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Abstract
Meta-analysis has become a widely used tool for evaluating the efficacy and safety of

medical interventions, offering numerous advantages and utilities. However, recent studies
have raised questions about the accuracy of commonly used moment-based meta-analytic
methods, particularly for rare binary outcomes. This issue is further complicated in studies
with heterogeneous effect sizes. Likelihood-based mixed-effects modeling provides an alterna-
tive to moment-based methods, such as inverse-variance weighted fixed- and random-effects
estimators. In this review paper, we discuss several meta-analysis methods specifically de-
signed for analyzing rare event data. We elaborate on the use of continuity correction for
studies with zero total events, taking into account study heterogeneity. The problem is mo-
tivated, and results are illustrated using a well-known meta-analysis study. By exploring
and comparing these different methodologies, researchers can gain insights into the most
appropriate approaches for analyzing rare event data in meta-analytic studies.

Key words: Conditional likelihood; Mantel-Haenszel method; The Peto method; Confidence
distribution methods; Odds ratio.
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1. Introduction

Meta-analysis is a powerful statistical tool used to combine results from multiple
studies, particularly useful for making robust inferences about rare events, which require
large sample sizes due to their low frequency (less than 0.1%). Traditional clinical trials
often lack sufficient power to draw sound conclusions about rare adverse events, such as those
associated with pharmaceutical agents. The challenge lies in incorporating studies with few
or no observed adverse events into the analysis. While fixed-effect and random-effect meta-
analyses are common, Bayesian methodologies and confidence distribution approaches offer
alternatives. Each method has unique strengths and weaknesses, and the optimal approach
for analyzing rare events remains a topic of ongoing research. We try to clarify the idea that
rare event meta analysis may end up with some studies with zero total events. However,
those studies with zero events are also informative and should be included in the analysis
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and this demands the concept of continuity correction. Data analysis of meta analysis of rare
events is developed addressing these concerns and difficulty of zero total events depending
on what type methodology is used.

Meta-analysis is a convenient statistical tool that combines results from multiple
trials and makes a robust inference regarding the parameter of our interest. To make a valid
statistical inference for a rare event requires a trial with a large sample size. Regular clinical
trials are not sufficiently powered to draw a statistically sound conclusion regarding events
that often occur at a rate of less than 0.1%. Low-frequency events are commonly encountered
in the investigation of adverse events (e.g., suicide) associated with a pharmaceutical agent
(e.g., antidepressants). A further complication arises in rare adverse event studies because
clinical trials are typically designed to assess the efficacy rather than the safety of the product.
As a result, the chance of observing a reasonable number of such adverse events in a single
trial or study is relatively low. Quite often, in such situations, not even a single adverse
event is observed in efficacy trials. Utilizing such studies meaningfully in the analysis is
the greatest challenge in the meta-analysis of rare events. Several strategies have been
proposed to make a valid decision regarding the parameters of our interest, incorporating all
available studies. However, none of those is universally accepted, and as a result, the issue
is still open. Traditional methods of meta-analysis either treat the underlying treatment
effect as a fixed parameter across multiple studies or assume individual study treatment
effect as a random sample from a hypothetical pool of treatment effects. The first form
of meta-analysis is called fixed-effect meta-analysis, and the second form is called random-
effect meta-analysis. Bayesian methodologies are also used to allow hierarchical modeling
with a greater opportunity for sensitivity analysis. Recently, the third method, based on
the concept of confidence distribution, has been put forth as an attractive alternative for
meta-analysis of rare events. For each methodology, there are several estimation techniques
with respective strengths and weaknesses. This article discusses some characteristics of rare
event studies and provides an overview of meta-analytic methods suitable for the analysis of
rare events, along with the issues pertaining to those methods.

2. Zero total event studies

A study in which no outcome event is observed is called a zero-total event study.
Studies where outcome events are observed in one arm but not in the other arm are called
zero-cell studies. Zero total event studies in rare event analysis are contentious due to their
lack of events in one or both treatment arms, but recent literature suggests they should
not be excluded, despite challenges in variance computation and continuity correction. The
ubiquitous characteristic of rare event studies is the absence of events in either one or both
treatment arms. The answers have been contentious, and inconclusive. The core of the
issue is the argument that the zero total event studies do not contribute any information
towards the estimation of the effect and, hence, are irrelevant and should be removed from
the analysis Whitehead and Whitehead (1991); Sweeting et al. (2004). However, in general, a
zero total event study with a large sample size is expected to provide stronger evidence for any
hypothesized effect compared to a smaller sample size zero total study Friedrich et al. (2007);
Liu (2012); Kuss (2014). Furthermore, recent publications are providing theoretical support
to the relevance of the zero total event studies Liu et al. (2014); Xie et al. (2014). Therefore,
zero total event studies should not be excluded. The major obstacle to the inclusion of
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zero total event studies in a traditional meta-analysis is the numerical ill-conditioning for
the computation of variance of the effect size using ratio measures. Analysts are addressing
this problem by proposing the concept of Continuity Correction, even though there is no
consensus on what exact value we should use for the continuity correction. Additional
complexity arises when a significant heterogeneity exists among studies.

Example: Zero total event studies in meta-analysis of rositaglitazone and risk of
cardiovascular events

On November 14, the Food and Drug Administration (FDA) put a “black box warn-
ing” on Rositaglitazone’s product to inform consumers of such risks. On September 23, 2010,
the FDA limited access to Rositaglitazone because of concerns about increased cardiovascu-
lar risk. The most prominent study that led to the action by the FDA was the meta-analysis
conducted by Nissen and Wolski (2007). As part of the analysis, 42 trials were selected
from the published literature, the FDA website, and a clinical trial registry maintained by
the drug manufacturer (GlaxoSmithKline). Table 1 reports the myocardial infarction (MI)
events and deaths from cardiovascular causes (CVD) that were reported in the 42 clinical
trials included in the study. Of those 42 studies, four studies (9.5%; study 20, 31, 33, and
38) are zero total event studies for MI endpoint, and 19 studies (45%; study 2–4, 6, 7, 9,
10, 12, 14, 17, 21–24, 29, 31, 36–38) are zero total event studies for CVD endpoint. Overall,
there were 86 MIs and 39 CVDs in the rosiglitazone group and 72 MIs and 39 CVDs in the
control group.

2.1. Conditional likelihood

This section explains the practical reasons for not favoring the zero total event stud-
ies, mainly because of computational difficulty under the set up of conditional likelihood.
The most compelling argument for supporting the exclusion of zero total event studies comes
from the conditional likelihood inference perspective. The conditional maximum likelihood
estimation procedure estimates the parameter of interest by maximizing conditional like-
lihood given the minimal sufficient statistics for the nuisance parameters. Consider a se-
quence of observations {xt1, xt2, . . . , xtk}, and {xc1, xc2, . . . , xck} from k studies/trials with
{nt1, nt2, . . . , ntk}, and {nc1, nc2, . . . , nck} treatment, and control group sample sizes respec-
tively. Observations from an individual study form the following 2 × 2 table given in Table
2.

For a fixed observed event total ti, only random variable in the ith table is Xi (i =
1, 2, . . . , k) (count in the upper left cell), which follows a hyper-geometric distribution. The
corresponding conditional likelihood function given Ti = ti is as follows:

Lxti|ti(θ) = Pθ(Xti = xti|Ti = ti) =

(
nti

xti

)(
nci

ti−xti

)
ψxti

li∑
ν=ui

(
nti
ν

)(
nci
ti − ν

)
ψν
, (1)

and the joint conditional likelihood function is given by the following expression:

ϕ(xt1, xt2, . . . , xtk|t1, t2, . . . , tk) =
∏
Lxti|ti(θ), (2)
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Table 1: Example data: Rositaglitazone and the risk of
cardiovascular events Nissen and Wolski (2007)

study Rosiglitazone Control
Total MI CVD Total MI CVD

1 357 2 1 176 0 0
2 391 2 0 207 1 0
3 774 1 0 185 1 0
4 213 0 0 109 1 0
5 232 1 1 116 0 0
6 43 0 0 47 1 0
7 121 1 0 124 0 0
8 110 5 3 114 2 2
9 382 1 0 384 0 0
10 284 1 0 135 0 0
11 294 0 2 302 1 1
12 563 2 0 142 0 0
13 278 2 0 279 1 1
14 418 2 0 212 0 0
15 395 2 2 198 1 0
16 203 1 1 106 1 1
17 104 1 0 99 2 0
18 212 2 1 107 0 0
19 138 3 1 139 1 0
20 196 0 1 96 0 0
21 122 0 0 120 1 0
22 175 0 0 173 1 0
23 56 1 0 58 0 0
24 39 1 0 38 0 0
25 561 0 1 276 2 0
26 116 2 2 111 3 1
27 148 1 2 143 0 0
28 231 1 1 242 0 0
29 89 1 0 88 0 0
30 168 1 1 172 0 0
31 116 0 0 61 0 0
32 1172 1 1 377 0 0
33 706 0 1 325 0 0
34 204 1 0 185 2 1
35 288 1 1 280 0 0
36 254 1 0 272 0 0
37 314 1 0 154 0 0
38 162 0 0 160 0 0
39 442 1 1 112 0 0
40 394 1 1 124 0 0
41 2635 15 12 2634 9 10
42 1456 27 2 2895 41 5
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Table 2: 2 × 2 contingency table for the ith trial/study

Event
yes no total

Treatment xti nti − xti nti
Control xci nci − xci nci
Total ti (nti + nci) − ti nti + nci

for li ≤ xti ≤ ui, where li = max(0, ti − nci), ui = min(nti, ti), and ψ = exp θ is the
odds ratio which is assumed to be the same across k studies involved in the analysis. The
value of θ that maximizes this conditional likelihood is called the conditional maximum
likelihood estimate (CMLE) for ψ. Note that Liψ(xti|ti) = 1, for zero total event studies,
does not directly contribute to the joint conditional likelihood. An asymptotic property
of CLME can be proved under a reasonable set of conditions. However, unlike the direct
maximum likelihood estimate, the CMLE, in general, is not efficient except for some special
(but important) situations, where the asymptotic variance attends the Cramer-Rao lower
bound (Andersen, 1970, see). Unfortunately, the CLME obtained from (2) is not derived
from one of those special situations and is not an efficient estimator of ψ. Thus, the most
reasonable basis for the exclusion of zero total event studies is based on a procedure that
maintains asymptotic properties and does not use all information contained in the data for
the parameter of interest. Furthermore, Xie et al. (2014) has shown conclusively that the
zero total event studies do contain information that is a function of ψ, πci, and sample sizes
ni.

The basic idea behind the derivation outlined by Xie et al. (2014) is as follows.
Suppose that Xti and Xci are independent binomial random variables following B(πti, nti),
and B(πci, nci), respectively. The full (unconditional) likelihood function is given as:

Lxt,xc(θ,πc) = Lxt,xc(πt,πc) =
k∏
i=1

(
nti
xti

)(
nci
xci

)
πxti
ti (1 − πti)nti−xtiπxci

ci (1 − πci)nci−xci . (3)

Under the assumption that the odds ratio is the same across k studies, πti and πci satisfy a
constraint {πti/(1 − πti)}/{πci/(1 − πci)} = eθ. From the likelihood principle, it follows that
the above likelihood function contains all information relevant for making an inference for
the parameter of interest. The full likelihood (3) can be rewritten as

Lxt,xc(θ,πc) = Lxt|t(θ)Dt(θ,πc), (4)

where Dt(θ,πc) = L(θ,πc)
Lx|t(θ)

. Xie et al. (2014) showed that Dt(θ,πc) is a function of both

θ and πc. Therefore, they argued that the conditional likelihood inference and full likeli-
hood inference are different, suggesting that “the conditional likelihood approach can in-
cur omission or distortion of information”. Clearly, the zero total event studies contribute∏
{i:ti=0}

(1 − πti)nti(1 − πci)nci portion of information to the full likelihood. But that portion

of information, which is also a function of both θ and πc, is omitted from conditional like-
lihood. As a result, inferences under conditional likelihood that effectively omit zero total
event studies will be weaker and less reliable.
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The conditional likelihood (1) is developed under a specific assumption that ti’s are
fixed in addition to the same assumption on nti and nci for each study. However, in general,
studies or trials that are included in meta-analysis do not have control over observed total
events. Consequently, the hypothesis testing under the assumption of fixed ti is conservative
and loses power when only the nti and nci are fixed. Thus, Xie et al. (2014) concluded that
zero total event studies do contain information on the intervention effect.

As described above, arguments for and against of excluding zero total event studies
are generally put forth by assuming a common odds ratio across studies. However, in contrast
to the conservative findings under such assumptions, simulation studies have suggested that
methods that exclude zero total event studies can have an inflated type I error rate when
odds ratios vary between studies Bhaumik et al. (2012). Furthermore, popular methods
used in practice have a tendency to overestimate the true odds ratio and underestimate the
between study heterogeneity. This also indicates that the zero total event studies do contain
relevant information on the parameters of our interest. In what follows, we discuss how to
include the zero total event studies in a meaningful way in meta-analysis.

3. Moment matching methods

In this section we discuss some frequently used meta analysis methods based on
weighted average estimates with the continuity correction when applied in sparse data. Tra-
ditional meta-analysis methods are perhaps the most useful methods that are used in prac-
tice. Those are derived based on the moment-matching approach. These methods include
various forms of weighted average estimates of the overall intervention effect. The inverse
variance weighted method, Mantel-Haenszel method, and Peto method are the three most
widely used methods under this category. These methods typically require some form of
adjustment when applied to sparse data. Although intended for different purposes in the
context of a chi-square test, such adjustment made in individual cells of 2 × 2 tables in
meta-analysis is known as the continuity correction.

3.1. Continuity correction

The controversy over continuity correction in meta-analysis of rare event studies per-
sists, with alternative correction factors proposed to mitigate bias and coverage issues, while
recent developments suggest methods avoiding continuity correction altogether could be
possible. As mentioned before, continuity correction is a controversial topic. There are com-
peting views on the appropriateness of the use of continuity correction in meta-analysis. In
the context of traditional analysis, there is no other choice but to discard zero total event
studies or to use a Bayesian approach without any continuity correction. The value that has
received the most attention for the continuity correction is 1/2. It was accepted as the value
for continuity correction on the basis of the argument put forth in Cox (1970). According
to Cox, when using the odds as the effect measure, choosing a correction factor of 1/2 gives
the least biased estimator of the true log odds in a single treatment group situation. The
factor 1/2 is also used to improve the approximation of a discrete distribution by a contin-
uous distribution (i.e. 1-degrees of freedom chi-square), or to obtain an approximation to
the product hypergeometric probability. However, adding a constant continuity correction
such as 1/2 can create some undesirable problems, including reversal of the effect direction,
particularly if the treatment arms are unbalanced Rücker et al. (2009). An investigation by
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Sweeting et al. (2004) concluded that using the continuity correction of 1/2 may be out-
performed in terms of both bias and coverage by other choices of correction factor when
studying the odds ratio between two groups. An important point to be noted here is that
the study was conducted under the assumption of fixed intervention effect across studies,
and excluding zero total event studies. They noted that the application of their alternative
continuity correction factor might not be applicable when using random-effect models. Two
alternative correction strategies that Sweeting et al. (2004) showed to be outperforming, un-
der fixed-effect assumption, are (1) to add a factor of the reciprocal of the size of the opposite
treatment arm to the cells, and (2) to use empirical continuity correction. However, they
also cautioned that not a single correction factor or method is superior in all situations, and
recommended to perform sensitivity analysis using several different correction factors. See
Sweeting et al. (2004) for details on the aforementioned alternative approaches for continuity
correction.

Recent efforts on methodological development and validation studies suggest that
the issue of continuity correction can potentially be avoided altogether using those methods
(in the frequentist domain) that do not require continuity correction. Furthermore, these
methods allow the inclusion of all studies in meta-analysis. Nonetheless, the Mantel-Hanszel
and Peto methods are widely used for meta-analysis of rare events. Therefore, these popular
classical methods, along with a somewhat underutilized but highly relevant method using
arcsine risk difference measure, are briefly described in the following sections.

3.2. Mantel-Haenszel method

The Mantel-Haenszel method for meta-analysis adjusts for potential confounding fac-
tors and uses weighted averages to estimate the combined odds ratio, with alternative conti-
nuity corrections recommended to mitigate bias and improve coverage. The Mantel-Haenszel
method was originally developed for stratified analysis adjusting for the third potential con-
founding factor. The fixed-effect meta-analysis can be viewed as a stratified design where
each individual study is treated as a stratum. Based on the Mantel-Haenazel method, the
pooled odds ratio across all K studies is estimated using the following expression:

ÔRMH =
∑K
i=1 xT i(nCi − xCi)/Ni∑K
i=1 xCi(nT i − xT i)/Ni

. (5)

Equation (5) can be rewritten as a weighted average estimate as follows:

ÔRMH =
∑K
i=1 wiÔRi∑K
i=1 wi

, (6)

where wi = xCi(nT i − xTi)
Ni

, and ÔRi = xT i(nCi − xCi)
xCi

(nT i − xT i) (7)

It is clear from equation (5) that zero cell studies contribute to the estimation of a combined
odds ratio. However, zero total event studies are implicitly excluded from the computation
unless a continuity correction is added. The weights in equation (7) are not reciprocals of the
variances of odds ratio estimates from individual studies. Therefore, the variance estimate
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of the combined odds ratio is not as straightforward as in the inverse variance method. The
Robins-Breslow-Greenland method is generally accepted as an easy-to-use variance estimator
for ln(ÔRMH). It has the following expression:

V̂ ar[ln(ÔRMH)] = S3

2S2
1

+ S5

2S1S2
+ S4

2S2
2
, (8)

where S1 =
K∑
i=1

xT i(nCi − xCi)
Ni

, S2 =
K∑
i=1

xCi(nT i − xTi)
Ni

,

S3 =
K∑
i=1

xTi(nCi − xCi)(xT i + nCi − xCi)
N2
i

, S4 =
K∑
i=1

xCi(nT i − xT i)(xCi + nT i − xT i)
N2
i

,

and S5 =
K∑
i=1

xCi(nT i − xT i)(xT i + nCi − xCi) + xT i(nCi − xCi)(xCi + nT i − xT i)
N2
i

. A null hy-

pothesis of equal odds in treatment and control subjects, i.e., ORMH = 1, may be tested by
the following χ2-test:

X2
MH =

[
K∑
i=1

xT i(nCi − xCi) − xCi(nT i − xT i)
Ni

]2

. (9)

The Mantel-Haenszel method with the continuity correction of 1/2 produces biased
estimates and low coverage rates for event rates below 1 percent Bradburn et al. (2007).
Therefore, under fixed-effect conditions, an alternative continuity correction is recommended
instead of 1/2 to reduce bias and improve coverage characteristics of this estimator Sweeting
et al. (2004).

3.3. The Peto method

The Peto method in meta-analysis of moderately rare events excludes zero total event
studies automatically and estimates the pooled log odds ratio based on weighted differences
from individual tables, with limitations in unbalanced data and close-to-1 odds ratios. The
Peto method is popular for meta-analysis of moderately rare events. Similar to the Mantel-
Haenszel method, this method does not require artificial continuity correction when events
are not observed in one of the treatment arms. However, the zero total event studies are au-
tomatically given zero weight and effectively are excluded from the analysis. When marginal
totals in Table 2 are fixed, the following two quantities are the mean and variance of hyper-
geometric distribution under the null hypothesis that the odds ratio is one.

Ei = (xT i + xCi)nT i
Ni

, (10)

and
Vi = (xT i + xCi)(Ni − xT i − xCi)nT inCi

N2
i (Ni − 1) . (11)
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Based on Ei and Vi, the Peto estimate of pooled log odds ratio from K independent tables
has the following expression:

ln(ÔR)Peto =
∑K
i=1(xT i − Ei)∑K

i−1 Vi
, (12)

and
V ar[ln(ÔR)Peto] = 1∑K

i−1 Vi
. (13)

The Peto estimator of the combined odds ratio is not a consistent estimator and can provide
severely biased results when applied to unbalanced data Greenland and Salvan (1990). The
validity of the Peto estimator in a meta-analysis of rare event studies is limited to the analysis
of reasonably balanced studies that have odds ratio close to 1.

3.4. Arcsine transformation

The arcsine transformation method is needed when the objective is to include all
studies in the meta-analysis, including those with very rare events or zero total events, while
stabilizing variance estimates to provide more accurate intervention effect estimates. Zero
event in either or both arms of a given study/trial does not necessarily indicate that the
true probability of an event is 0. On the contrary, it indicates that the event probability is
very small, and the sample size in the study is not large enough to observe an event. The
arcsine transform method estimates the combined effect by combining all studies including
the zero total event studies. The arcsine difference (AS) measure of intervention effect for
the ith study is defined as:

ASi = arcsin
√
pT i − arcsin

√
pCi, (14)

and its asymptotic variance given in equation (15) is finite and non-zero and depends only
on the study sample size.

σ2
ASi

= 1
4nT i

+ 1
4nCi

. (15)

Similar to the MH and Peto methods, the combined AS is a weighted mean of the individual
ASi’s, where the wi = 1/σ2

ASi
are the weights. Therefore,

ÂS =
∑K
i=1 wiASi∑K
i=1 wi

. (16)

Rücker et al. (2009) has recommended using 0.42/n instead of 1/4n in equation (15) to
estimate the variance conservatively for small event probabilities. Simulation studies of
Rücker et al. (2009) suggest that the bias of the estimate is slightly higher than the other
two methods mentioned above. The key advantage of this method is the variance stabilizing
property of the arcsine transformation, which leads to more robust estimation, even for the
rare events Rücker et al. (2009). Nevertheless, a lack of direct interpretation has limited its
wider use as a measure of intervention effect.
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3.5. Heterogeneity

Fixed-effect methods like Mantel-Haenszel and Peto can significantly overestimate
treatment effects in meta-analysis of rare events, especially in the presence of heterogeneity,
leading to inflated type I error rates and biases. Historically, the treatment effect hetero-
geneity has not received sufficient attention in the context of meta-analysis of rare events.
Using a continuity correction, majority of simulation studies are performed under the as-
sumption of fixed treatment effect Sweeting et al. (2004); Bradburn et al. (2007), or a small
heterogeneity Rücker et al. (2009). The rationale behind selecting the fixed treatment effect
is the negligible heterogeneity. The zero estimate, however, is not always due to the absence
of heterogeneous treatment effects but mainly due to the unavailability of adequate methods.
On the other hand, studies that evaluate heterogeneity are conducted for moderate event
rates. As a result, the performance of fixed-effect methods in the presence of heterogeneity is
not well understood, particularly for low event rates. Although those methods are expected
to perform poorly, only a few studies have extensively explored specific characteristics of the
poor performance. For example, Bhaumik et al. (2012) showed that the asymptotic bias of
combined odds ratio (with constant continuity correction “a”) in the presence of treatment
heterogeneity to be

Bias(θ̂wa) = −
(pt|ϵ − qt|ϵ)
n(qt|ϵpt|ϵ)

{
a+ pcqc − pt|ϵqt|ϵ

2(pt|ϵqt|ϵ + pcqc)

}

+ (pc − qc)
n(pcqc)

{
a+ pt|ϵqt|ϵ − pcqc

2(pt|ϵqt|ϵ + pcqc)

}
,

(17)

where pt|ϵ and pc are unobservable underlying true event rates, θ̂wa =
k∑
i=1

ŵi(τ 2)θ̂ia/
k∑
i=1

ŵi(τ 2),

and ŵi(τ 2) = 1
σ̂2
i (τ 2) . Their simulation study suggests that, for low event rates, the Mantel-

Haenszel and Peto methods can grossly overestimate the treatment effect (see Figure 1) and
produce an unacceptably high type I error rate. Therefore, in the presence of heterogene-
ity, the behavior of fixed-effect methods does not follow the patterns demonstrated in the
simulation studies without heterogeneity. The bias of the treatment effect is reduced when
random-effects methods with 1/2 continuity correction are used along with the improved es-
timates of heterogeneity parameters. However, even with alternative methods, an estimate
of heterogeneity may not produce a non-zero value when event rates are extremely low (e.g.,
1/1000). As the true state of heterogeneity is unknown a priori, a large bias and an inflated
type I error rate (see Figure 1) are potential threats associated with the validity of estimates
of treatment effects obtained from weighted average methods, including Mantel-Henszel,
Peto, and Dersimonial-Liard. These undesirable characteristics become more pronounced
for low event rates. Shuster (2010) has also raised similar concerns regarding the validity
of empirically based weighting in random effects and demonstrated that empirical weighting
produces substantial bias for the DerSimonian-Laird approach.
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Figure 1: Power curve of Q-test as a function of τ 2 for a low event rate (0.4%).
The true value of θ is set at 0. The αFE is a type I error rate for testing the null
hypothesis using the fixed-effect (Peto) method.

4. Likelihood based methods

4.1. Maximum marginal likelihood methods

The maximum marginal likelihood (MML) method in meta-analysis allows for si-
multaneous estimation of treatment effects and heterogeneity parameters, accommodating
studies with zero total events without requiring continuity corrections. The MML method is
model-based, an alternative to the moments matching methods. The major advantage of the
MML approach over traditional methods is that the zero total events studies can be included
without any artificial continuity corrections. It does have the flexibility of estimating both
the overall treatment effect, and the heterogeneity parameter(s) simultaneously.

Consider an observed 2 × 2 Table 2 for the ith study for a meta-analysis of k studies.
Suppose the probability of observing an event in the ith study is pti for the treatment group
and pci for the control group. The log-odds of adverse events in group j ∈ {T,C} can be
modeled as follows.

ln

(
pji

1 − pji

)
= µ+ ϵ1i + (θ + ϵ2i)Tji (18)

where Tji is the treatment indicator variable defined as Tji = 0 for j = c and Tji = 1 for
j = t; and ϵ1 ∼ N(0, σ2

µ) and ϵ2 ∼ N(0, τ 2) are the random-effects associated with mean
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log-odds of an event in control group µ, and treatment effect θ, such that(
ϵ1
ϵ2

)
∼ N

{(
0
0

)
,

(
σ2
µ ρσµτ

ρσµτ τ 2

)}
. (19)

Therefore, this model allows for heterogeneity in both the baseline risk and the treatment
effect. Conditional on the random effects, the likelihood function for the ith study is

l(xi|ϵ) = pxti
ti q

nti−xti
ti pxci

ci q
nci−xci
ci , (20)

where xi = (xti, xci) is the vector pattern of responses from study i. The models (18)-(19)
involve three parameters µ, θ, and Σ, where Σ denotes covariance matrix on the right hand
side of Equation (19). The marginal likelihood function for these parameters is obtained by
integrating the conditional likelihood (20) over the distribution of random effects as follows

h(β; xi) = h(xi) =
�
ϵ

l(xi|ϵ)g(ϵ)dϵ, (21)

where g(ϵ) represents the related bivariate normal density. As studies are assumed to be
independent, the full log-likelihood for k studies can be expressed as

logL =
k∑
i=1

log h(xi), (22)

and for a parameter vector β = (µ, θ,Σ), the first derivatives of the log-likelihood with
respect to β are

∂ logL
∂β

=
k∑
i=1

1
h(xi)

∂h(xi)
∂β

, (23)

where
∂h(xi)
∂β

=
�
ϵ

∂ log l(xi|ϵ)
∂β

l(xi|ϵ)g(ϵ)dϵ . (24)

A close-form solution of (24) is generally not available for nonlinear models. Therefore,
numerical techniques such as Gauss-Hermite quadrature are required for the integration of
the random effect space (i.e., ϵ). The marginal likelihood equation in (21) can be approxi-
mated numerically to any practical degree of accuracy by summing on a specified number of
quadrature nodes and the corresponding quadrature weights. Commercial software packages
such as SAS, STATA, SuperMix . can easily fit MML models, and the GLIMMIX procedure
in SAS or the glmer package in R can be used to fit alternative linearized approximation to
(24).

The MML models offer a variety of modeling strategies in the context of meta-analysis.
Treatment effect may be estimated with a single random effect (background incidence or
treatment effect) or a model with two correlated random effects. However, this flexibility to
construct a model with a combination of multiple random effects also creates room for model
mis-specifications. The detailed analysis of the impact of such model misspecification on the
characteristics and testing of the overall effect estimator and the heterogeneity parameter has
shown that the models that allow heterogeneity in both baseline rate and treatment effect
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across studies have low type I and type II error rates, and are the least biased compared to
other model specifications Amatya et al. (2015).

4.2. Beta-binomial model

The beta-binomial model offers a Bayesian framework for meta-analysis, allowing
for estimation of treatment effects and correlations between event probabilities across stud-
ies. The beta-binomial model is another alternative to the moment-based methods. In the
Bayesian setup, a meta-analysis of binary events can be performed in two ways using the
beta-binomial model. The first way is to adopt a univariate approach, where event probabili-
ties pT i and pCi are assumed to be independent. However, the individual binary observations
within the jth arm of the ith study (which add up to xji for j =∈ {T,C}) are allowed to
be correlated by imposing pji ∼ beta(αj, βj) as a prior. As a result, E(pj) = µj = αj

αj+βj
,

V ar(pj) = µ(1 −µ)θ/(1 + θ) with θ = 1/(αj + βj), and the correlation between observations
within jth arm of each study is ρj = 1/(αj + βj + 1), and the marginal distribution of xji is
the beta-binomial distribution with the following log-likelihood function:

lji(αj, βj) =lnΓ(nji + 1) + lnΓ(xji + αj) + lnΓ(nji − xji + βj)
+ lnΓ(αj + βj) − lnΓ(xji + 1) − lnΓ(nji − yji + 1)
− lnΓ(nji + αj + βj) − lnΓ(αj) − lnΓ(βj),

(25)

and the joint log-likelihood function is:

l(α,β) =
K∑
i=1

∑
j∈{T,C}

lji(αj, βj). (26)

The number of parameters is reduced further by modeling the mean function g(µj) = b0 +
b1xj, where g is a link function as in the generalized linear model, and xj = 1, if j = T and
xj = 0, if j = C. A specific link function for g determines the type of effect. For example,
the logit link function gives the log odds ratio, and the log link function measures log relative
risk. Kuss (2014) recommends avoiding the identity link to estimate the risk difference and
suggests to use the estimated event probabilities p̂C = g−1(b̂0) and p̂T = g−1(b̂0 + b̂1) from
the logit model for the control and treatment groups, respectively.

The second approach is to use the bivariate beta-binomial model which addresses
the correlation between the event probabilities of two treatment arms of the studies. The
correlation between control event rates (proportion) and treatment effects has been identified
in studies by various authors (Schmid et al., 1998, and references therein). Unlike the MML,
the bivariate beta-binomial model implies a linear relationship between pT and pC on the
original scale. Chu et al. (2012) described a beta-binomial model in two stages. In the first
stage, Xji is assumed to be independently binomially distributed, such that

P (XTi = xT i, XCi = xCi|nT i, nCi, pT i, pCi) =
∏

j∈{T,C}

(
nji
xji

)
(pji)xji(1 − pji)nji−xji . (27)
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In the second stage, the joint distribution of pT i, and pCi is specified using a Sarmanov beta
prior distribution as follows (see Luo et al., 2014):

pT i, pCi|αT , αC , βT , βC ∼ f(pT , pC ;αT , αC , βT , βC)

= beta(pT ;αT , βT )beta(pC ;αC , βC)
(

1 + ρ
(pT − µT )(PC − µC)

δT δC

)
,

(28)

where ρ is the correlation coefficient between pT i and pCi; beta(p;α, β) = [B(α, β)]−1pα−1(1−
p)β−1 with B(α, β) =

� 1
0 t

α−1(1−t)β−1dt; and µj = αj/(αj+βj), δ2
j = µj(1−µj)/(αj+βj+1),

and j ∈ {T,C}. As a result, the log marginalized likelihood function for the unknown
hyperparameters (αT , αC , βT , βC , ρ) is

log L(αT , αC , βT , βC , ρ)

=
k∑
i=1

log [PBB(xT i;nT i, αT , βT )PBB(xCi;nCi, αC , βC)]

+ log

1 + ρ

(
xT i+αT

nT i+αT +βT
− µT

) (
xCi+αC

nCi+αC+βC
− µT

)
δT δC

 ,
(29)

where PBB(x;n;α; β) is the probability mass function of a beta-binomial distribution, such
that

PBB(x;n;α; β) =
(
n

x

)
B(x+ α, n− x+ β)

B(α, β) . (30)

The maximum likelihood estimates (α̂T , α̂C , β̂T , β̂C , ρ̂) is obtained by maximizing likelihood
function (29). Based on these estimates, three overall effect measures are estimated as
follows:

Odds Ratio = ÔR = µ̂T/(1 − µ̂T )
µ̂C/(1 − µ̂C) = α̂T β̂C

α̂C β̂T
, (31)

Relative Risk = R̂R = µ̂T
µ̂C

= α̂T/(α̂T + β̂T )
α̂C/(α̂C + β̂C)

, (32)

Risk difference = R̂D = µ̂T − µ̂C = α̂T

(α̂T + β̂T )
− α̂C

(α̂C + β̂C)
. (33)

The variances of these estimates are calculated using the delta method.

5. Confidence distribution methods

Confidence distribution, in meta-analysis refers to a statistical method where the un-
certainty about a parameter (such as an effect size) is represented by a distribution rather
than a single point estimate. This distribution integrates information from multiple studies,
accommodating varying study sizes and results, including studies with zero total events.
Xie et al. (2011) have developed a unified framework for meta-analysis by combining con-
fidence distributions (CD) from individual studies. The combined CD function is obtained
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by appropriately weighting the individual distribution estimators. This is in contrast to the
traditional meta-analysis, where a combined estimate is obtained by averaging individual
point estimates with appropriate weights. The combined CD does have various optimality
conditions. This method also allows straightforward integration of data from all studies
including zero total events.

Suppose that the CD function Hi(θ) = Hi(Xi, θ), i = 1, . . . , k for the parameter θ
can be obtained from each study with corresponding samples Xi of size ni. A combined
confidence distribution function across k studies (Hc) is constructed as

Hc = Gc{gc(H1(θ), . . . , Hk(θ))}, (34)

where gc(u1, . . . , uk) = w1F
−1
0 (u1) + . . . + wkF

−1
0 (uk) is a monotonic function that has the

cumulative distribution function Gc(t) = P (gc(U1, . . . , Uk) ≤ t) for Ui ∼ U [0, 1]. The trans-
formation function F0(·) is weighted by fixed positive weights wi ≥ 0. The conventional
fixed- and random-effect meta-analysis approaches can be easily derived using the recipe in
(34) (see Xie et al., 2011).

5.1. Odds ratio

Meta-analysis of rare event studies using odds ratio under the CD framework was
developed by Liu (2012). This method uses exact p-values based on mid-p adaptation of
Fisher’s exact test for the odds ratio as the CD functions for individual studies and combines
them by applying the general CD combination method as described in (34). Using this exact
test, the p-value function for the odds ratio Ψ is obtained as follows:

pi(Ψ) ≡ pi(Ψ;xT i, xT i) = PrΨ(XT i > xT i|Ti = ti) + 1
2PrΨ(XT i = xTi|Ti = ti), (35)

where, the hypothesis of interest is

H0 : Ψ = Ψ0vs.H1 > Ψ0.

The XT i’s are assumed to follow a hypergeometric distribution conditional on Ti = XT i+XCi.
Then, for Li = max(0, ti − nCi), and Ui = min(nT i, ti). It follows that

PrΨ(XT i = xT i|Ti = ti) =

(
nT i
xT i

)(
nCi

ti − xT i

)
ΨxT i

Ui∑
s=Li

(
nT i
s

)(
nCi
ti − s

)
Ψs

, Li ≤ xT i ≤ Ui. (36)

The statistic pi(Ψ0) asymptotically follows U(0, 1). However, for the meta-analysis of rare
events, the asymptotic conditions are seldom valid, causing a substantial deviation of pi(Ψ0)
from U(0, 1). Nonetheless, Liu (2012) has shown that the general idea of a CD combining
algorithm can still be used in the finite sample setting after some adjustments. They also
showed that zero total event studies can provide meaningful contributions in the presence
of uncertainty. The impact of zero total event studies is appropriately accounted for in the
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sample size computation of the corresponding studies by using the weights:

wi ∝
[
{nT iπT i(1 − πT i)}−1 + {nCiπCi(1 − πCi)}−1

]−1/2
, (37)

which requires estimates of πCi and πT i. To improve an efficiency of the overall estimate,
Liu et al. (2014) proposed to model πCi using a beta(β1, β2) distribution. The parameters
of this beta distribution are estimated as follows:

(β̂1, β̂2, Ψ̂) = arg max
β1,β2,Ψ

k∑
i=1

Log

� 1

0
fψ(xCi, xT i|πCi)fβ1,β2(πCi)dπCi, (38)

where fβ1,β2(πCi) = πβ1−1
Ci (1 − πCi)β2−1/

� 0
1 π

β1−1
Ci (1 − πCi)β2−1d(xCi), fψ(xCi, xT i|πCi) =

c(xCi, xT i)πxCi
Ci (1 − πCi)nCi−xCiπxT i

T i (1 − πT i)nT i−xT i , and πTi = (ΨπCi)/(1 − πCi + ΨπCi). The
mean of the empirical conditional density of πCi is used as an estimate of πCi and an estimate
of πT i is calculated through π̂T i = (ΨπCi)/(1 − π̂Ci + Ψ̂π̂T i). This manipulation produces
positive estimates of πT i and πCi even for zero total event studies, allowing the inclusion of
these studies without any continuity correction. When xT i = 0 for all i, limiting weights are
calculated as follows

limΨ̂→0

(
wi/

k∑
i=1

wi

)2

= nCixCi/(1 − xCi)∑k
i=1 nCixCi/(1 − xCi)

.

The case where xCi = 0 for all i is handled similarly.

5.2. Risk difference

Tian et al. (2009) proposed a simple procedure to construct a 100(1 − α) 1-sided
confidence interval (CI) of the type (a,∞) for a common risk difference parameter ∆, based
on all data from k independent studies without any artificial continuity correction. Suppose
that n sets of k study-specific 1-sided CIs of any arbitrary level η can be constructed for ∆.
Let Jij = (aij,∞) be the ηj-level 1-sided CI obtained from the ith study, for i = 1, . . . , k,
and j = 1, . . . , n; such that 0 < η1 < η2 < . . . < ηn < 1, and ai1 > ai2 > . . . > ain. The final
combined interval for δ is (see Tian et al., 2009)

k∑
i=1

wi
n∑
j=1

w̃j {(I(∆ > aij) − ηj} ≥ c, (39)

where I(·) is the indicator function, wi is a study-specific weight, w̃j is a positive weight for
ηj-level intervals, and the critical value c is chosen such that

Pr

 k∑
i=1

wi
n∑
j=1

w̃j(Bij − ηj) < c

 ≤ α. (40)

In equation (40), (Bi1, . . . , Bik) are n independent random vectors whose components
are correlated Bernoulli variables such that Bi1 ≤ Bi2 ≤ . . . ≤ Bik and pr(Bij = 1) = ηj.
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Tian et al. (2009) suggested to use wi = 1/(nT i+nCi), and w̃j = {ηj(1−ηj)}−1 for the weights.
Yang et al. (2012) showed this procedure to be a special case under the CD framework, where
F−1

0 (u) is chosen to be ∑n
j=1 w̃j {I(u > 1 − ηj) − ηj}. Then,

Hc(∆) = Gc


k∑
i=1

wi
n∑
j=1

w̃j {I(Hi(δ) > 1 − ηj) − ηj}

 . (41)

For the detailed derivation of the proof, see Yang et al. (2012), where alternative equivalent
expression for Hc(∆) is also obtained by using the logistic function as a transformation
function.

6. Illustration

In their highly influential meta-analysis article, Nissen and Wolski (2007) concluded
that rosiglitazone was associated with a significant risk of myocardial infarction [odds ratio
(OR) 1.43, 95 % CI (1.03,1.98), P = 0.03] and an increase in the risk of death from cardio-
vascular causes, which had borderline significance [OR 1.64, 95 % CI (0.98 2.74); P = 0.06].
These conclusions were based on a fixed-effect meta-analysis using the Peto method. Soon af-
ter the release of these results, a series of reanalysis of the same data was published by others
using different methods. Diamond et al. (2007) has conducted the meta-analysis using three
conventional fixed-effect methods with two continuity corrections and including/excluding
zero total event studies. Stoto (2015) reported some results based on a Localio et al. (2008)
wide variety of statistical methods. Tian et al. (2009), Chu et al. (2012), and Liu et al.
(2014) have used a few relatively new approaches to analyze the rosiglitazone data. They
included all studies (including zero total event studies) without any continuity correction.
Chu et al. (2012) used the beta-binomial model, whereas Tian et al. (2009), and Liu et al.
(2014) used the confidence distribution methods. Estimates of various effect measures from
these articles are summarized in Table 3.

7. Bayesian methods

The Bayesian methodology in meta-analysis offers flexible modeling with hierarchi-
cal structures, integrating prior information and accommodating non-normal distributions
of random effects. Computational intensity has decreased with advancements in Monte
Carlo techniques and computing power, supporting complex analyses without major barri-
ers. Bayesian methodology is an alternative to the traditional meta-analysis methods. It
provides a broad range of modeling alternatives with multiple levels of hierarchy and natu-
rally integrates prior information on parameters of interest from other trials or studies. The
emphasis on hierarchical modeling accounts for uncertainty in all parameters including the
between-study heterogeneity. The flexibility of the Bayesian approach allows for rigorous
sensitivity analysis, which is particularly important for meta-analysis of rare events. Fur-
thermore, the Bayesian framework can be easily extended to non-normal distributions of
random effects. The computational complexity of the Bayesian approach is substantially
intensive compared to the traditional methods. Fortunately, software is readily available
that incorporates rapidly developing Monte Carlo techniques. Due to the unprecedented rise
in computational power of modern personal computers, complex computation in Bayesian
analysis is no longer a major barrier.
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Table 3: Various estimates of effect measures for rosiglitazone MI data

Method CC OR (95% CI) RR
(SE)

RD (95% CI)

Nissen Peto 0.5 1.43 (1.03, 1.98)
Diamond Fixed, IV TAC 1.34 (.097, 1.84)

Fixed, IV CC 1.29 (0.94, 1.76) .0015 (0, .0031)
Fixed, MH TAC 1.36 (1.00, 1.84)
Fixed, MH CC 1.28 (0.95, 1.72) .0020 (0, .0041)
Fixed, MH TAC+ 1.35 (1.00, 1.82)
Fixed, MH CC+ 1.26 (0.93, 1.69)

Localio Random [DL] NA 1.31 (0.91, 1.89)
Random [DL] 0.5 1.31 (0.95, 1.79)
Random [DL] TAC 1.33 (0.93, 1.91)
Conditional lo-
gistic

NA 1.45 (1.05, 2.01)

Exact stratified NA 1.45 (1.03, 2.04)
Random inter-
cept/slope

NA 1.37 (0.99, 1.90)

Chu Bivariate beta-
binomial

NA 1.291
(0.382)

0.0011 (SE=0.0013)

Tian Exact CD NA 0.0018 (-0.008, 0.004)
Liu Exact CD NA (.972, 2.00)

Adjusted Exact
CD

(1.04, 2.01)

CC: Constant (0.5) correction for continuity, CC+: constant correction for continuity that includes all
zero total event studies, IV: inverse variance, MH: Mantel-Haenszel, TAC: treatment arm correction for
continuity, TAC: treatment arm correction for continuity that includes all zero-total-event studies

The key elements of a generic Bayesian meta-analysis model are the prior distributions
on both the effect and the heterogeneity parameters. The simplest form of Bayesian random-
effect meta-analysis is as follows: (see Sutton and Abrams, 2001):

θ̂i ∼ f(θ̂i|θi, σ2
i )

θi ∼ π(θi|θ, τ 2)
θ ∼ h(θ)
τ 2 ∼ h(τ 2), (42)

where h(θ) and h(τ 2) are the prior distributions of effect parameter θ, and between-study
heterogeneity parameter τ 2 respectively. The resulting posterior distribution does have the
following form:

p(θ, τ, θi|θ̂i) ∝ h(θ)h(τ 2)
K∏
i=1

π(θi|θ, τ 2)
K∏
i=1

f(θ̂i|θi, σ2
i ). (43)

Inferences on parameters of interest are made from the mode of the posterior distribution
(43). Except for some cases of conjugate prior distributions, the posterior mode is usually
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not available in its closed form. Instead, Monte Carlo methods such as Gibbs sampling
are used to numerically approximate the mode of the posterior distribution. An example
of Gibbs sampling is found in a meta-analysis of randomized controlled trials comparing
sodium monobuorophosphate (SMFP) to sodium Buoride (NaF) dentifrices (toothpaste) in
the prevention of caries development Abrams and Sanso (1998). A complex example of a
Bayesian hierarchical model that incorporates a study-level component of variability and
facilitates extensive sensitivity analysis is found in Kaizar et al. (2006).

7.1. Strong prior

A strong prior in Bayesian analysis is one that conveys substantial prior belief or
information about the parameters of interest, such as the probability of events in the control
arm, treatment effect, or between-study heterogeneity. It can significantly influence the esti-
mated outcomes of a meta-analysis by anchoring the inference towards specific values based
on empirical data or subjective judgment. The prior distribution is not only a key part
of Bayesian analysis, but also it is one of the most difficult and controversial aspects of the
analysis. A non-informative prior is specified to express vague or general information of a pa-
rameter and to minimize a perceived subjective bias. On the other hand, an alternative prior
distribution can be specified to integrate prior belief or substantiated information relevant
to the estimation of the parameter of interest. Such informative priors may be formulated
by considering the plausible range of the parameters, based on observed distributions from
empirical studies, or based purely on subjective clinical judgment Warn et al. (2002). These
informative priors may influence the conclusion of the meta-analysis. When binary events
are of concern, prior distribution needs to be specified for the following three parameters:(1)
probability of events in the control arm, (2) treatment effect, and (3) between-study hetero-
geneity. Strong priors on some of these parameters may have a substantial impact on the
estimated overall treatment effect. The following Bayesian meta-analysis of rositaglitazone
data illustrates the impact of strong priors.

Let nji be the number of the participants in the ith trial who received the jth treat-
ment. Suppose that the probability of experiencing MI is pji. The observed MI incidences
xji may be modeled under the Bayesian framework as follows:

Xji ∼ binomial(pji, nji), for j ∈ {T,C}, and i = 1, 2, . . . , k
θi ∼ N(θ, τ 2), µi = logit(pCi)

logit(pT i) = µi + θi.

The model presented above can be easily implemented in the WinBugs program (see Warn
et al., 2002). To represent a plausible range of θ and τ , prior distributions N(0, 10), and
U(0, 2) are specified, respectively. Based on the specified priors and the observed data, the
WinBugs program computes posterior distributions of parameters using MCMC methods.
The posterior modes of θ and τ are estimated from these posterior distributions. A graphical
representation of the posterior distribution for this example data is displayed in Figure (2).

The posterior estimate of the combined odds ratio and heterogeneity from the above
modeling are given in Table 4, where noninformative independent prior U(0, 1) is specified
for PCi. This model specification assumes a fixed background MI incidence rate and hetero-
geneous between-study treatment effects. The results in Table 4 show a posterior estimate
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Figure 2: Posterior Distributions of τ and θ.

Table 4: Bayesian Meta-Analysis of 42 Rosiglitazone Trials

mean 2.5% 25% 50% 75% 97.5%
OR 0.608 0.379 0.522 0.617 0.720 0.883
τ 2 0.234 0.015 0.111 0.217 0.379 0.932

of the odds ratio of 0.608 with 95% credible interval of (0.379, 0.883), which is markedly
different from the moment based estimators in Table 3. It is noteworthy that the current
estimate is close to the estimate obtained from MML with random effects restricted only
to the treatment effect. A priori belief regarding the incidence of MI rate among type II
diabetes patients can be integrated by changing the parameters of the prior distribution of
PCi. Figure 3 displays the impact of different values of parameters of the prior distribution
of PCi. The posterior odds ratio remains below 1.0 as the prior becomes closer to the vague,
the same as the results in Table 4. However, a strong prior of uniform(0, 0.01) provides a
positive log odds ratio that is close to the moment-based results. Figure 3 essentially shows
that if one is willing (or has reason) to believe a priori that the prevalence of MI is extremely
rare, e.g., less than 6/1000, in a diabetic population, then the observed data supports an
elevated risk of MI among rosiglitazone users. In the absence of such prior information, the
model does not support the conclusion derived from the moment-based analyses.

This example clearly demonstrates the effect of prior distributions on the conclusion
of meta-analysis. A similar but less dramatic effect on the estimate of the log odds ratio is
also observed for different informative prior specifications of τ . However, when only a small
number of studies are available, a strong prior distribution on τ can significantly influence the
results of the analysis Sutton and Abrams (2001). The hierarchical Bayesian approach is used
to introduce a reasonable amount of uncertainty in the prior belief regarding distributions of
the model parameters. In the rosiglitazone example, a beta(a, b) prior distribution may be
used to model pc, and a gamma(s, r) hyper-prior may be placed on the parameters of the
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Figure 3: Posterior mean and 95% credible interval of odds ratio for varying
maximum values (max pc) of the prior distribution of pc ∼ unif(0,max pc)

beta distribution. The resulting full Bayesian model is

rT i ∼ binomial(pT i, nT i), rCi ∼ binomial(pCi, nCi)
µi = logit(pCi), logit(pT i) = µi + θi,

pCi ∼ beta(a, b), θi ∼ N(θ, τ 2)
a ∼ gamma(ra, sa), b ∼ gamma(rb, sb);

(44)

where, gamma (r, s) = sr

Γ(r)x
r−1e−sx for x > 0, r > 0 and s > 0. Table 5 presents the

estimates obtained from this model for different combinations of parameters of the gamma
hyper-prior distribution. For this illustration, ra and rb were varied while holding sa and sb
values fixed at 0.25 and 1.5, respectively. The posterior means of the log odds ratio are clearly
more consistent between 0.11 (OR=1.12) and 0.17 (OR=1.19) over different specifications
of hyper-prior distributions. These estimates of log odds ratios are closer to the estimates
obtained from the moment-based methods.
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Table 5: Hierarchical Bayesian Analysis of 42 Rosiglitazone Trials using
Different Gamma Hyper-prior Distributions.

α β log odds ratio (θ) τ 2

ra rb mean mean mean 2.5% 97.5% mean 2.5% 97.5%
0.0004 12.052 0.305 14.537 0.152 -0.252 0.513 0.069 0.000 0.651
0.0018 15.801 0.322 16.970 0.135 -0.263 0.530 0.077 0.000 0.709
0.0031 4.170 0.263 8.861 0.144 -0.206 0.529 0.062 0.000 0.600
0.0039 15.551 0.320 16.742 0.152 -0.240 0.524 0.071 0.000 0.612
0.0042 19.110 0.336 19.199 0.153 -0.251 0.551 0.065 0.000 0.622
0.0047 17.088 0.323 17.972 0.159 -0.237 0.512 0.066 0.000 0.621
0.0057 17.625 0.327 18.191 0.143 -0.223 0.549 0.061 0.000 0.627
0.0066 8.534 0.285 11.883 0.163 -0.221 0.538 0.074 0.000 0.660
0.0088 11.785 0.298 12.304 0.150 0.025 0.237 0.002 0.000 0.008
0.5884 16.796 0.332 17.959 0.146 -0.214 0.531 0.069 0.000 0.602
1.1903 7.241 0.291 11.447 0.139 -0.267 0.509 0.075 0.000 0.670
1.2831 13.824 0.317 15.963 0.112 -0.249 0.465 0.107 0.004 0.719
1.9515 1.021 0.259 7.270 0.173 -0.218 0.552 0.060 0.000 0.626
2.5283 14.976 0.342 16.910 0.137 -0.251 0.524 0.075 0.000 0.638
2.7945 16.991 0.360 18.552 0.120 -0.298 0.489 0.075 0.000 0.598
3.5064 3.797 0.292 9.580 0.161 -0.248 0.587 0.060 0.000 0.584
3.8382 15.027 0.357 17.441 0.131 -0.252 0.503 0.063 0.000 0.516
4.0664 8.528 0.326 12.920 0.123 -0.271 0.515 0.071 0.000 0.653
4.0838 7.780 0.323 12.488 0.140 -0.266 0.494 0.067 0.000 0.652

8. Discussion

Meta-analysis of safety data, particularly for rare events, poses challenges due to low
event rates in randomized controlled trials (RCTs) designed primarily for efficacy. These
issues include inadequate power to detect true risks and complexities arising from biases and
study design differences in observational studies. Analytical methods vary in handling het-
erogeneity, influencing conclusions on drug safety, as seen in meta-analyses of Rosiglitazone’s
association with myocardial infarction, highlighting the need for cautious interpretation and
sensitivity analysis. Meta-analysis of rare events data in general, and safety data in par-
ticular is a complex statistical problem with immense practical importance. Randomized
control trials (RCT) are generally not designed to study safety issues related to a treat-
ment. Therefore, individual trials may not provide adequate power to detect the true risk
of adverse events, particularly when the adverse event is rare. Post-marketing safety stud-
ies are usually conducted using large observational studies. A meta-analysis from a series
of large observational studies can provide a spurious degree of statistical precision, leading
to acceptance of low-level associations resulting from residual confounding Henry and Hill
(1999). Inherent biases and differences in study designs add further complexities to the
meta-analysis of observational studies. Consequently, the assessment of drug safety partly
relies on the meta-analysis of RCTs and other published literature. Although such reliance
on meta-analysis holds promises of synthesizing all available evidence, it is not without se-
rious pitfalls. Stoto (2015) discussed these issues using three high-profile examples. Stoto
(2015) concluded that the precision of the results of one meta-analysis can be deceptively
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low due to some typical characteristics of safety data extracted from efficacy studies. Those
characteristics include low adverse event rates, untestable clinical and methodological hetero-
geneity, and incomplete and inconsistent reporting of adverse effects. Consequently, different
syntheses can provide qualitatively different conclusions. For example, analytical methods
that avoid or deal with heterogeneity in different ways may lead to different conclusions
related to the risk of adverse events. A careful consideration is particularly important for
safety studies, where the standard Cochrans’ Q-test for detecting heterogeneity is known to
be significantly underpowered (see Figure 1). These studies often possess substantive het-
erogeneity of the populations under study, comparison groups, and length of follow-up. The
rationale for using the Peto method in such situations often points to its greater statistical
power which is considered to be more important in safety analysis than the consideration of
heterogeneity. However, one must not overlook a high type I error rate associated with such
methods in the presence of heterogeneity. Discrepancies originating from the use of various
methods are evident in the comparison of meta-analytical investigations of MI associated
with rosiglitazone. A decision to place severe restrictions on the utilization of the drug was
highly influenced by the results of the Peto method-based meta-analysis performed by Nissen
and Wolski (2007). That analysis yielded a 95% confidence interval of (1.031, 1.979) and a
p-value of 0.032 for testing that the odds ratio is 1, and thus concluded that rosiglitazone
was significantly associated with myocardial infarction. The subsequent meta-analyses by
others using different methods produced results that did not agree with Nissen and Wolski
(2007). The varying conclusions depended on the inclusion or exclusion of zero total event
studies Liu et al. (2014), continuity correction strategies Diamond et al. (2007), and effect
measure (RR vs. OR) and statistical method used for analysis Stoto (2015). Furthermore,
meta-analysis is itself an observational study of studies. When only a small number of ad-
verse events are observed, meta-analysis may not be able to disentangle confounding by the
indication and drug type. Over-reliance on a single analysis is not recommended when ana-
lyzing safety data. Fortunately, there are several commercial (SAS, STATA, StatXact) and
freely available software (RevMan, and Rgmeta, meta, exactmeta) to facilitate an extensive
sensitivity analysis when analyzing safety data involving adverse events that might occur in
one per thousand patients or fewer.
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