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Abstract
This article introduces the Singh Maddala Dagum distribution as the sum of the quan-

tile functions of the Singh-Maddala and Dagum distributions. The distributional properties,
income inequality measures, and poverty measures of this distribution are derived. Poverty
measures such as the poverty gap ratio and the Foster-Greer-Thorbecke measure were con-
verted to quantile forms. The least squares method is used to estimate the parameters of
the proposed distribution, and the model is applied to two real datasets.
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1. Introduction

The two equivalent techniques for modeling and analyzing statistical data are by using
the distribution functions and quantile functions. The quantile function for a real-valued and
continuous random variable X with distribution function F (x) is given as

Q(u) = F−1(u) = inf {x : F (x) ≥ u} , 0 ≤ u ≤ 1.

Even though Galton (1875) first proposed the formal concept of quantiles, the work of
Hastings et al. (1947) provided a notable advancement in depicting quantile functions to
represent distributions. Parzen’s (1979) paper and Tukey’s (1977) research on exploratory
data analysis stimulated the development of the quantile functions as a vital tool in statistical
analysis instead of the distribution functions.

The quantile function holds a number of characteristics that the distribution function
does not have. In particular, two quantile functions added together and two positive quan-
tile functions multiplied together are again quantile functions. Also, 1

Q(1−u) is the quantile
function of 1

X
, if Q(u) is the quantile function of X. For a comprehensive review of this

concept, one can refer to Nair et al. (2013), Gilchrist (2000), Sankaran and Dileep Kumar
(2018), and the references therein.
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Tarsitano (2004) used a general form of the Tukey lambda family of distributions
proposed by Ramberg and Schmeiser (1972), to provide a good start for quantile-based
income modeling. However, the model put forth by Tarsitano (2004) is not valid throughout
the parametric space. To solve this issue, Haritha et al. (2007) utilized the four-parameter
generalized lambda distribution proposed by Freimer et al. (1988) for income modeling.
Later, using the quantile function method, the Zenga measure and other measures of income
inequality were examined by Sreelakshmi and Nair (2014).

The objective of this paper is to introduce a new quantile function that is useful
for the analysis of income data. Since Singh-Maddala (SM) and Dagum distributions are
adaptable and frequently used in income modeling, we propose the Singh Maddala Dagum
(SMD) distribution derived from the sum of the quantile functions of the two models.

Singh and Maddala introduced the SM distribution in 1975 and refined it in 1976,
has received special attention among income distributions. The SM distribution is a special
case of the generalized beta 2 (GB2) distribution and is known as Burr XII or simply Burr
distribution. For a detailed study on the SM distribution, one could refer to Kleiber and
Kotz (2003),Shahzad and Asghar (2013b), and Kumar (2017). The distribution and quantile
functions of the SM distribution are given by

G(x) = 1 −
[
1 +

(
x

b

)a]−q

, x > 0, (1)

and
Q1(u) = b

[
(1 − u)− 1

q − 1
] 1

a
, 0 < u < 1, (2)

where all three parameters a, b, q are positive.

Dagum distribution proposed by Dagum (1977) is also a special case of GB2 distribu-
tion and is known as Burr III distribution. Dagum distribution has numerous applications
in the fields of reliability, meteorology, quality control, insurance, business failure data, and
income modeling. A detailed discussion of the Dagum distribution can be found in Kleiber
and Kotz (2003) and Shahzad and Asghar (2013a). Using the SM and Dagum distributions
Saulo et al. (2023) proposed parametric quantile regressions. The distribution and quantile
functions of the Dagum distribution are given by

H(x) =
[
1 +

(
x

b

)−a
]−p

, x > 0, (3)

and
Q2(u) = b

[
u− 1

p − 1
]− 1

a
, 0 < u < 1, (4)

where all three parameters a, b, p are positive.

The remaining portion of the article is structured as follows. We define SMD distri-
bution and its basic aspects in Section 2. Section 3 deals with some popular distributions
that belong to the proposed class or that result from pertinent transformations on the pro-
posed quantile function. Section 4 covers the distributional properties, such as skewness,
kurtosis, L-moments, order statistics, etc. Section 5 discusses the major income inequalities
and poverty measures of the proposed class. The inference method and its application to
real data are carried out in Section 6. Overall findings from the study are given in the final
Section 7.
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2. Singh Maddala Dagum (SMD) quantile function

If X and Y are two non-negative random variables with quantile functions Q1(u) and
Q2(u) respectively. Then

Q(u) = Q1(u) +Q2(u),

is again a quantile function. Likewise, the sum of two quantile density functions results in a
quantile density function. Now we define a new quantile function

Q(u) = b

[(
(1 − u)− 1

q − 1
) 1

a +
(
u− 1

p − 1
)− 1

a

]
, 0 < u < 1, a, b, p, q > 0, (5)

which is the sum of quantile functions in (2) and (4). The proposed class of distribution is
known as SMD distribution and its support is (0,∞). The quantile density function of the
SMD distribution is

q(u) = dQ(u)
du

= b

(1 − u)− 1
q

−1
(
(1 − u)− 1

q − 1
) 1

a
−1

aq
+
u− 1

p
−1
(
u− 1

p − 1
)− 1

a
−1

ap

 .
The density and distribution functions are not available in closed form for the family of
distributions given in (5). However, these can be computed by numerical inversion of the
quantile function. In terms of the distribution function, the density function f(x) of the
proposed class can be written as

f(x) = 1
b

 apq F (x)
1
p

+1(1 − F (x))
1
q

+1

pF (x)
1
p

+1[(1 − F (x))− 1
q − 1] 1

a
−1 + q(1 − F (x))

1
q

+1(F (x)− 1
p − 1)− 1

a
−1

 . (6)

The density function is plotted for various parameter combinations and is given in Figure 1.
For various parameter values, it can be seen that the family includes decreasing, unimodal,
positive, and negatively skewed models.

3. Members of the family

We can obtain several popular distributions from the suggested model (5) for various
parameter values and by utilizing some transformations given in Gilchrist (2000).
Case 1. b > 0, q > 0, a = 1 and p → 0
The quantile function of the suggested class tends to the Lomax distribution and is given as

Q(u) = b
[
(1 − u)− 1

q − 1
]
. (7)

Case 2. b > 0, a > 0, q = 1 and p → 0
The quantile function of the suggested class tends to the Fisk distribution and is given as

Q(u) = b
[
(1 − u)−1 − 1

] 1
a . (8)
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Figure 1: Plots of density function for different values of parameters

Case 3. b > 0, a = q and p → 0
The quantile function of the suggested class tends to the Paralogistic distribution and is
given as

Q(u) = b
[
(1 − u)− 1

a − 1
] 1

a
. (9)

On applying reciprocal transformation on (9), we get the inverse Paralogistic distribution
with quantile function

Q(u) = 1
Q(1 − u) = k

(
u− 1

a − 1
)− 1

a ,

where k = 1
b

and a are the parameters. Further details on paralogistic and inverse paralo-
gistic distributions can be found in Klugman et al. (2019).

The following theorems give the relationships between the random variables repre-
senting the SM, SMD, and Dagum distributions.

Theorem 1: If V ∼ SM(a, b, q) then the random variable,

U = V + b

{[
1 −

(
1 +

(
V
b

)a)−q
]− 1

p

− 1
}− 1

a

has SMD(a, b, p, q) distribution.

Proof:

Let S and R represent two random variables with distribution functions FS(x) and
FR(x) and quantile functions QS(u) and QR(u) respectively. Assume Q∗(u) = QS(u) +
QR(u), then the random variable that corresponds to the quantile function Q∗(u) is S +
QR (FS (S)) or R +QS (FR (R)) (Sankaran et al., 2016).

Let V ∼ SM(a, b, q) and W ∼ Dagum(a, b, p); then V + QW (FV (V )) has SMD(a, b, p, q)
distribution by above result.
We have, QW (u) = b

(
u− 1

p − 1
)− 1

a and FV (V ) = 1 −
[
1 +

(
V
b

)a]−q
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Therefore, V + QW (FV (V )) = V + b

{[
1 −

(
1 +

(
V
b

)a)−q
]− 1

p

− 1
}− 1

a

has SMD(a, b, p, q)

distribution.

Theorem 2: If W ∼ Dagum(a, b, p), then the random variable,

U = W + b


[
1 −

(
1 +

(
W
b

)−a
)−p

]− 1
q

− 1


1
a

has SMD(a, b, p, q) distribution.

Proof: The proof is omitted since it is similar to that of Theorem 1.

4. Distributional characteristics

The use of quantile functions reduces the effort needed to describe a distribution
through its moments. Hence it is common in statistical analysis to use quantile-based mea-
surements of distributional features like location, dispersion, skewness, and kurtosis. These
measurements can be used to estimate the model’s parameters by matching population char-
acteristics with corresponding sample characteristics.

4.1. Measures of location, spread and shape

The rth order traditional moment is given as

E(Xr) =
ˆ 1

0
(Q(u))rdu.

In particular, the mean of the SMD distribution is

µ = b

Γ
(
1 + 1

a

)
Γ
(
q − 1

a

)
Γ (q) +

Γ
(
p+ 1

a

)
Γ
(
1 − 1

a

)
Γ (p)

 .
For the model given in (5), the median (M) is

M = Q(0.5)

= b

[(
2

1
q − 1

) 1
a +

(
2

1
p − 1

)− 1
a

]
. (10)

The interquartile range (IQR) is

IQR = Q (0.75) −Q (0.25)

= b

{ [
(0.25)− 1

q − 1
] 1

a −
[
(0.75)− 1

q − 1
] 1

a

+
[
(0.75)− 1

p − 1
]− 1

a −
[
(0.25)− 1

p − 1
]− 1

a

}
. (11)
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Galton’s skewness (S) and Moors kurtosis (T) measures are given in (12) and (13) respec-
tively.

S = Q (0.25) +Q (0.75) − 2M
IQR

= S1 + S2[
(0.25)− 1

q − 1
] 1

a −
[
(0.75)− 1

q − 1
] 1

a +
[
(0.75)− 1

p − 1
]− 1

a −
[
(0.25)− 1

p − 1
]− 1

a

, (12)

where S1 =
[
(0.25)− 1

q − 1
] 1

a +
[
(0.75)− 1

q − 1
] 1

a − 2
[
2

1
q − 1

] 1
a ,

and S2 =
[
(0.25)− 1

p − 1
]− 1

a +
[
(0.75)− 1

p − 1
]− 1

a − 2
[
2

1
p − 1

]− 1
a .

T = Q (0.875) −Q (0.625) +Q (0.375) −Q (0.125)
IQR

= T1 + T2[
(0.25)− 1

q − 1
] 1

a −
[
(0.75)− 1

q − 1
] 1

a +
[
(0.75)− 1

p − 1
]− 1

a −
[
(0.25)− 1

p − 1
]− 1

a

, (13)

where T1 =
[
(0.125)− 1

q − 1
] 1

a −
[
(0.375)− 1

q − 1
] 1

a +
[
(0.625)− 1

q − 1
] 1

a −
[
(0.875)− 1

q − 1
] 1

a ,

and T2 =
[
(0.875)− 1

p − 1
]− 1

a −
[
(0.625)− 1

p − 1
]− 1

a +
[
(0.375)− 1

p − 1
]− 1

a −
[
(0.125)− 1

p − 1
]− 1

a .

4.2. L-moments

The L-moments are alternatives to the classical moments and are the expected values
of linear functions of order statistics. The work on order statistics by Sillitto (1969) and
Greenwood et al. (1979) laid the foundation for L-moments, but Hosking (1990) developed a
comprehensive theory on L-moments. These moments are resistant to outliers and typically
have reduced sample variances. Like classical moments, L-moments can be used to identify
distributions, summarise measures of probability distributions, and fit models to data. The
rth L-moment is represented as

Lr =
ˆ 1

0

r−1∑
k=0

(−1)r−1−k

(
r − 1
k

)(
r − 1 + k

k

)
ukQ(u)du.

The first four L-moments of SMD distributions are

L1 = b [A1O1 + A2R1] ,

L2 = b [A1 (O1 −O2) − A2 (R1 −R2)] ,

L3 = b [A1 (O1 − 3O2 + 2O3) + A2 (R1 − 3R2 + 2R3)] ,

L4 = b [A1 (O1 − 6O2 + 10O3 − 5O4) − A2 (R1 − 6R2 + 10R3 − 5R4)] ,
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where A1 = Γ
(
1 + 1

a

)
, A2 = Γ

(
1 − 1

a

)
, Oi = Γ(iq− 1

a)
Γ(iq) , Ri = Γ(ip+ 1

a)
Γ(ip) and i = 1, 2, 3, 4.

The L-coefficient of variation (τ2), which is an alternative to the coefficient of variation based
on traditional moments is

τ2 = L2
L1

= A1 (O1 −O2) − A2 (R1 −R2)
A1O1 + A2R1

. (14)

The L-coefficient of skewness (τ3) and L-coefficient kurtosis (τ4) of the SMD distribution, is
given in (15) and (16).

τ3 = L3
L2

= A1 (O1 − 3O2 + 2O3) + A2 (R1 − 3R2 + 2R3)
A1 (O1 −O2) − A2 (R1 −R2)

. (15)

τ4 = L4
L2

= A1 (O1 − 6O2 + 10O3 − 5O4) − A2 (R1 − 6R2 + 10R3 − 5R4)
A1 (O1 −O2) − A2 (R1 −R2)

. (16)

The plots of L-coefficients of skewness (τ3) and kurtosis (τ4) for different parameter
values are given in Figures 2, 3 and 4. In Figure 2, the curve of τ3 decreases with a for fixed
value of q and p but the curve of τ4 decreases with a for fixed value of q and p, when p > 1.
In Figure 3, the curves of τ3 and τ4 increase with p for fixed values of a and q when q ≥ 1.
The curves of τ3 and τ4 for fixed values of a and p and for varying q are given in Figure 4.
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Figure 2: Plot of L-coefficients of skewness and kurtosis for particular values of
q and p as a function of the parameter a

4.3. Order statistics

In a random sample of size n, let Xr:n represent the rth order statistic. Then, Xr:n
has density function fr(x) and is given as

fr(x) = 1
β(r, n− r + 1)f(x)F (x)r−1(1 − F (x))n−r.
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Figure 3: Plot of L-coefficients of skewness and kurtosis for particular values of
a and q as a function of the parameter p
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Figure 4: Plot of L-coefficients of skewness and kurtosis for particular values of
a and p as a function of the parameter q

From (6) we get

fr(x) = apq

bβ(r, n− r + 1)
F (x)r+ 1

p (1 − F (x))n+ 1
q

+1−r

pF (x)
1
p

+1
[
(1 − F (x))− 1

q − 1
] 1

a
−1

+ q(1 − F (x))
1
q

+1
(
F (x)− 1

p − 1
)− 1

a
−1
.

Thus

E(Xr:n) = apq

bβ(r, n− r + 1) ×
ˆ ∞

0

xF (x)r+ 1
p (1 − F (x))n+ 1

q
+1−r

pF (x)
1
p

+1
[
(1 − F (x))− 1

q − 1
] 1

a
−1

+ q(1 − F (x))
1
q

+1
(
F (x)− 1

p − 1
)− 1

a
−1
dx.

In quantile terms, the above expression can be written as

E(Xr:n) = apq

bβ(r, n− r + 1)

ˆ 1

0

Q(u)ur+ 1
p (1 − u)n+ 1

q
+1−r

p u
1
p

+1
(
(1 − u)− 1

q − 1
) 1

a
−1

+ q(1 − u)
1
q

+1
(
u− 1

p − 1
)− 1

a
−1
du.
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For SMD distribution the first-order statistic X1:n has a quantile function

Q(1) (u) = Q
[
1 − (1 − u)

1
n

]
= b

[(1 − u)− 1
nq − 1

] 1
a +

[(
1 − (1 − u)

1
n

)− 1
p − 1

]− 1
a

 , (17)

and the nth order statistic Xn:n has the quantile function

Q(n) (u) = Q
(
u

1
n

)
= b


[(

1 − u
1
n

)− 1
q − 1

] 1
a

+
[
u− 1

np − 1
]− 1

a

 . (18)

5. Income inequality and poverty measures

In statistical and economics literature, the study of income inequality and poverty
measures are always popular and favorite subjects. A measure of income inequality is in-
tended to give an index, that can reduce the differences in income that exist among the
members of a group, whereas a poverty measure evaluates the severity of poverty experi-
enced by those whose income is below a pre-determined poverty level.

5.1. Income inequality measures

The Lorenz curve proposed by Lorenz (1905) is a flexible tool for reporting and
graphically depicting income inequality. When the income is arranged in increasing order
of magnitude, the points (u, L(u)) define a Lorenz curve, where u denotes the cumulative
frequency of income receiving units and L(u) denotes the cumulative frequency of income.
Gastwirth (1971) gave a general definition of Lorenz curve as

L(u) = 1
µ

ˆ u

0
Q(p)dp,

where µ =
´ 1

0 Q(p)dp. For SMD distribution the Lorenz curve is

L(u) =
qβ

1−(1−u)
1
q

(
1 + 1

a
, q − 1

a

)
+ pβ

u
1
p

(
p+ 1

a
, 1 − 1

a

)
qβ
(
1 + 1

a
, q − 1

a

)
+ pβ

(
p+ 1

a
, 1 − 1

a

) , (19)

where β∗(., .), is an incomplete beta function.

The Gini index is a well known income inequality proposed by Gini (1914) and is
defined as two times the area between the Lorenz curve and the egalitarian line. The Gini
index for the class of distributions in (5) is

G = 1 − 2
ˆ 1

0
L(u)du

= 1 − 2
qβ

(
1 + 1

a
, 2q − 1

a

)
+ pβ

(
p+ 1

a
, 1 − 1

a

)
− pβ

(
2p+ 1

a
, 1 − 1

a

)
qβ
(
1 + 1

a
, q − 1

a

)
+ pβ

(
p+ 1

a
, 1 − 1

a

)
 . (20)
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Pietra (1932) developed the Pietra index which measures the maximal vertical dis-
tance between the Lorenz curve and the line of equality. The Pietra index and relative mean
deviation in quantile terms are

P = ϑ1

2µ,

τ2 = ϑ1

µ
,

where ϑ1 =
´ 1

0 |Q(u) − Q(u0)|du and µ = Q(u0) for some 0 < u0 < 1. Further, by solving
for u in the equation µ = Q(u), u0 can be obtained, and µ represents the mean of the
distribution.
Now, the Pietra index of the SMD distribution is given as

P =
u0Q (u0) − b

[
qβ

1−(1−u0)
1
q

(
1 + 1

a
, q − 1

a

)
+ pβ

u
1
p
0

(
p+ 1

a
, 1 − 1

a

)]
µ

. (21)

The Bonferroni curve proposed by Bonferroni (1930) is used to quantify the variability
in income distribution. For an absolutely continuous and non-negative random variable, the
Bonferroni curve in quantile terms is given as

BF (u) = L(u)
u

= 1
uµ

ˆ u

0
Q(p)dp.

For SMD distribution the Bonferroni curve is

BF (u) =
qβ

1−(1−u)
1
q

(
1 + 1

a
, q − 1

a

)
+ pβ

u
1
p

(
p+ 1

a
, 1 − 1

a

)
u
[
qβ
(
1 + 1

a
, q − 1

a

)
+ pβ

(
p+ 1

a
, 1 − 1

a

)] . (22)

A more realistic curve was introduced by Zenga (2007) based on the conditional
expectation of the concerned distribution. The Zenga curve in quantile terms is

Z(u) = 1 − (1 − u)
u

´ u

0 Q(p)dp´ 1
u
Q(p)dp

.

For SMD distribution the Zenga curve is given as

Z (u) = q z1 + p z2
q z3 + p z4

, (23)

where

z1 =
[
β
(

1 + 1
a
, q − 1

a

)
− u−1β

1−(1−u)
1
q

(
1 + 1

a
, q − 1

a

)]
,

z2 =
[
β
(
p+ 1

a
, 1 − 1

a

)
− u−1β

u
1
p

(
p+ 1

a
, 1 − 1

a

)]
,

z3 =
[
β
(

1 + 1
a
, q − 1

a

)
− β

1−(1−u)
1
q

(
1 + 1

a
, q − 1

a

)]
,

z4 =
[
β
(
p+ 1

a
, 1 − 1

a

)
− β

u
1
p

(
p+ 1

a
, 1 − 1

a

)]
.
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The Lorenz, Bonferroni, and Zenga curves of SMD distribution are given in Figure
5, 6, and 7 respectively.

The Frigyes measures developed by Éltetö and Frigyes (1968) have clear economic
interpretations and are given as

φ = m

m1
, ψ = m2

m1
, ω = m2

m
,

where m = E(X), m1 = E(X|X < m), and m2 = E(X|X ⩾ m). The measure ψ can be
considered as an inequality measure for the complete income distribution, whereas φ and ω
denote the inequalities of the two respective portions of the distribution below and above
the mean.
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Figure 5: Graph of SMD Lorenz curve
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Figure 6: Graph of SMD Bonferroni curve



332 ASHLIN VARKEY AND HARITHA N. HARIDAS [Vol. 22, No. 1

a=3,p=.1,q=5

a=2,p=5,q=0.6

a=4,p=0.5,q=0.6

a=4,p=2,q=2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

u

Z
(u
)

Figure 7: Graph of SMD Zenga curve

In quantile terms, these measures are given as

φ = u0Q(u0)´ u0
0 Q(u)du ,

ψ = u0

1 − u0

´ 1
u0
Q(u)du´ u0

0 Q(u)du ,

ω =
´ 1

u0
Q(u)du

(1 − u0)Q(u0)
.

For SMD distribution these measures are

φ =
u0

[(
(1 − u0)− 1

q − 1
) 1

a +
(
u

− 1
p

0 − 1
)− 1

a

]
qβ

1−(1−u0)
1
q

(
1 + 1

a
, q − 1

a

)
+ pβ

u
1
p
0

(
p+ 1

a
, 1 − 1

a

) , (24)

ψ = u0

(1 − u0)

 qβ
(
1 + 1

a
, q − 1

a

)
+ pβ

(
p+ 1

a
, 1 − 1

a

)
qβ

1−(1−u0)
1
q

(
1 + 1

a
, q − 1

a

)
+ pβ

u
1
p
0

(
p+ 1

a
, 1 − 1

a

) − 1

 , (25)

ω = qw1 + pw2

(1 − u0)
[(

(1 − u0)− 1
q − 1

) 1
a +

(
u

− 1
p

0 − 1
)− 1

a

] . (26)

where

w1 =
[
β
(

1 + 1
a
, q − 1

a

)
− β

1−(1−u0)
1
q

(
1 + 1

a
, q − 1

a

)]
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[
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, 1 − 1
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)
− β

u
1
p
0

(
p+ 1

a
, 1 − 1

a

)]
.
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5.2. Poverty measures

Measures of poverty are primarily used to track socioeconomic development and set
goals for success or failure. Most of the poverty measurements can be stated as the average
deprivation faced by the poor. If the function D(z, y) describes the level of deprivation
experienced by an individual whose income y is less than the poverty line z.
Hence

P = Ey [D (z, y) I (y < z)]

=
ˆ z

0
D (z, y) f(y)dy, (27)

where I (y < z) represents an indicator function which takes value 1 when y < z and 0
otherwise, and f(y) represents probability density function. For a detailed reading on poverty
measures, one can refer to Kakwani (1980) and Morduch (2008). Chotikapanich et al. (2013)
derived poverty measures from generalized beta distribution and examined how poverty has
changed in south and southeast Asian nations.

The headcount ratio is the most basic and widely used measure of poverty, it repre-
sents the proportion of the population who are poor and is denoted by H. By definition

H = Np

N
,

where Np and N denotes the number of poor and total population respectively. That is, the
head-count ratio ignores the severity of the deprivation experienced by the poor.

A number of alternatives to the head-count ratio have been proposed in order to
establish a measure that takes into account both the proportion of poor as well as the
intensity of poverty among those who are characterized as poor. The poverty gap ratio
calculates the amount of money by which each person falls below the poverty line. It can be
obtained from (27), by setting D (z, y) =

(
z−y

z

)
. Thus

PG =
ˆ z

0
D (z, y) f(y)dy

=
ˆ z

0

(
z − y

z

)
f(y)dy. (28)

Using the transformation, F (z) = u and F (y) = p, where 0 < u < 1 and 0 < p < 1 in (28),
we get the poverty gap ratio in quantile form and is given as

PG =
ˆ u

0

(
Q(u) −Q(p)

Q(u)

)
dp. (29)

The poverty gap ratio defined here is also known as the income gap ratio of the poor in
Haritha et al. (2007). The poverty gap ratio can be written in terms of reversed mean
residual quantile function as follows

PG = uR(u)
Q(u) ,
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where R(u) = u−1 ´ u

0 (Q(u) −Q(p)) dp. For, SMD distribution the poverty gap ratio is

PG = u−
qβ

1−(1−u)
1
q

(
1 + 1

a
, q − 1

a

)
+ pβ

u
1
p

(
p+ 1

a
, 1 − 1

a

)
(
(1 − u)− 1

q − 1
) 1

a +
(
u− 1

p − 1
)− 1

a

. (30)

The Foster-Greer-Thorbecke (FGT) measure proposed by Foster et al. (1984) gener-
alizes the poverty gap ratio. Here, D (z, y) =

(
z−y

z

)α
and the measure is

FGT (α) =
ˆ z

0

(
z − y

z

)α

f(y)dy,

where α ≥ 1 is the inequality aversion parameter. The lower tail of the income distribution
receives more emphasis as the value of α increases. When α = 1, the FGT measure becomes
equivalent to the poverty gap ratio. The quantile version of the FGT measure can be obtained
by using the same transformation in the poverty gap ratio and is given in (31). Moreover, it
does not have a closed form expression for the SMD distribution.

FGT (α) =
ˆ u

0

(
Q(u) −Q(p)

Q(u)

)α

dp. (31)

Watts (1968) introduced the first distribution-sensitive poverty index called Watt’s
index. This index satisfies the focus, monotonicity, and transfer axioms of poverty and in
quantile terms, it is given as

W =
ˆ u

0
ln
(
Q(u)
Q(p)

)
dp. (32)

Kakwani (1999) has proposed a measure that is closely related to the Watts index and is
given by, K∗ = 1 − e−W . For SMD distribution these indices do not have simple algebraic
expressions.

Sen (1976) put forward a measure that attempted to incorporate the effects of the
number of poor, the severity of their poverty, and poverty distribution within the group. In
quantile terms, it is

S = u

(
u∆ρ1(u) + ρ2(u)
u∆ρ1(u) + ρ1(u)

)
,

where ρ1(u) = 1
u

´ u

0 Q(p)dp, ρ2(u) = 1
u2

´ u

0 (2p− u)Q(p)dp, and ∆ ρ1 denotes derivative of ρ1
with respect to u. For SMD distribution ρ1(u) and ρ2(u) are given as

ρ1(u) = b

u

[
qβ

1−(1−u)
1
q

(
1 + 1

a
, q − 1

a

)
+ pβ

u
1
p

(
p+ 1

a
, 1 − 1

a

)]
,

ρ2(u) = b

u2

(2 − u)qβ
1−(1−u)

1
q

(
1 + 1

a
, q − 1

a

)
− 2qβ

1−(1−u)
1
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(
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a
, 2q − 1

a
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+ 2pβ
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1
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(
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a
, 1 − 1
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)
− upβ
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1
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(
p+ 1

a
, 1 − 1

a

).
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The Gini index for the poor has the quantile form

η(u) = 1 − 2
ρ1(u)

ˆ u

0
Q(p)

(
u− p

u2

)
dp

= ρ2(u)
ρ1(u) . (33)

Now, for SMD distribution the above index can be written as

η(u) = 2
u

× A

B
− 1, (34)

where

A = qβ
1−(1−u)

1
q

(
1 + 1

a
, q − 1

a

)
− qβ

1−(1−u)
1
q

(
1 + 1

a
, 2q − 1

a

)
+ pβ

u
1
p

(
2p+ 1

a
, 1 − 1

a

)
,

B = qβ
1−(1−u)

1
q

(
1 + 1

a
, q − 1

a

)
+ pβ

u
1
p

(
p+ 1

a
, 1 − 1

a

)
.

6. Inference and applications

Here, we estimate the parameters of the family of distributions (5) and use real data
sets to assess the model’s effectiveness and applications.

The parameters of the distribution in a quantile setup can be estimated using a va-
riety of methods. The L-moments method, the percentile approach, the minimum absolute
deviation method, the least squares method, and the maximum likelihood method are fre-
quently used techniques. We employ the method of least squares to estimate the parameters
of the model (5). In order to estimate the generalized Tukey lambda distribution, Öztürk
and Dale (1985) utilized this estimation method. Hankin and Lee (2006) also used this
method to estimate the parameters of the Davies distribution. The least square estimation
is illustrated as follows.

Let X(i) denote the ith order statistic from a random sample of size n from SMD
distribution, and u(i) be the ith order statistic of the associated uniformly distributed random
variable, u = F (X). In the ideal situation, both the random variables X(i) and Q(u(i), δ̂)
have the same distribution, where δ̂ is the estimator of the model’s parameter vector. In this
estimation technique, we estimate δ = (a, b, p, q) that minimizes ζ(δ)

ζ(δ) =
n∑

i=1

(
X(i) −Q(u(i), δ)

)2
.

6.1. Real data analysis

The applicability of the model (5) can be demonstrated with the aid of two real
income datasets. The first data is taken from https://www.bea.gov, which deals with the
per capita personal income of 46 counties in South Carolina State, 2018. Using midyear
population estimates from the Census Bureau, per capita personal income was calculated.
We use the least squares method discussed above to estimate the parameters. The estimate
is based on the parameter value that minimizes the residual sum of squares and is obtained
as

https://www.bea.gov
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â = 8.2443, b̂ = 10618.9, q̂ = 2.83288, and p̂ = 1856.39.

The Q-Q plot and the chi-square test are the two goodness-of-fit criteria used here to evaluate
how well the model fits the data. The Q-Q plot given in Figure 8, shows that the fit is
satisfactory. We conducted the chi-square goodness-of-fit test and obtained the test statistic
value as 6.89418 with p-value 0.648136. Hence, the proposed model (5) fits the given dataset
reasonably well. Since the quantile functions of the SM and Dagum distributions are added
to obtain our model, we fitted the above data to these distributions, and the results are given
in Table 1. Figure 9 illustrates the histogram of the data along with the density functions for
the SM, SMD, and Dagum distributions. It is clear from the figure that the SMD distribution
fits the dataset more accurately than the other two models.
Table 1: Parameter estimates, chi-square statistic, and p-value of SM and Dagum
distributions for dataset 1

Distribution Parameter estimates Chi-square statistic p-value
SM a = 24.0223

b = 33492.8 8.66856 0.468414
q = 0.31186

Dagum a = 10.477
b = 36651.4 7.74593 0.559939
p = 1.27739
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Figure 8: Q-Q plot for the per capita personal income of counties in South
Carolina State in 2018

The second dataset is also taken from https://www.bea.gov, which deals with the
per capita personal income of 120 counties in Kentucky State, 2020. The method of least
squares is employed to estimate the parameters and is obtained as

https://www.bea.gov
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Figure 9: The densities of the SM, SMD, and Dagum distributions for the per
capita personal income of counties in South Carolina State in 2018

â = 9.46169, b̂ = 17513.9, q̂ = 3.20767, and p̂ = 27.4554.

Two goodness-of-fit methods are used to evaluate how well the model fits the data. The first
one is the Q-Q plot in Figure 10, which shows that the suggested model is appropriate for
the given data set. In addition, we perform the chi-square goodness-of-fit test and get test
statistic value 4.35791 with p-value 0.986754. This indicates the fit of SMD distribution for
the given data. The SM and Dagum distributions are also fitted to income data of Kentucky
State, and the results are given in Table 2. The histogram of the data and the density
functions for the SM, SMD, and Dagum distributions are shown in Figure 11. From the
figures and the chi-square values the SMD model appears to be better than SM and Dagum
distributions.

Table 2: Parameter estimates, chi-square statistic, and p-value of SM and Dagum
distributions for dataset 2

Distribution Parameter estimates Chi-square statistic p-value
SM a = 16.1799

b = 39576.5 7.20778 0.891129
q = 0.640004

Dagum a = 9.86976
b = 36637.5 4.49484 0.984699
p = 2.34804

7. Conclusion

In this article, we propose the quantile function known as SMD distribution by adding
the quantile functions of the SM and Dagum distributions. Several popular distributions are
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members of the proposed class of distributions. We studied the distributional properties, the
major income inequality, and the poverty measures of the proposed class. We also derived
the quantile version of poverty measures, such as the poverty gap ratio and the Foster-
Greer-Thorbecke measure. The estimation of the parameters of the model was done using
the method of least squares. The proposed class of distribution was used for the analysis of
two real income data and it gives a better fit than SM and Dagum distributions.
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Figure 10: Q-Q plot for the per capita personal income of counties in Kentucky
State in 2020
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Figure 11: The densities of the SM, SMD, and Dagum distributions for the per
capita personal income of counties in Kentucky State in 2020
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