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Abstract 
 

 In this paper, we consider a system with strength X and two independent stresses Y 
and Z working on it. We derive the UMVUEs of the stress-strength reliability ξ = P[X > 
max(Y,Z)] and its variance, when X, Y and Z have independent generalized uniform 
distributions with known shape parameters.  We also discuss testing of hypothesis regarding 
ξ. A comparison of the UMVUE with the MLE has been carried out in terms of the mean 
squared error. A simulation study has also been indicated. 
 
Key Words: Generalized uniform distribution; Stress-strength reliability; UMVUE; 
Hypothesis testing. 
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1. Introduction 

 
The stress-strength model finds applicability in many areas of research, like reliability 

engineering, psychology, biometry, economics, medicine, environmental risk assessments, 
etc. The main problem is to infer about Pr[X > Y], where X denotes the strength and Y the 
stress. Estimation of Pr[X > Y] has been addressed by many authors for various distributions 
of the variables. Some studies along this line are due to Reiser and Guttman (1988), Ivshin 
(1996), Ali et al. (2005), Pal et al. (2005), Ng (2006), Krishnamoorthy et al. (2007), Kundu 
and Raqab (2009), Ventura and Racugno (2011), Baklizi (2014), Gunasekera (2015). 
 

In real life situations, a system may have to withstand two or more stresses on it. For 
example, tension, compression, shear, bending, and torsion are the stresses on the wings, 
fuselage, and landing gear of an aircraft.  In such situations, the stress-strength reliability will 
be defined by the probability that the strength of the system is more than the maximum of the 
stresses acting on it. There are very few studies relating to estimation of this reliability. Rinco 
(1983) initiated a study on the estimation of Pr[Yp > max(Y1, Y2, · · · , Yp−1)] when the random 
variables Y1, …, Yp  are independent following exponential distributions with unequal location 
parameters and equal scale parameters, and suggested an estimator. Gupta and Gupta (1988) 
derived the MLE, MVUE and Bayes estimator of the same for the case of p = 2. They carried 
out simulation studies to compare these estimators. Karaday et al. (2011) investigated the 
MLE of stress-strength reliability, Pr[max(Y1,Y2) < X], when a component with strength X 
following a Gamma distribution is exposed to two independent stresses Y1,Y2 having 
exponential distributions with different parameters. Kundu (2017) estimated the reliability 
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function R = Pr[Y3 > max(Y1, Y2)], when Y1, Y2 and Y3 are independent exponential variables 
with unknown location parameters. She derived several estimators of R, and compared their 
performance based on their risks under different loss functions. Park (2010) discussed 
estimation of reliability in a load sharing system. 
 
 In this paper, we find the UMVU estimator of the stress-strength reliability Pr[X >  
max(Y, Z)], where the strength X and the stresses Y and Z are independently distributed, each 
having a generalized uniform distribution. Force of water flow, stress on venting valve, etc. 
may have generalized uniform distributions. 
 
 A generalized uniform (GU) distribution is defined by the density f(x) and cumulative 
distribution function F(x) as follows: 
 

   

 
where (see Tiwari et al., 1996). The parameters a and q are, respectively, the 
shape and scale parameters of the distribution. We may write the distribution as GU(α, θ). 
  
 We also find the UMVU estimator of the variance of the UMVU estimator of Pr[X >  
max(Y, Z)]. We further propose a test for the stress-strength reliability, which is uniformly 
most powerful within the class of tests based on complete sufficient statistics. 
 
2. Stress-Strength Reliability 

 
Consider a system with strength X, which follows the GU(α1, θ1) distribution, given by 

 

                    (1) 

 
Suppose there are two independent stresses Y and Z working on the system, which are 

distributed as GU(α2, θ2) and GU(α3, θ3), respectively. The system functions as long as it can 
withstand the two stresses.  

 Suppose θ2 = θ3 = θ, say. Let,  

 
 The stress-strength reliability of the system is then given by 
 
  x = Pr[X > max(Y, Z)] = g(r), say, where 
  

 g(r )= ,  if  

             

                   
(2)

 
 
Clearly, x is a monotone function of r. 
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Let us assume that α1, α2 and α3 are known, but θ1 and θ are unknown. 

 
3. MVUE of x 
 

Consider independent random sample  and 
of sizes n, m and r respectively, from the distributions of X, Y and Z. The 

statistic 
 

                     (3) 

 
is an unbiased estimator of x. 
  

Let and be 
the ordered observations in the samples mentioned above. Then, is a complete sufficient 
statistic for q1. The following lemma indicates the complete sufficient statistic of q . 
 
Lemma 1: (i) W = max( , ) is a complete sufficient statistic for q . 

                (ii) (and also ) is distributed independently of q. 

 
Proof: (i)We have 

 

since Y(m) and  Z(r) are independently distributed. 
    
 Hence, W~ GU( , q). 
 
 Now, for any function h(w) of w, 
 

  

 Þ  = 0.                              (4) 

Differentiating (4) with respect to θ gives h(q) = 0 for allq, which implies h(w) = 0, for 
 Hence, W is a complete statistic. 

 
The sufficiency part follows easily from Neyman-Fisher Factorization Theorem, by 

considering the joint distribution of ( ) and ( ).  
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(ii) Since Y1 ~ GU(a2,q) and Z1 ~ GU(a3,q), we have GU(a2,1) and GU(a3,1),  

which are independent of q. Similarly, , which is 

independent of q.Hence, and are distributed independently of q. 

           (Proved)
  

Using Lehmann-Scheffé Theorem, the UMVUE of xis, therefore, given by 
 

 

where  

  
Clearly, (5) is a function of only D, α1, α2 and α3, since the distributions of

 are independent of θ1 and θ. Thus, any unbiased estimator of x, which is a 

function of D will be UMVUE of x, for α1, α2 and α3 given. 
 

To find the expression of the UMVUE of x, we obtain the density function of the 
distribution of D, which comes out as  
 

 if  

   if  

where 

 
                  (6) 

 
Inspecting possible estimators of x based on D, we arrive at the following theorem: 

 
Theorem 1: The UMVU estimator of x is given by 
  
  if D ³ 1 

     = 1 – if D < 1, 
where 
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To prove the theorem, it is sufficient to show that V is an unbiased estimator of x. For r ³ 1,  
 

 

which reduces to on simplification. 

 
Similarly, for r < 1, it can be shown that V is an unbiased estimator of x. 

  
4.  UMVUE ofxk 

 

Consider k ³ 2 to be an integer. We have 
 

  

 
 if  

 if
 

 
We find the UMVUE of for k < min(n, m, r) when  are known. 

An unbiased estimator of is given by 
 

  

 
From Lehmann-Scheffé Theorem, the UMVUE of is 

 

 

which is again only a function of  Hence, an unbiased estimator of 

based on D will be the UMVUE of when  are known. 
 
Theorem 2: For positive integer k < min(n, m, r), let 
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where

 

 

Then, is the UMVUE of . 
 
Proof: For r ³ 1, 

                     (7) 

where  

 
On simplification, the second term of (7) is zero. 

 

  
Similarly, for r < 1we get Thus, Vk is an unbiased, and hence UMVU 

estimator, of . 
 

Remark: For k = 2, the UMVUE of Var( is provided min (
where V2 is given by 
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5.  Comparison with MLE of x 

The maximum likelihood estimator (MLE) of r is given by = where 

= and = are the MLEs of θ and θ1, respectively. And, the MLE of  

x is given by = g ( ). Clearly, is a biased estimator of x. To compare it with the 
UMVUE of x, a Monte Carlo simulation study has been carried out with 5000 replications. 
Without loss of generality, we set (a1, a2, a3) = (0.5, 0.25, 0.75), and compute the mean 
squared errors (MSEs) of the estimators for different settings of the parameters, which are 
shown in Table 1. 
 

Table 1: Comparison of MSEs of UMVUE and MLE of x 
 

 
(θ, θ1) 

 
Estimator 

(n,m,r) 
(5, 5, 5) (5, 10, 10) (10, 10, 10) (10, 5, 5) 

(1, 1.5) UMVUE 0.01227 0.04535 0.00245 0.00248 
MLE 0.01278 0.08158 0.00476 0.00347 

(2, 2) UMVUE 0.00981 0.01005 0.00156 0. 00241 
MLE 0.01388 0.00825 0.00451 0. 00323 

(3, 2) UMVUE 0.03371 0.03119 0.02912 0. 03433 
MLE 0.03270 0.02756 0.02691 0. 05062 

 
From Table 1 it is clear that the UMVUE does not perform uniformly better than the MLE, 
though in most situations considered, the MSE of UMVUE is lower than that of the MLE.  
 
4.  Test of x Based on D 

  
As D is the key statistic in finding the UMVUE of x,  we find the best test for H0: x = 

x0 among the class of tests based on D, when  are known. 
 

Suppose we want to test the null hypothesis H0: against Asx is 
monotone decreasing in r, this is equivalent to testing H0*:  against HA*: 
where, from (2), we have  

 if  
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Clearly is non-decreasing in d. Hence, where d* satisfies the 

size condition, i.e.,  As , we 
get 

 
                   

(8)
 

 
 

Since d* is independent of r1, W*={d | d >d*} will be the critical region of the UMP test 
of size a among all tests based on D.  
 

For any  r > r0, the power of the test is given by 
 

 
 

 

 
                  (i)                                                                                 (ii) 

Figure 1: Power curves of tests for testing H0: against for some 
combinations of (α1, α2, α3), when θ = 2, θ1 = 3 and a = 0.05 
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For testing H0: x = x0 against HA: x > x0 (or HA: x ¹ x0), which is equivalent to testing 
H0*: r = r0 against HA*: r < r0 (or HA: r ¹ r0), we proceed as above and obtain the UMP test 
of size a among all tests based on D as follows: 
 
(i) HA*: r < r0 
 

The critical region of the size a test is W* ={d | d < d*}, where 
 

 

            
And the power of the test is 

 

  

 

 
                  (i)                                                                                 (ii) 

Figure 2: Power curves of tests for testing H0: against for some 
combinations of (α1, α2, α3), when θ = 2, θ1 = 3 and a = 0.05 
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                  (i)                                                                                 (ii) 

Figure 3: Power curves of tests for testing H0: against for some 
combinations of (α1, α2, α3), when θ = 2, θ1 = 3 and a = 0.05 
 
Figures 2 and 3 show that the one-sided tests are unbiased. But Figure 3 indicates that the 
suggested two-sided test is not unbiased. However, actual calculation shows that the power 
falls very slightly below the level of significance for some alternative values of r, so that the 
test may be regarded as an almost unbiased test.  
 
6.  A Simulation Study 
 

Consider X ~ GU(1, 3), Y ~ GU(1, 2) and Z ~ GU(2, 2). To obtain the UMVUE of x, 
random samples of sizes m = n = r = 20 are taken on X, Y and Z respectively. The sample 
observations are as follows: 

 
Variable Sample observations 

X 2.1207     2.5148 1.6567 2.9090 2.1738 2.4589 1.2106 0.3185 1.6929 2.9582 
 

0.8061 2.4919 1.6372 2.8557 2.8237 2.9984 2.9964 0.9302 2.8248 0.1385 
 

Y 1.3415 1.7143 1.0931 1.9151 1.9157 1.0229 0.8568 0.8378 1.6839 1.5374 
 

1.3346 1.3565 0.1223 1.7003 0.1179 1.9553 1.7329 1.9037 1.2483 0.9266 
 

Z 1.1165 1.3229 1.2098 1.1777 1.8805 1.9025 1.8780 1.7501 1.9573 1.7706 
 

1.4741 1.9629 1.6615 1.4704 1.7707 1.8960 1.5299 1.6479 0.5454 0.9176 
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The UMVUE of the stress-strength reliability x (= 0.8589 ) is V = 0.8729, 

and the UMVUE of its variance is given by  = 0.0267.  
 

Suppose we want to test the hypothesis H0:  against HA:x < 0.5. The size 0.05 
UMP test rejects H0 if observed D > 0.8942. For the given samples, the observed D is 0.6546. 
Hence, H0 is accepted. 
 
7.  Discussion 
 

The paper studies the UMVU estimator of the stress-strength reliability and its variance 
when there are two independent stresses acting on a system. The strength of the system and 
the stresses are assumed to be independent of one another, and follow generalized uniform 
distributions with known shape parameters, but unknown scale parameters. The UMVU 
estimator is obtained as a function of the ratio of the complete sufficient statistics of the scale 
parameters. Tests regarding the stress-strength reliability have been discussed, and the UMP 
test has been obtained among those based on this ratio. The study has been carried out 
assuming the scale parameters of the stress distributions to be equal. A natural extension 
would, therefore, be to assume the scale parameters to be completely unknown. Further, it 
would be interesting to extend the problem to the case of p (> 2) stresses. 
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