
the response variable to characterize both the flaring phenomena relative and the underlying
general trend, as well as incorporate the measurement error in the flux measurement.

In the non-mixture setting, many methods have been proposed for performing lin-
ear regression when intrinsic scatter and/or measurement error is present. Clutton-Brock
(1967) proposed an effective variance method. Press et al. (1992) proposed a procedure for
minimizing an effective χ2-statistic. Stephens and Dellaportas (1992), Richardson and Gilks
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(1993), Dellaportas and Stephens (1995), and Gustafson (2004) each developed Bayesian ap-
proaches for estimating measurement error models. Some methods specifically developed for
and applied in astronomical research are the bivariate correlated errors and intrinsic scatter
(BCES) estimator (Akritas and Bershady, 1996) and the FITEXY estimator (Press et al.,
1992).

Finite mixture models are used to characterize the presence of unobserved subpop-
ulations (or latent classes) within an overall population. The theoretical, methodological,
and computational developments concerning finite mixture models is expansive, and the
application of such models have provided critical insights into problems spanning virtually
every research discipline. We refer to the texts by Titterington et al. (1985), Lindsay (1995),
McLachlan and Peel (2000), Frühwirth-Schnatter (2006), and Mengersen et al. (2011), as
well as the numerous references therein. Mixture models have enjoyed a strong presence in a
wide range of fields, spanning the biological, physical, and social sciences. In particular, they
have been successfully used in agriculture, astrostatistics, bioinformatics, economics, engi-
neering, marketing, healthcare, neuroscience, and psychology (McLachlan et al., 2019). Some
of the applications in astronomical research that use mixture models include classification of
astronomical bodies, identification of contaminants in astronomical images, and clustering
overlapping population of stars (Kuhn and Feigelson, 2019). These tasks are essential for
the study of stars and planet formation as well as analyzing multi-band astronomical images
(Feigelson et al., 2021). There are also precedents with using mixture models in the analysis
of GRBs. Tarnopolski (2019) analyzed different properties of GRBs from the Burst and
Transient Source Experiment (BATSE) using mixtures of multivariate skewed distributions.

Research at the intersection of (finite) mixture models and measurement errors is
fairly limited. Lindsay (1995) highlights examples where the joint distribution of observable
variables (including the observed surrogate variables, which are the variables whose true val-
ues are subject to measurement error) has a mixture form. Richardson et al. (2002) provides
a Bayesian treatment of mixture models in measurement error problems. For mixtures-of-
linear-regressions models, measurement error has only been studied in the predictors. This
model was introduced by Yao and Song (2015), who developed a deconvolution method
to estimate the observed surrogates and employed a generalized expectation-maximization
(GEM) algorithm (Dempster et al., 1977) for performing maximum likelihood estimation.
An extension of that work for the setting of mixtures of polynomial regressions was presented
in Fang et al. (2023). The distinction with the contributions in the present paper is that we
address the issue of measurement error in the response variable through a mixture structure.

This paper is organized as follows. In Section 2, we define the particular mixture
model used in this study. The challenges with this model mostly concern estimation and
inference, which are presented in Section 3. In particular, we extend the weighted least
squares (WLS) estimator developed by Akritas and Bershady (1996), but in the context
of our mixture model. In Section 4, we conduct a simulation study using our proposed
algorithm. In Section 5, we perform a thorough analysis of a GRB dataset using our mixture
model. We end with some concluding remarks in Section 6.
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2. The model

We first consider the setup for the classic mixture-of-linear-regressions model. Sup-
pose we have a random sample of response variables, Y1, . . . , Yn, that are each measured
with a vector of predictors, Xi = (1, Xi,1, . . . , Xi,p−1)T, p < n, for i = 1, . . . , n, such that
the first entry is a 1 to accommodate an intercept. Let Zi be a latent class variable with
P(Zi = j|Xi) = λj for j = 1, . . . , k, where λj > 0 and ∑k

j=1 λj = 1. Given Zi = j, the
relationship between a univariate observation Yi and Xi is the linear regression model

Yi = XT
i βj + ϵj. (1)

Here, ϵj ∼ N (0, σ2
j ), where σ2

j is the error variance for class (component) j, and βj =
(β0,j, . . . , βp−1,j)T is the p-dimensional vector of regression coefficients. Therefore, uncondi-
tional on Zi, but conditional on Xi, the Yis follow the mixture distribution

Yi | Xi ∼
k∑

j=1
λjN (XT

i βj, σ2
j ). (2)

Maximum likelihood estimation of mixtures of linear regressions is straightforward,
and typically performed using an EM algorithm. Bayesian inference can easily be performed
via classic MCMC algorithms. We refer to De Veaux (1989), Viele and Tong (2002), and
Hurn et al. (2003) for sound treatments of both approaches, which can be implemented
using, for example, the R package mixtools (Benaglia et al., 2009).

Suppose now that we have additive measurement error in the response variable, which
we can write using the following (additive) measurement error model:

Y ∗
i = Yi + δi. (3)

In the above, Yi is the true response value, Y ∗
i is the observed response variable (i.e., the

surrogate variable), and δi is the measurement error. The measurement error is assumed
to be independent of the Yi as well as to have zero mean and finite variance η2

i . In classic
measurement error models, including regression models where the measurement error occurs
in the predictor, a stronger assumption of normality is usually imposed on the distribution
of the δis. Regardless, the classic measurement error setting will seek out estimation of the
variance, with such methods discussed in Carroll et al. (2006b). One may, however, have
a known value of η2

i s or be able to posit a good estimate. In the GRB data discussed, we
can reasonably make this assumption through the reported errors in the flux measurement.
Therefore, we consider the setting where we observe the following for the ith observation in
the dataset:

(XT
i , Y ∗

i , η2
i ), (4)

where the true response is assumed to arise from the mixture structure discussed above in
(1) and (2).

In the non-mixture (i.e., classic multiple linear regression) setting, we know that
the ordinary least squares (OLS) estimator for β minimizes the residual sum of squares
∥Y − Xβ∥2, where Y is an n-dimensional vector consisting of the Yis and X is an n × p full-
rank design matrix with ith row XT

i . The OLS estimator is, thus, β̂OLS =
(
X TX

)−1
X TY,
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which is also equal to the maximum likelihood estimator (MLE) in this setting. In the
mixture setting, when performing maximum likelihood estimation via an EM algorithm, the
MLE for the jth component’s regression coefficient is calculated in the M-step at the tth
iteration of the algorithm as β̂(t+1)

j =
(
X TW(t)

j X
)−1

X TW(t)
j Y. In this expression, W(t)

j is
an n × n diagonal matrix with ith entry equal to the posterior membership probability of
the ith observation belonging to component j, which is determined through an application
of Bayes’ rule in the E-step. Note that the form of the β̂(t+1)

j is that of a WLS estimator
with weighting matrix W(t)

j . If there is measurement error in the predictors, as in the setting
considered by Yao and Song (2015), or in the response, as in the present consideration, then
the MLE just discussed will be biased. In our measurement error setting, we can modify
the WLS estimator above to reflect the WLS approach developed in Akritas and Bershady
(1996) for the non-mixture setting. This is the approach developed in the next section.

3. Estimating method

3.1. A WLS-based estimate

The model presented in the previous section has non-constant error variance (het-
eroscedasticity) for each observation. Though WLS was employed in the previous section
during estimation of the mixture-of-regression coefficients, WLS is a classic framework for
addressing heteroscedasticity. By design, WLS allows one to assign individual weights to the
observations, thus removing, or at least improving, the effects of heteroscedasticity. WLS is
an example of the broader class of generalized least squares estimators (Aitken, 1935). The
general idea of WLS is that less weight is given to those observations with a larger error
variance, which forces the variance of the residuals to be constant.

Akritas and Bershady (1996) note that the optimal weight for each observation com-
prises both the corresponding random error variance and the intrinsic scatter (measurement
error) variance. However, in a mixture-of-regressions setting, we also need to account for
the uncertainty of component membership, so we incorporate the unobserved Zijs into our
method. Conditional on component membership ki, we have

Y ∗
i = Yi + δi

= XT
i βki

+ ϵi,ki
+ δi

= XT
i βki

+ ϵ∗
i,ki

,

where ϵi,ki
∼ N (0, σ2

ki
). With this setting, we may develop a WLS-type approach while

working under the assumption that the variance of ϵ∗
i,ki

is independent of Y ∗
i ; see Akritas and

Bershady (1996). However, we need estimates of the variance of ϵ∗
i,ki

. Under our assumptions,
we have

Var(ϵ∗
i,ki

) = Var(ϵ·,ki
) + η2

i . (5)
Since Var(ϵ·,ki

) is unknown, Var(ϵ∗
i,ki

) is also unknown. We can extend the algorithm of
Akritas and Bershady (1996) combined with estimates obtained via an EM algorithm to
estimate Var(ϵ·,1), . . . , Var(ϵ·,k); see Algorithm 1.

As shown in Algorithm 1, an EM algorithm is employed in Step (1), and then WLS
is used to adjust the regression coefficients in Step (5). The difference between the WLS-
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Algorithm 1 WLS-based Algorithm
(1) Given the observed data

{
(xT

1 , y∗
1), . . . , (xT

n , y∗
n)
}

and η2
1, . . . , η2

n, obtain the mixture-of-
regressions coefficient estimates (β̂T

1 , . . . , β̂T
k )T using an EM algorithm.

(2) Calculate the residuals Rij = y∗
i − xT

i β̂j, for i = 1, . . . , n and j = 1, . . . , k.
(3) Calculate the weighted mean of the residuals for each component membership

R̄.j =
∑n

i=1 p̂ijRij∑n
i=1 p̂ij

,

where p̂ij are the final posterior membership probabilities from the EM algorithm in Step
(1).
(4) Obtain the estimates of Var(ϵ·,1), . . . , Var(ϵ·,k) from

V̂ar(ϵ·,j) =

∑n
i=1 p̂ij

[(
Rij − R̄.j

)2
− η2

i

]
+∑n

i=1 p̂ij

.

(5) Set V̂ar(ϵ∗
i,j) = σ̂∗2

ij = V̂ar(ϵ·,j) + η2
i and define Aj = diag(σ̂∗−2

1j p̂1j, . . . , σ̂∗−2
nj p̂nj). Then,

the WLS estimator based on the further weighting from the intrinsic scatter is

β̃j = (XTAjX)−1XTAjY∗,

for j = 1, . . . , k, where Y∗ = (Y ∗
1 , . . . , Y ∗

n )T is the vector of observed response variables Y ∗
i s.

based estimators, β̃1, . . . , β̃k, and the MLEs from the mixture-of-regressions EM algorithm,
β̂1, . . . , β̂k, will typically not be very large. The variance estimators from the classic mixture-
of-regressions model will naturally be smaller than our corrected estimator, since the former
excludes the variances from the response variable’s measurement error. Notice in Step (3)
that the weighted estimators of variances are obtained by subtracting the deviation of mea-
surement error from the overall deviation. Thus, the value of

(
Rij − R̄.j

)2
− η2

i can be
negative for some i or j, so we employ the usage of the hinge function for this difference;
i.e.,

[(
Rij − R̄.j

)2
− η2

i

]
+

=
{(

Rij − R̄.j

)2
− η2

i

}
∨ 0.

3.2. Asymptotic variance

Let ψ denote the vector of true unknown parameter values,

ψ =
(
λ1, . . . , λk−1,β

T
1 , . . . ,βT

k , σ2
1, . . . , σ2

k

)T
.

The asymptotic variance of the MLEs obtained via an EM algorithm in Step (1) of Algo-
rithm 1 can be obtained by the inverse of the information matrix I (ψ) that appears in the
asymptotic result √

n
(
ψ̂ −ψ

) L−→ N
(
0, I−1(ψ)

)
.

However, likelihood functions for mixture models are often complicated, which translates
to difficult calculations for the second derivatives of the likelihood function that comprise
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I (ψ). Thus, other approaches are necessary (see Chapter 14 of Lange, 2010). For example,
Efron and Hinkley (1978) suggested to use the observed Fisher information matrix instead.
Later, Louis (1982) introduced a technique for computing the observed information by using
calculations only done on the complete information when an EM algorithm is used.

The density for the k-component mixture-of-regressions model is

g(yi | x,ψ) =
k∑

j=1
λjf(yi | xi,θj),

where
f(yi | xi,θj) = 1

σj

ϕ

(
yi − xT

i βj

σj

)
is the probability density of the ith observation belonging to the jth component. Here,
θj =

(
βT

j , σj

)T
is the vector of parameters of the jth component and ϕ(·) is the density of

the standard normal distribution. We can, thus, write out the observed data loglikelihood
as

ℓO(ψ) =
n∑

i=1
log


k∑

j=1
λjf(yi | xi,θj)

 ,

which can be augmented with the vector of each observation’s unobserved component mem-
bership – zi = (zi1, . . . , zik)T such that zij = I{observation i belongs to component j} – to
construct the complete data loglikelihood

ℓC(ψ) =
n∑

i=1

k∑
j=1

zij log {λjf(yi | xi,θj)} .

The complete data is characterized through s = {(xT
i , yi, zT

i ), i = 1, . . . , n}. Since the zi

is unobserved, and hence “missing,” use of an EM algorithm is appropriate. We forego
stating the explicit E-step an M-step for this setting as it is quite standard in the mixture-
of-regressions literature; see, for example, Benaglia et al. (2009).

To compute the observed information in the EM algorithm, let S(s | ψ) and S((xT
i , yi) |

ψ) be the complete data score function and observed data score function, respectively. More-
over, let Is(ψ) be the complete data information matrix; i.e., the expected value of the
negative of the Hessian of the complete data loglikelihood. Then, by differentiation, the
observed data information matrix can be written as

I(ψ̂) = Is(ψ̂) −
[
Eψ

{
S(s | ψ)ST(s | ψ)

}
+ S

{
(xT

i , yi) | ψ
}

ST
{
(xT

i , yi) | ψ
}] ∣∣∣∣∣

ψ=ψ̂
.

Thus, the asymptotic variance-covariance of the estimator ψ̂ can be calculated based on
Var(ψ̂) = I(ψ̂)−1, and the estimated standard errors of the parameter estimates in ψ̂ are
the square root of the diagonal entries of this matrix. Note that in the present setting, we
are using the y∗

i in the role of the yi that appear in the preceding formulas. Moreover, the
MLE ψ̂ is actually based on the WLS estimators β̃j, j = 1, . . . , k in Step (5) of Algorithm
1, and not the β̂j calculated in Step (1); i.e.,

ψ̂ =
(
λ̂1, . . . , λ̂k−1, β̃

T
1 , . . . , β̃T

k , σ̂2
1, . . . , σ̂2

k

)T
.
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3.3. Bootstrap estimator for the standard errors

Even when estimation of ψ is trivial, estimation of standard errors (SEs) can be
computationally burdensome, especially when measurement error is involved. One alterna-
tive strategy is to use the parametric bootstrap (Efron and Tibshirani, 1993; Davison and
Hinkley, 1997), which theoretically should provide similar estimates to the standard errors
compared to the method involving the information matrix. This has become especially useful
for standard error estimation in mixture settings, as noted in Chapter 2 of McLachlan and
Peel (2000).

Algorithm 2 Parametric Bootstrap for Standard Errors
(1) Find ψ̂ by implementing Algorithm 1 using the observed data {(x1, y∗

1), . . . , (xn, y∗
n)}.

(2) Generate a bootstrap sample {(x1, y∗∗
1 ), . . . , (xn, y∗∗

n )}, where each y∗∗
i is a realization

from the (conditional) mixture distribution ∑k
j=1 λ̂jN

(
xT

i β̃j, σ̂2
j

)
.

(3) For each of y∗∗
i , generate the “observed” response by

y∗∗∗
i = y∗∗

i + δi,

where δi ∼ N (0, η2
i ) is generated using the known variabilities η2

1, . . . , η2
n.

(4) Find the estimate ψ̃ by implementing Algorithm 1 on {(x1, y∗∗∗
1 ), . . . , (xn, y∗∗∗

n )}.
(5) Repeat Steps (2) - (4) B times to generate the bootstrap sampling distribution
ψ̃(1), ψ̃(2), . . . , ψ̃(B).

Algorithm 2 outlines a parametric bootstrap to estimate standard errors in our
mixture-of-regressions model when specifying measurement error in the response. After
implementing Algorithm 2, the bootstrap variance-covariance matrix is easily computed as
the sample variance-covariance matrix of the generated values ψ̃(1), ψ̃(2), . . . , ψ̃(B). Thus,
bootstrap standard errors are readily available. When performing a bootstrapping procedure
in the mixture setting, one must be cognizant of the label switching problem, that is, we
want to enforce a meaningful identifiability constraint for a particular analysis. For example,
one could set β11 < . . . < βk1 (i.e., a constraint on the slope for the first predictor in the
model) or σ1 < . . . < σk. We will state the identifiability constraints used for our numerical
work in the next section.

4. Numerical studies

We now study the finite sampling behavior of the proposed estimators for our mixture-
of-regressions model with measurement error in the response. Our study considers mixtures
of regressions with one or two predictors, as well as two or three components. The basic
setting for our models involves iid data (xT

i , yi, ηi), i = 1, . . . , n such that the response
variable Yi is drawn from the model

Yi|Xi = xi ∼
k∑

j=1
λjN

(
xT

i βj, σ2
j

)
,

Y ∗
i = Yi + δi,
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where δi ∼ N (0, η2
i ) is the simulated measurement error in the response. To study the

effect of the measurement error on the proposed estimator for mixtures of both simple
and multiple linear regressions with different number of components, we consider the three
component structures: well-separated (WS), moderately-separated (MS), and overlapping
(OL). These three categorizations of separability were determined by considering component
mean structures and error variances that yield varying degrees of overlap with the generated
data. An explicit quantitative threshold was not employed to characterize if components are
WS, MS, or OL, but rather a visual check on simulated datasets was employed to ascertain
the appropriateness of the stated component structure. The 12 data-generating processes
used to characterize these different structures are summarized in Table 1.

Table 1: The 12 models used for the simulation study

Model Structure βT
1 βT

2 βT
3 σ2

1 σ2
2 σ2

3 λ1 λ2

Mixtures of Simple Linear Regressions
M1 WS (−10, 6) (10, 2) — 4 1 — 1/2 —
M2 MS (5, 15) (25, −15) — 4 1 — 1/2 —
M3 OL (5, 5) (15, −5) — 4 1 — 1/2 —
M4 WS (−10, 6) (10, 2) (30, −5) 4 1 9 1/3 1/3
M5 MS (5, 15) (20, 20) (25, −15) 4 1 9 1/3 1/3
M6 OL (−10, 20) (5, 5) (15, −5) 4 1 9 1/3 1/3

Mixtures of Multiple Linear Regressions
M7 WS (−10, 6, 4) (10, 2, 7) — 4 1 — 1/2 —
M8 MS (5, 15, 10) (25, −15, −10) — 4 1 — 1/2 —
M9 OL (5, 5, 9) (15, −5, 3) — 4 1 — 1/2 —
M10 WS (−10, 6, 4) (10, 2, 7) (30, −5, 10) 4 1 9 1/3 1/3
M11 MS (5, 15, 10) (20, 20, 5) (25, −15, −10) 4 1 9 1/3 1/3
M12 OL (5, 5, 9) (15, −5, 3) (−10, 20, 15) 4 1 9 1/3 1/3

For each simulation condition, we randomly generated B = 1000 datasets for the
sample sizes n ∈ {100, 250}. For each sample size, we generated the predictor variables as
Xij ∼ U(0, 1), while different measurement errors for the response were considered for each
mixture-of-regressions setting. The Monte Carlo samples for the 2-component mixtures of
regressions were generated under the two conditions of η2

i ∼ U(0, 0.1) and η2
i ∼ U(2, 6). The

Monte Carlo samples for the 3-component mixtures of regressions were generated under the
two conditions of η2

i ∼ U(0, 0.5) and η2
i ∼ U(5, 10).

For each simulated dataset, we estimate the parameters (βT
1 , . . . ,βT

k , σ2
1, . . . , σ2

k) using
Algorithm 1, and compare them with the estimates obtained via the “näıve” method, which
simply ignores the measurement error; i.e., estimation of the classic mixtures-of-regressions
model without measurement error in the response. The performance of the proposed method
under different conditions is assessed by calculating the mean squared error (MSE),

MSE(θ̂) = 1
B

B∑
t=1

(θ̂(t) − θ)2,

where θ̂(t) is the estimate of the parameter θ based on the tth Monte Carlo sample and θ is
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the true value. The relative efficiencies based on the MSEs for the näıve method versus the
proposed method are also calculated for all of the parameters.

4.1. Results for mixtures of simple linear regressions

Figure 1: Histograms of observed response variables for 2-component mixtures
of simple regression under different settings, with sample size n = 250

We first discuss the numerical results obtained for the 2-component mixtures where
we have a single predictor. In particular, we first focus on models M1, M2, and M3 in Table
1. Figure 1 shows the histograms of observed responses y∗ under different circumstances.
Even though these are histograms of the unconditional distribution of the response with
measurement error, it still gives an indication about the degree of separability that was
incorporated in the mixtures-of-regressions structure. In the WS setting, there are two
distinct regression relationships corresponding to the two different components. For the MS
and OL settings, the two components have a greater degree of mixing, thus it is harder
to identify to which component a certain data point belongs. Regardless, increasing the
variance of the measurement errors forces the two components to be closer to each other,
which compounds the ability to identify the distinct components.

Table 2 gives the MSEs and relative efficiencies (in parentheses) for the simulated
datasets from models M1, M2, and M3. The values in the parentheses represent the relative
efficiencies of MSEs for the näıve versus the proposed estimators. For example, the boldface
value of 1.0552 means the MSE when estimating β21 using the näıve method is 1.0552 times
the MSE when estimating the parameter using our proposed method. If the relative efficiency
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Table 2: The MSEs and relative efficiencies (in parentheses) of the näıve
estimators versus the proposed estimators for 2-component mixtures of simple
linear regressions; models M1, M2, and M3

n η2
i β10 β11 β20 β21 σ2

1 σ2
2

Well-Separated Components

100
U(0, 0.1)

0.3531 1.0550 0.0801 0.2461 0.6722 0.0425
(1.0002) (1.0001) (1.0019) (1.0008) (0.9843) (1.0235)

250 0.1359 0.4356 0.0338 0.1000 0.2551 0.0177
(1.0004) (1.0003) (1.0016) (1.0025) (0.9850) (1.0895)

100
U(2, 6)

0.6419 2.0757 0.3878 1.2180 8.2657 11.1670
(1.0099) (1.0121) (1.0580) (1.0551) (1.8492) (1.2782)

250 0.2442 0.7692 0.1616 0.4966 8.5673 12.1929
(1.0171) (1.0192) (1.0499) (1.0413) (1.8948) (1.2908)

Moderately-Separated Components

100
U(0, 0.1)

0.3684 1.1907 0.0943 0.3086 0.8366 0.0553
(0.9994) (0.9992) (1.0020) (1.0017) (1.0389) (1.0412)

250 0.1376 0.4311 0.0345 0.1184 0.3136 0.0234
(1.0004) (1.0022) (1.0016) (1.0032) (1.8558) (1.0260)

100
U(2, 6)

0.8202 3.1092 0.4664 1.7427 7.7301 10.2705
(1.0303) (1.023) (1.0611) (1.0492) (2.0686) (1.2932)

250 0.2920 0.9428 0.1760 0.6098 7.9266 12.2029
(1.0598) (1.0514) (1.0523) (1.0552) (2.1659) (1.3049)

Overlapping Components

100
U(0, 0.1)

0.3920 1.3037 0.0988 0.4589 1.0774 0.0820
(0.9990) (0.9997) (1.0027) (1.0004) (0.9799) (0.9861)

250 0.1587 0.5338 0.0446 0.1836 0.3580 0.0319
(0.9927) (1.0026) (0.9985) (0.9916) (0.9582) (1.0240)

100
U(2, 6)

1.3720 4.5647 0.8550 3.3583 7.0853 9.1205
(1.6076) (1.1515) (1.4303) (1.1468) (2.9174) (1.0341)

250 0.4532 1.8502 0.3732 1.6403 4.7926 11.0519
(1.3647) (0.9572) (1.0541) (0.8900) (3.5687) (1.3208)

is greater than 1, it means the MSE of proposed method is smaller, which leads to greater
precision of the estimator. We note that label switching did not appear to be present since a
check on the estimates of β10 and β20 showed that β̂10 < β̂20 was met for each sample. Thus,
no identifiability constraint had to be enforced for this set of simulations.

Overall, the proposed method appears to behave better than the näıve method with
respect to their relative efficiencies since they are greater than 1. For estimating the variances
Var (ϵ·,j) when a larger value is used (i.e., when σ1 = 2 rather than σ2 = 1), the average
relative efficiency for the settings with measurement error U(2, 6) is greater than 2. When
the measurement error is trivial, this translates to the behaviors of both methods being
nearly the same. Thus, we can conclude that our proposed method behaves better when the
measurement error is larger, which accounting for measurement error in such a circumstance
is likely of greater importance. Note that because our proposed method only accommodates
measurement error in the response after obtaining the maximum likelihood estimates via an
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EM algorithm, there is no adjustment to the mixing proportion estimates; i.e., λ̂ is the same
under both methods and, thus, the relative efficiency is necessarily 1.

When the sample size increases from 100 to 250, the MSEs decrease. Moreover, our
proposed method shows improvement over the näıve method. If we expand the values of
measurement error in the response, the MSEs become larger, however, the performance of
the proposed method according to the relative efficiencies is better for the same sample size.
It is reasonable to infer that, if we increase the measurement error, the estimators using our
proposed method will not represent our true parameters as accurately as those with smaller
measurement errors, but the performance of it will be much better than the näıve method,
which simply ignores the measurement error term.

Table 3: The MSEs and relative efficiencies (in parentheses) of the näıve
estimators versus the proposed estimators for 3-component mixtures of simple
linear regressions; models M4, M5, and M6

n η2
i β10 β11 β20 β21 β30 β31 σ2

1 σ2
2 σ2

3
Well-Separated Components

100
U(0, 0.5)

0.5330 1.5660 0.1870 0.4602 1.1617 3.5029 1.0515 6.1266 6.2885
(1.0025) (1.0012) (1.0158) (1.0089) (0.9996) (0.9982) (0.9757) (1.0225) (0.9800)

250 0.2262 0.6790 0.0617 0.1904 0.4619 1.3618 0.5769 1.3600 3.0806
(1.0030) (1.0025) (1.0071) (1.0111) (0.9987) (0.9992) (1.0280) (1.0891) (0.9848)

100
U(5, 10)

2.2853 7.9456 2.2967 5.6084 2.8218 8.8450 41.2184 119.5947 49.2994
(1.0224) (1.0170) (1.0354) (1.0261) (1.0474) (1.0461) (1.5465) (1.2127) (1.8582)

250 0.5122 1.6757 0.4544 1.4282 0.8378 2.7573 33.7626 53.1254 25.0650
(1.0230) (1.0188) (1.0258) (1.0275) (1.0260) (1.0323) (1.5797) (1.2139) (2.2608)

Moderately-Separated Components

100
U(0, 0.5)

0.6619 2.5107 1.8705 4.6683 0.7329 2.0314 1.9033 61.7355 59.8475
(0.9995) (0.9969) (1.0019) (1.0037) (0.9983) (0.9998) (0.9599) (0.9631) (1.0482)

250 0.2350 0.7756 0.5871 1.7277 0.1041 0.2834 0.8868 61.5826 64.6231
(1.0031) (1.0010) (1.0009) (0.9993) (1.0072) (1.0119) (1.0031) (0.9576) (1.0485)

100
U(5, 10)

6.1955 40.8465 7.4054 18.3020 11.4807 42.4403 51.5176 14.0030 167.5460
(1.0728) (1.0526) (1.0209) (1.0033) (1.0613) (1.0391) (1.5418) (2.2821) (1.4550)

250 0.9832 5.4059 1.9183 4.3903 2.0748 5.7883 32.2413 5.4198 151.2731
(1.0403) (1.0278) (0.9849) (0.9899) (1.0139) (1.0287) (1.6778) (1.8687) (1.4886)

Overlapping Components

100
U(0, 0.5)

2.0540 6.7647 1.8261 5.7137 0.2518 1.1633 12.227 6.7275 0.9974
(0.9966) (0.9952) (0.9980) (0.9902) (1.0026) (1.0309) (0.9672) (0.9896) (1.1254)

250 0.5923 2.2360 0.3429 1.7953 0.0773 0.3423 3.8101 1.9859 0.6644
(0.9976) (0.9932) (0.9970) (0.9876) (1.0037) (0.9989) (0.9477) (0.9813) (1.2213)

100
U(5, 10)

10.0582 35.1593 24.5870 38.8456 7.3339 16.6268 49.3850 42.0632 71.0176
(1.0882) (1.0617) (1.0170) (1.0321) (1.1401) (1.1119) (2.0085) (1.6594) (1.2376)

250 4.6846 10.0172 10.7153 18.6601 3.3252 6.3234 31.3635 36.5494 60.9078
(1.0657) (1.0444) (1.0185) (1.0413) (1.1256) (1.1043) (2.2489) (1.7373) (1.2545)

In Table 3 we report the MSEs and relative efficiencies (in parentheses) for our simu-
lated datasets from the 3-component setting. The models for this part of our discussion are
M4, M5, and M6 in Table 1. Label switching was present when comparing the bootstrap
samples for the moderately-separated cases. This was diagnosed by first noting that the
MSEs appeared to be fairly large for some parameters when the measurement error is large.
For example, the MSE of β21 for the moderately-separated setting with η2

i ∼ U(5, 10) and
sample size n = 100 was first found to be 133.1943, a value much larger than expected. Since
the values of β20 and β30 are close to each other, simply using the identifiability constraint
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β10 < β20 < β30 is not enough. To make the components distinct with each other and correct
the label switching in the simulation, we imposed the identifiability constraint of β10 being
the smallest estimated intercept of the three components and β21 > β31.

When the number of components increase, the MSEs become noticeably larger since
the model is growing in complexity. With a heavier-parameterized model, the estimation
becomes more challenging. When we increase the sample size and decrease the variance
of the measurement errors in the response, the MSEs of the unknown parameters becomes
smaller. Similarly, the relative efficiencies show that for the case with larger sample size and
bigger measurement error, our proposed method performs better than näıve method. For
overlapping and moderately-separated cases, the MSEs are fairly large for certain parameters
with large measurement error (e.g., with variances η2

i ∼ U(5, 10)), since the three components
are subject to heavy mixing and it becomes difficult to consistently distinguish different
components, thus leading to greater uncertainty in the estimators.

Figure 2: Scatter plots for datasets generated from each of the models
M1 − M6, inclusive (sample size n = 250), where dashed red lines are the
estimates obtained using Algorithm 1 and solid black lines are the lines based
on the true parameters

Figure 2 shows scatterplots of datasets generated from each of the six settings (models
M1 − M6) for mixtures of simple linear regressions with measurement error in the response.
Different colors and shapes indicate from which component each observation was generated.
The dashed red lines are the estimates obtained from our proposed method outlined in
Algorithm 1. The solid black lines are the lines based on the true parameters. According
to the scatterplots, the proposed method fits well in all settings as the dashed red lines
(estimates) are similar to the solid black lines (truth). Moreover, based on the relative
efficiencies reported earlier, it improves the performance of estimating parameters when
compared to the näıve method. Overall, these results are consistent with demonstrating the
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efficacy of our proposed method as a way to incorporate measurement error in the response
when the underlying data come from a mixture-of-regressions setting.

4.2. Results for mixtures of multiple linear regressions

We next consider the 2-component mixtures of multiple linear regressions with mea-
surement errors, which correspond to the models M7, M8, and M9 in Table 1. Figure 3
shows 3d scatterplots of data simulated from each of these models, where different colors
represent to which component each data point belongs. In the well-separated case, the two
components are very well-separated, thus making it very easy to distinguish to which com-
ponent each point belongs. For the moderately-separated and overlapping cases, there are
some areas where the two components are mixing, which is where we would expect to have
the greatest uncertainty as to how to classify those observations if we were estimating the
underlying model.

Figure 3: 3d scatterplots of the three different component structures for the
2-component mixtures of multiple linear regressions with sample size n = 250
and measurement error η2

i ∼ U(2, 6) for the response

In Table 4, we report the MSEs and relative efficiencies (in parentheses) for our
simulated datasets from the models M7, M8, and M9. Label switching did not appear
to be present since the identifiability constraint β10 < β20 is satisfied for all bootstrap
estimates. The overall behavior of these three 2-component mixtures of multiple linear
regressions are similar to those of the 2-component mixtures of simple linear regressions.
When we increase the sample size from 100 to 250, the MSEs become smaller and the
relative efficiencies improve. Meanwhile, because we add the predictor Xi2, the models are
more parameterized than when the components are simple linear regressions, thus making the
estimation more challenging, especially when the components are overlapping. For example,
with an overlapping component, with large measurement errors (variances η2

i ∼ U(2, 6)),
and with a sample size of n = 100, the boldface value in Table 4 is the MSE of the slope
parameter for Xi2, β12. This value of 19.2855 is a value much larger than the corresponding
setting with simple linear regression components. Naturally, when increasing the number of
predictor variables in settings with overlapping components, the increase in the MSEs reflect
the greater difficulty in being able to estimate the true parameters.
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Table 4: The MSEs and relative efficiencies (in parentheses) of the näıve
estimators versus the proposed estimators for 2-component mixtures of
multiple linear regressions; models M7, M8, and M9

n η2
i β10 β11 β12 β20 β21 β22 σ2

1 σ2
2

Well-Separated Components

100
U(0, 0.1)

0.5943 1.0542 0.9975 0.1654 0.2692 0.2721 0.6641 0.0429
(0.9997) (0.9998) (0.9994) (1.0005) (0.9998) (1.0009) (0.9711) (0.9570)

250 0.2344 0.3588 0.4091 0.0571 0.1029 0.1001 0.2772 0.0181
(1.0000) (0.9999) (1.0000) (1.0011) (1.0025) (0.9999) (0.9924) (1.0444)

100
U(2, 6)

1.1410 1.8997 1.9631 0.7192 1.2127 1.2058 7.8854 11.2173
(1.0242) (1.0242) (1.0200) (1.0356) (1.0453) (1.0334) (1.8798) (1.2486)

250 0.4703 0.7942 0.7993 0.2633 0.4658 0.4882 8.5387 12.1649
(1.0264) (1.0361) (1.0163) (1.0345) (1.0322) (1.0419) (1.8905) (1.2733)

Moderately-Separated Components

100
U(0, 0.1)

0.6763 1.2041 1.2587 0.1686 0.3052 0.3084 0.8869 0.0652
(1.0005) (0.9991) (0.9999) (1.0002) (0.9971) (1.0026) (0.9788) (0.9522)

250 0.2414 0.4074 0.4098 0.0721 0.1136 0.1233 0.3040 0.0223
(1.0003) (1.0008) (0.9994) (0.9985) (0.9973) (1.0015) (0.9714) (0.9977)

100
U(2, 6)

1.5240 2.9314 2.8395 0.9511 2.1858 1.6698 6.8091 10.6683
(1.0258) (1.0379) (1.0185) (1.0542) (1.0472) (1.0416) (2.1127) (1.2768)

250 0.5835 0.9993 0.9861 0.3567 0.5889 0.6688 7.0279 11.6471
(1.0181) (1.0142) (1.0195) (1.0337) (1.0452) (1.0421) (2.1744) (1.2959)

Overlapping Components

100
U(0, 0.1)

1.2866 2.3647 1.8994 0.4989 1.0341 0.7241 1.2633 0.2225
(1.0030) (1.0012) (1.0024) (1.0071) (1.0004) (1.0027) (0.9695) (0.9831)

250 0.3486 0.6162 0.5630 0.0847 0.1826 0.1721 0.3895 0.0461
(1.0041) (1.00021) (1.0033) (1.0082) (1.0007) (1.0029) (0.9744) (0.9672)

100
U(2, 6)

10.2329 18.2687 19.2855 6.5878 12.7481 7.5360 6.6059 16.4143
(1.0901) (1.0874) (1.1339) (1.1815) (1.1073) (1.1758) (2.4594) (1.1897)

250 3.0658 4.1279 3.3197 1.9051 2.8471 1.9667 6.3793 12.4284
(1.0561) (1.0346) (1.0758) (1.0923) (1.0537) (1.0557) (2.2934) (1.2622)

Finally, in Table 5, we report the MSEs and relative efficiencies (in parentheses) for
our simulated datasets from the models M10, M11, and M12. The overall behavior of
these three 3-component mixtures of multiple linear regressions are similar to those of the 3-
component mixtures of simple linear regressions. When we increase the sample size from 100
to 250, the MSEs become markedly smaller and the relative efficiencies improve. Meanwhile,
adding the predictor Xi2 creates heavier-parameterized model than when the components
are simple linear regressions, thus making the estimation more challenging. This, again, is
especially the case when the components are overlapping. Naturally, when increasing the
number of predictor variables in settings with overlapping components, the increase in the
MSEs reflect the greater difficulty in being able to precisely estimate the true parameters.

4.3. Summary of simulation results

The combination of simulation conditions we considered in this section is fairly broad
in ascertaining the applicability and robustness of our method. The conditions considered are
more extensive relative to the most closely-related works of Yao and Song (2015) and Fang
et al. (2023). The former only considered a two-component mixture structure (k = 2) in a
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Table 5: The MSEs and relative efficiencies (in parentheses) of the näıve
estimators versus the proposed estimators for 3-component mixtures of
multiple linear regressions; models M10, M11, and M12

n η2
i β10 β11 β12 β20 β21 β22 β30 β31 β32 σ2

1 σ2
2 σ2

3
Well-Separated Components

100
U(0, 0.5)

1.2136 1.9885 3.9334 0.3336 0.5340 0.5208 2.2203 3.8362 3.7758 1.0387 12.3354 5.5941
(1.0076) (1.0131) (0.9976) (1.0177) (1.0233) (1.0107) (0.9989) (0.9997) (0.9989) (0.9331) (0.9881) (0.9505)

250 0.3811 0.6459 0.6263 0.1039 0.1737 0.1823 0.8305 1.4460 1.3632 0.4005 0.0372 2.1773
(1.0026) (1.0021) (1.0029) (0.9925) (0.9926) (1.0119) (1.0002) (1.0000) (0.9989) (1.0085) (1.8628) (0.9591)

100
U(5, 10)

3.2963 5.2986 5.0973 4.5584 8.1695 8.1475 5.7028 8.8767 12.3215 85.2660 158.6470 74.7738
(1.0482) (1.0178) (1.0333) (1.0294) (1.0043) (1.0053) (1.0416) (1.0286) (1.0205) (1.3193) (1.2135) (1.5328)

250 0.9410 1.7008 1.6351 0.7914 1.3628 1.3607 1.5043 2.6883 2.6383 34.6107 45.3006 24.9767
(1.0164) (1.0207) (1.0115) (1.0113) (1.0046) (1.0110) (1.0186) (1.0253) (1.0261) (1.5534) (1.1457) (2.2178)

Moderately-Separated Components

100
U(0, 0.5)

1.9663 4.8574 4.1719 1.2241 2.8285 2.2239 4.9887 7.7760 6.6005 7.5266 9.7945 12.0505
(1.0006) (1.0011) (0.9981) (1.0009) (1.0036) (1.0086) (1.0005) (0.9981) (0.9991) (0.9960) (1.0163) (0.9652)

250 0.4809 1.1818 0.9333 0.1374 0.2160 0.2007 1.4692 2.5039 2.1921 0.6890 0.0400 3.3639
(0.9995) (0.9986) (0.9982) (1.0164) (1.0111) (1.0111) (1.0011) (1.0003) (0.9995) (0.9518) (1.8602) (0.9606)

100
U(5, 10)

12.9275 33.8055 22.2632 5.2212 15.3337 8.8258 18.1433 37.4492 25.1159 112.7497 70.9902 50.3589
(1.0199) (1.0141) (1.0321) (1.0872) (1.0573) (1.0569) (1.0159) (1.0131) (1.0092) (1.4687) (1.2221) (1.8285)

250 2.0909 4.3709 3.5039 1.2803 1.8202 1.7139 3.6181 6.3859 4.9530 37.6301 47.8919 23.1817
(1.0224) (1.0296) (1.0131) (1.0179) (1.0284) (1.0160) (0.9911) (0.9735) (0.9864) (1.6905) (1.1922) (2.4719)

Overlapping Components

100
U(0, 0.5)

10.3035 20.6498 15.4182 16.7390 21.5233 33.0813 3.3270 6.4835 4.3271 20.3703 8.4015 1.2845
(1.0063) (1.0067) (0.9903) (1.0017) (0.9917) (1.0050) (0.9996) (1.0079) (1.0006) (0.9868) (1.0189) (1.1515)

250 2.0177 3.6305 2.8213 1.6731 2.9781 2.3034 0.2443 0.5121 0.4392 5.4233 2.8357 0.1046
(0.9972) (1.0178) (1.0030) (0.9998) (0.9955) (0.9979) (1.0065) (1.0029) (1.0073) (0.9485) (0.9773) (1.4291)

100
U(5, 10)

21.8372 38.7232 31.4980 40.1613 50.7183 46.2146 12.5149 26.3528 18.1346 29.0741 26.5541 47.2962
(1.1114) (1.0869) (1.0810) (1.0269) (1.0467) (1.0616) (1.1389) (1.1391) (1.1859) (2.4170) (1.6763) (0.8082)

250 11.8025 17.7110 15.0034 36.2944 43.8553 25.0780 9.3447 17.8059 10.7296 24.4411 31.1152 51.5546
(1.0978) (1.0866) (1.0974) (0.9999) (1.0217) (1.0725) (1.1619) (1.1165) (1.1073) (2.6009) (1.7296) (0.9340)

single predictor. The latter considered two-component mixture structures (k = 2), but where
the components could be linear, quadratic, or cubic functions of a single predictor. In our
simulation work, we considered two-component and three-component mixtures (k = 2, 3),
each with one or two predictors. The parameters for the underlying regression components
are then selected to be well-separated, moderately-separated, or overlapping, yielding the
12 models in Table 1. Moreover, we considered two measurement error structures and two
sample sizes, further demonstrating the performance of our methods on a variety of models.

In general, the results reported in this section are consistent with results typically
seen in simulations involving mixtures. When the components are well-separated, the results
tend to be more stable compared to moderately-separated and overlapping settings. This, of
course, follows from the variables in both moderately-separated and overlapping component
models being harder to identify. Meanwhile, for the same model with the same component
setting (i.e., well-separated, moderately-separated, or overlapping), an increase in the sample
size yields a decrease in the MSE, while an increase in the the variances of the measurement
error increases the MSE.

Generally speaking, the MSEs of well-separated components are the smallest among
the three different types of component settings. When we assumed a smaller measure-
ment error, the MSEs are almost unanimously smaller, which makes sense due to smaller
measurement error infusing smaller variability in the response. Overall, 2-component mod-
els had better results than the three-component models. For example, for a 3-component
heavily-overlapping mixture model with measurement error U(5, 10) and sample size of 100,
the MSEs of βT

2 = (15, −5, 3) are (40.1613, 50.7183, 46.2146) (see Table 4), while the 2-
component heavily overlapping mixture model with measurement error U(2, 6) and sample
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size 100 for the same βT
2 has MSEs of (6.5878, 12.7481, 7.5360) (see Table 5).

Our routine developed to estimate the mixture models under consideration do occa-
sionally encounter some numerical issues, especially for the 3-component overlapping models.
Sometimes, bad solutions (i.e., estimates that are clearly far away from the true parame-
ter values) were obtained. This would occasionally occur even after starting the algorithm
from multiple random starting values. For practical purpose, in the 3-component simulated
datasets with B = 1000, we trimmed 40(≈ 4%) of the datasets that yield the largest devia-
tions from the true parameter value for any single estimates from β vectors. After omitting
those results, the MSEs were much more consistent with what was observed under the other
conditions. This strategy has been employed for other simulations involving mixtures with
complex structures; see, for example, Young (2014).

5. Example: Gamma-ray burst data

GRBs are key observations in gamma-ray astronomy, as they are extremely energetic
explosions that occur at random times in distant galaxies. Since the Big Bang, they are
considered the brightest electromagnetic events known to occur in the universe. The bursts
can last from ten milliseconds to several hours. These phenomena are still the subject of
intense research, but some theories suggest they arise during the birth of black holes or a
massive super-giant’s collapse. See the review article by Piran et al. (2013).

The launch of the Swift observatory (Gehrels et al., 2004) modernized how we observe
GRBs. The Swift observatory, which has collected and made available copious amounts of
GRB data, provides rapid notification of GRB triggers to the ground using a highly-sensitive
Burst Alert Telescope (BAT; Barthelmy, 2004). It also makes panchromatic observations of
the burst and its afterglow. On May 25th, 2005, the Swift BAT was triggered and located
GRB050525a1 (Blustin et al., 2006), the significance being that this was the first bright, low-
redshift burst to have been observed using the observatory. The X-ray decay ‘light curve’
of GRB050525a that was obtained includes both photo-diode (PD) mode (T < 2000s) and
photon-counting (PC) mode (T > 2000s) data. The data are plotted in Figure (4(a)), and
like many astronomical datasets, the GRB observations suffer from measurement error due
to the detection technique used.

The GRB050525a dataset consists of n = 63 brightness measurements in the 0.4 –
4.5 keV spectral band at times ranging from 2 minutes to 5 days after the burst. During
this period, the brightness faded by a factor of 100,000. Due to the wide range in times and
brightness, most analysis is done using logarithmic variables. The observations in the dataset
are: time since trigger (in seconds), X-ray flux (in units of 10−11 erg/cm2/s, 2−10 keV), and
the variability of the measurement error of the flux based on detector signal-to-noise values.

Blustin et al. (2006) fit the data with a power-law model; i.e., a linear regression
model. However, they note systematic deviations of the residuals at certain time points,
which they attempt to capture using temporal breaks, resulting in what they call a broken
power-law model; i.e., a piecewise linear regression model. The data and best-fit line using a
single breakpoint are shown in Figure 4(a). Blustin et al. (2006) note that the power-law fit

1The naming convention for GRBs is “GRByymmdd”, where a subsequent letter (i.e., a, b, c, etc.)
denotes the observation on a day when multiple GRBs occurred.
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of the pre-brightening PD mode data (T < 280s) extrapolates well to the pre-break PC mode
data. They concluded that the brightening at about 280s in the PD mode data represents a
flare in the X-ray flux, possibly similar to the sometimes much larger flares that are seen at
early times in other bursts. The authors further note that the flux returns to the pre-flare
decay curve prior to the start of the PC data.

(a) (b) (c)

Figure 4: Scatterplots of the GRB050525a data with (a) the best-fit line from a
broken power-law model, (b) the estimated 2-component measurement error
model fit, and (c) the estimated 2-component measurement error model fit on
the PD mode data

Blustin et al. (2006) do not directly model the flaring points in their modeling. The
flaring points are denoted by orange dots in Figure 4(a). In order to also capture the
characteristic of the flaring part of this phenomena, we fit the data with a mixture-of-linear-
regressions model, which can potentially identify separate regression models for the initial
burst. Moreover, we can incorporate the reported variability of the measurement error of
the flux through the model we developed in Section 2.

While we hypothesize that separate regression models could be appropriate for the
initial burst and the remaining flux measurements, we will proceed to assess the number of
components for the proposed mixture-of-linear-regressions model. We consider k = 1, 2, 3, 4
and select the best model according to results using the following model selection criteria:
Akaike’s information criterion (AIC; Akaike, 1973), the Bayesian information criterion (BIC;
Schwarz, 1978), the Integrated Completed Likelihood criterion (ICL; Biernacki et al., 2000),
and the consistent AIC (cAIC; Bozdogan, 1987). The number of components is chosen based
on the smallest respective model selection value. This was repeated with N = 100 random
starts, where the scores from the best start are given in Table 6. Among the model selection
criteria, AIC typically overestimates while BIC, ICL, and cAIC are good indicators for the
fit of a mixture model (Wedel and DeSarbo, 1995; McLachlan and Peel, 2000). In this case,
BIC, ICL, and cAIC all select k = 2 while AIC appears to overestimate by selecting k = 4.
We also compare the model selection results (AIC, BIC, and cAIC) to the simple linear
regression (SLR) fit2 with no measurement error. Each of these is just slightly larger than
the k = 1 fit, indicating that including the measurement error in the estimation provides

2Note that ICL, which is a penalized form of BIC, is not calculated for the SLR or the k = 1 fit. ICL
and its variants are designed to identify the number of components in a model-based clustering framework,
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a slight improvement over the traditional SLR fit. Regardless, based on these results we
proceed to use the fit for the 2-component model with measurement error in the response.

Table 6: Model selection criteria for determining the number of components
for the GRB dataset, where bold values indicate the number of components
chosen under that criterion

k AIC BIC cAIC ICL
1 −84.935 −80.649 −78.649 —
2 −156.654 −143.796 −137.796 −145.016
3 −130.872 −109.440 −99.440 −111.137
4 −158.57 −128.568 −114.568 −131.251

SLR −82.944 −76.515 −73.515 —

The model with known measurement errors in the responses that we fit is written as

yi ∼
{

xT
i β1 + ϵi1, with probability λ

xT
i β2 + ϵi2, with probability 1 − λ,

y∗
i = yi + δi,

(6)

where ϵij ∼ N (0, σ2
j ) are independent, i = 1, . . . , 63, and j = 1, 2, xi = (1, log10(ti)), ti is the

ith observation time since trigger (in seconds), y∗
i is the logarithm (base 10) of the X-ray

flux from the ith measurement, δi ∼ N (0, η2
i ), η2

i = log2
10(si), si is the reported variability

for the measurement error of the flux for the ith observation, and δi is independent of ϵij.

Table 7: Parameter estimates, estimated SEs from the parametric bootstrap,
and the estimated SEs using the observed information matrix

Parameter Estimates Bootstrap SEs Theoretical SEs
β10 −6.782 2.438 0.209
β11 −1.007 0.912 0.049
β20 −5.286 3.561 0.147
β21 −1.552 1.178 0.022
σ1 0.792 0.112 0.057
σ2 1.470 0.600 0.413
λ 0.601 0.197 0.249

For the WLS estimate β̃j in our mixture-of-regressions setting, we obtain standard
errors for the parameters using a parametric bootstrap with B = 1000. We then compare
the result with variance estimates for the WLS estimators using the inverse of the observed
information matrix (see Table 7). Based on the output, the standard errors from the para-
metric bootstrap are much larger than the inverse of observed information, especially for the

which is achieved through the estimated mean entropy that is used as the penalty term (Biernacki et al.,
2000; Baudry et al., 2010; Bertoletti et al., 2015). As noted in Bertoletti et al. (2015), “the ICL tends to be
less prone to discriminate overlapping groups, essentially becoming an efficient model-based criterion that
can be used to outline the clustering structure in the data.”
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intercepts. However, the standard errors for the variances, σ1 and σ2, and mixing proportion
λ are reasonable, as well as the intercepts β11 and β21.

The lines from the estimated model are shown in Figure 4(b), where each color rep-
resents the component based on the largest posterior membership probability. Based on this
figure there are clearly two distinct components: one with time T < 2000s and the other
with time T > 2000s. The result agrees with astronomers’ assessment about PD mode and
PC mode.

It is also worth investigating data within PD mode using our mixture model since it
involves the flaring points as well as regular data points. The data within PD mode consists
of the first n = 49 data points. We fit the non-log-transformed data (time since trigger as
predictor variable xi and X-ray flux as observed response variable y∗

i ) with a 2-component
mixture model using our proposed method. The fit for the model in (6) is

yi ∼
{

59.023 − 0.047xi + ϵi1, with probability 0.742
179.195 − 0.510xi + ϵi2, with probability 0.258,

where ϵi1 ∼ N (0, 2.932) and ϵi2 ∼ N (0, 4.412) for i = 1, . . . , 49. The estimated regression
lines from this fit are overlaid on the scatterplot of the PD mode data in Figure 4(c). Based on
the calculated posterior membership probabilities, the blue triangles are those observations
assigned to the first component and the red bullets are those observations assigned to the
second component. While our fit identified two clear components, the clusterings are clearly
affected by the time since trigger variable. Such a clustering affected by the predictor variable
is called assignment dependence, and is treated extensively by Hennig (2000). Such a feature
can be incorporated via the use of cluster-weighted models (see Gershenfeld, 1997; Ingrassia
et al., 2012, 2014). While our model is not a cluster-weighted model, we do note what it
is identifying in this particular part of our analysis. Referring again to Figure 4(c), the red
vertical dashed line is the break line of time before and after T = 280s. As discussed, data
points with T > 280s are considered as flaring points, and those points classified to the
second component give strong evidence in favor of this flaring assumption as they have a
noticeably different linear structure than those datasets before 280s. Thus, the fit from our
proposed mixture model gives evidence to the presence of a structural changepoint at this
time of T = 280s.

6. Conclusion

Measurement error in a response variable is considered as intrinsic scatter when in-
corporated as part of astronomical regression models. In this paper, we discussed a mixture-
of-regressions model where measurement error is treated in the response. We extended the
WLS method proposed by Akritas and Bershady (1996) to the mixture setting, and used
likelihood methods to compute the estimates of the parameters. Our proposed model differs
from the mixture-of-regressions model introduced by Yao and Song (2015), who modeled
measurement error in the predictors.

We conducted extensive simulation studies to characterize the performance of our
WLS-based algorithm to reflect weighting from the intrinsic scatter. The simulation study
included combinations of 2-component and 3-component models having either one or two
predictors, various degrees of separability between the components, and difference amounts
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of variability assumed for the measurement error. The overall results show that our method
can improve the performance of estimates, especially when the measurement error is not too
large. It is often the case that proposed numerical procedures for measurement error models
perform best when the measurement error is not too large. Moreover, mixture models with
well-separated components tend to do better in terms of their MSE and relative efficiencies
when compared to the näıve estimators that do not reflect the measurement error. Again,
numerical procedures for finite mixture models tend to do better under model settings with
well-separated components.

Our model was motivated as a way to analyze GRB data, for which we do have
a reliable estimate for the variability of the measurement error in the response variable.
In particular, a 2-component mixture-of-regressions model is tenable since it can be used
to characterize those flux measurements that are likely to be occurring during the flaring
portion of the GRB’s X-ray decay. Our model was able to make use of all of the reported
data, and provided a more nuanced view of these GRB data.

There are various considerations for future research to expand on the work presented
in this paper. For example, a more formal inference framework could be implemented for
determining the number of components. While we just applied model selection criteria in
our paper, one could proceed to perform (nonparametric) bootstrapping (McLachlan, 1987).
Moreover, one could investigate bootstrapping for developing certain goodness-of-fit tests of
our proposed model, some of which have appealing asymptotic properties (Babu and Rao,
2004).

Another possibility is to consider more flexibility to our general model. For example,
one might assume something other than Gaussian components for the mixture structure used
in this paper to achieve greater flexibility in the modeling process. Moreover, modifications
to Algorithm 1 could be investigated to handle different assumptions on the measurement
error δi. For example, one obvious setting is where the ηi are unknown, which is likely
to be the more common situation encountered in practice. Another possibility is that the
measurement error could also be conditioned on component membership ki, resulting in ηi

being replaced by ηki
in the variance in (5). However, such an assumption surely has added

identifiability issues that would require further constraints in order to perform estimation.

Another direction is how clustering can be affected by the predictor variable, which is
a limitation with our work that we briefly mentioned at the end of Section 5. In the analysis
of the PD mode data of the GRB, the predictor would be time since trigger. Expanding
our proposed mixture-of-regressions model to also incorporate such assignment dependence
would be a more flexible generalization. A cluster-weighted model could be a viable extension
to our approach as it could provide a reasonable mechanism to handle measurement errors
in both the response and predictor variables.
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