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Abstract
In the analysis of complex data sets, selecting an appropriate distribution is crucial for

real-life applications. Common probability distributions often fail to provide adequate results
when dealing with imprecise, uncertain, or vague data. To address these complexities and
achieve more accurate results, a neutrosophic probability distribution called the neutrosophic
Marshall-Olkin extended Burr-XII distribution has been developed. This study aims to
introduce a lifetime distribution capable of handling indeterminate data. Various properties
of the proposed distribution are discussed. The maximum likelihood method, in terms of
neutrosophic parameters, is utilized to estimate these parameters. A simulation study is
conducted to validate the estimated neutrosophic parameters. Finally, two real-life data sets
are analyzed to demonstrate the potential of the NMOE Burr-XII distribution, highlighting
its superior efficiency and adaptability compared to classical distributions when dealing with
indeterminate survival time data.
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1. Introduction

The Burr-XII distribution is significant in lifetime and survival data analysis. Shao
et al. (2004) investigated models for the extended three-parameter Burr type XII distribution
and applied it to model severe events, such as flood frequency. Rodriguez (1977) examined
the adaptability of the Burr type XII distribution, which has been widely used in various
scientific fields, including actuarial science, forestry, ecotoxicology, dependability, and sur-
vival analysis. Marshall and Olkin (1997) introduced a parameter to create a new family
of distributions that are more flexible and cover a broader range of behaviors than previous
distributions, known as extended distributions. Al-Saiari et al. (2014) further extended this
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by adding one parameter to the Marshall-Olkin Extended (MOE) Burr-XII distribution,
resulting in the Marshall Olkin extended Burr-XII distribution.

Neutrosophic statistics, initially introduced in 1995 and further developed by Smaran-
dache (2014) explored the nature, origin, and application of neutralities. Neutrosophic logic
is a special form of fuzzy logic. The neutrosophic statistics is more efficient than the classical
statistics and interval-statistics see Smarandache (2022). While classical statistics rely on
definite data, neutrosophic statistics handle partial, imprecise, ambiguous, or indeterminate
data. The two fields coincide when indeterminacy is zero Chen et al. (2017). Neutrosophic
statistics provide more accurate results by differentiating between those who partially and
fully belong to a dataset. When all data and inference techniques are determined, both
classical and neutrosophic statistics occur simultaneously. Neutrosophic statistics (NS) offer
several advantages over interval statistics. In probability distributions, NS employs thick
functions, formed by the intersections of curves, which may or may not be depicted as in-
tervals Smarandache (2014). The neutrosophic probability distribution (NPD) for an event
(x) comprises three curves: NPD(x) = [T (x), I(x), F (x)], where T (x) represents the prob-
ability of event E occurring, I(x) denotes the indeterminate probability of E occurring or
not, and F (x) signifies the probability of E not occurring. These functions T(x),I(x), and
F(x) can take on classical or neutrosophic (unclear, approximate, thick) forms depending
on the specific application, and their sum ranges from 0 to 3 Smarandache (2013). Many
researchers have developed neutrosophic probability distributions. For example, Fawzi et al.
(2019) introduced the neutrosophic Weibull distribution and its related family, including
the neutrosophic Weibull, Neutrosophic Rayleigh, neutrosophic inverse Weibull, and neu-
trosophic three- and six-parameter Weibull, as well as the Neutrosophic beta distribution.
Rao (2023) developed the neutrosophic Log-logistic distribution, while Khan et al. (2021b)
introduced the neutrosophic Gamma Distribution. Duan et al. (2021) presented the neutro-
sophic exponential distribution, and Khan et al. (2021a) proposed the Neutrosophic Beta
distribution. Albassam et al. (2023) explored some basic properties of the neutrosophic
Weibull Distribution with applications to wind speed in uncertain environments. Nayana
et al. (2022) proposed the DUS Neutrosophic Weibull Distribution, and Eassa et al. (2023)
introduced the neutrosophic generalized Pareto Distribution, modeling it on public debt in
Egypt. Khan et al. (2021c) developed the Neutrosophic Rayleigh model for indeterminate
data and also created V charts, neutrosophic run length, and Neutrosophic power curves for
the proposed model. Sherwani et al. (2021) introduced new entropy measures for the Weibull
Distribution under neutrosophic data, and Granados et al. (2022) applied both continuous
and discrete probability distributions to Neutrosophic data. According to Granados et al.
(2022), fuzzy logic is a special case of Neutrosophic logic, which generalizes fuzzy logic.

The article is structured as follows: Section 2 outlines the development of the novel
Neutrosophic Marshall extended Burr-XII distribution, including graphical representation.
Sections 3 and 4 discuss various properties of the proposed density. Section 5 focuses on the
estimation of unknown parameters and simulation studies. Section 6 presents applications
of the proposed model. Section 7 provides a discussion on these applications, and Section 8
offers concluding remarks.
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2. Development of neutrosophic Marshall Olkin extended Burr-XII
distribution

In this section, we will introduce the neutrosophic Marshall Olkin Extended Burr-XII
distribution.

2.1. Marshall Olkin extended Burr-XII model

Burr type distributions are extensively used in life data and survival analysis. Adding
more parameters to the Burr-XII distribution enhances its flexibility and appeal. Conse-
quently, this study selects the Marshall-Olkin extended Burr-XII model for the development
of a Neutrosophic model. The cumulative distribution function (CDF) and the probability
density function (PDF) of the Marshall-Olkin Extended Burr-XII (MOE Burr-XII) distri-
bution are as follows.

F (x; α, β, γ) =
1 −

(
1 + xβ

)−γ

1 − (1 − α) (1 + xβ)−γ , x, α, β, γ > 0 (1)

and

f (x; α, β, γ) =
αβγxβ−1

(
1 + xβ

)−γ−1

[
1 − (1 − α) (1 + xβ)−γ

]2 , x, α, β, γ > 0 (2)

2.2. Neutrosophic random variable

Rao et al. (2023) discussed the extension of classical statistics called neutrosophic
statistics. In classical statistics, we work with specific or predefined values. In contrast,
neutrosophic statistics involves selecting values or data from a population within an unpre-
dictable environment. For instance, when recording the temperature of a place, we might
not be able to capture a precise value, such as 35°C. Instead, the value could have an uncer-
tainty range, like 35°C to 38°C. The information in this context can be confusing, inaccurate,
doubtful, partial, or even unknown.

Assuming the neutrosophic random variable XN = XL + INXL, where IN ∈ [IL, IU ]
wherever INXL is the indeterminate and IN ∈ [IL, IU ] is the indeterminacy. It is importance
to notice that the neutrosophic random variable is the extension of the classical random
variable specifically when IL = 0 the neutrosophic random variable converts into classical
random variable. According to his, the properties of the expectation of the neutrosophic
random variable XN = XL + INXL = (1 + IN)XL is defined as:

Aslam and Albassam (2024) explored the mean properties of the neutrosophic random
variable XN = XL + XLIN , defined as:

1. E (XN) = E (XL + XLIN) = (1 + IN) E (XL) = (1 + IN) µ

2. E (XN + t) = E [(XL + XLIN) + t] = (1 + IN) µ + t here t is a constant.

3. E (sXN + t) = E [s (XL + XLIN) + t] = s (1 + IN) µ + t here s and t are constant.

4. E (XN + YN) = (1 + IN) µX + (1 + IN) µY



350 SHAKILA BASHIR, BUSHRA MASOOD AND MUHAMMAD ASLAM [Vol. 23, No. 1

Now, the variance properties of the neutrosophic random variables are as follows:

1. V (XN) = V (XL + XLIN) = (1 + IN)2 V (XL) = (1 + IN)2 σ2

2. V (tXN) = t2V (XL + XLIN) = t2 (1 + IN)2 σ2

3. V (XN + YN) = (1 + IN)2 σ2
X + (1 + IN)2 σ2

Y + 2INCov (XN , YN)

4. V (sXN + tYN) = s2 (1 + IN)2 σ2
X + t2 (1 + IN)2 σ2

Y + 2stINCov (XN , YN)

5. If we have two independent variables, XN and YN :
V (XN + YN) = (1 + IN)2 σ2

X + (1 + IN)2 σ2
Y

Let suppose the random variable X arose from the Marshall Olkin extended Burr-
XII distribution with the CDF and PDF given in equations 1 and 2, we consider that the
neutrosophic statistical number N , and IN ∈ [IL, IU ] is an interval of indeterminacy. If
the neutrosophic variable XN = XL + INXL, generates the neutrosophic values of data.
According to this, the neutrosophic variable is defined as: XN = XL + INXL = (1 + IN)XL

here indeterminate and determined parts are described by XL and INXL respectively.

If the random variable in terms of neutrosophic statistic XN ∈ (1+IN)XL follows the
Marshall Olkin Extended Burr-XII (NMOE Burr-XII) then by using the equations 1 and 2,
the PDF and CDF of the neutrosophic Marshall Olkin Extended Burr-XII (NMO Burr-XII)
distribution are developed as given below.

fN (xN ; α, β, γ) =
αβγ (1 + IN) [(1 + IN) xL]β−1

[
1 + {(1 + IN) xL}β

]−γ−1

[
1 − (1 − α) [1 + {(1 + IN) xL}β]−γ

]2 , xN , α, β, γ > 0

(3)
Similarly, the CDF of the NMOE Burr-XII distribution is,

FN(xN ; α, β, γ) =
� x

0
fN (xN ; α, β, γ) dx

FN(xN ; α, β, γ) =

[
1 −

[
1 + {(1 + IN) xL}β

]−γ
]

[
1 − (1 − α) [1 + {(1 + IN) xL}β]−γ

] (4)

Special cases of NMOE Burr-XII distribution.

1. For α = 1, the NMOE Burr-XII becomes Neutrosophic Burr-XII distribution.

2. For β = 1, NMOE Burr-XII becomes the Neutrosophic Marshal Olkin Extended Lomax
distribution.

To prove that equation 3 is density and equation 4 is CDF, the following theorems
are given.
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Figure 1: Density plots for the NMOE burr-XII distribution for different values
of IN , and parameters
Theorem 1: Consider XN ∈ (1 + IN)XL here indeterminate and determined parts are
described by XL and INXL respectively; suppose XN follows the function given in equation
3 is a valid density function.

Proof: The random variable X follows the NMOE Burr-XII distribution in equation 3 then
� ∞

0

αβγ [(1 + IN) xL]β−1
[
1 + {(1 + IN) xL}β

]−γ−1

[
1 − (1 − α) [1 + {(1 + IN) xL}β]−γ

]2 (1 + IN) dx = 1
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Let
[
1 + {(1 + IN) xL}β

]−γ
= u, and after some simplifications we get the

α

� 1

0

1
[1 − (1 − α)u]2

du = 1

Again transform [1 − (1 − α)u] = z, and simplifying it we get,

α

1 − α

� 1

α

1
z2 dz = 1

The above integral is equal to one. Hence it is proved that equation 3 is a valid density
function.

Theorem 2: Let the random variable XN ∈ (1+IN)XL here indeterminate and determined
parts are described by XL and INXL follows the NMOE Burr-XII distribution then the CDF
given in equation 4 is a valid distribution function.

Proof: consider the random variable XN ∈ (1 + IN)XL follows the CDF given in equation
4 then, it is proved that:

F (0) = 0
F (∞) = ∞

Hence the equation 4 is a valid distribution function. The graphical representation of the
NMOE Burr-XII distribution is displayed below for different values of the parameters and
varying IN , Here, β & γ are the shape parameters, while α is the scale parameter. Figure 1
illustrates that the density is clearly unimodal.

3. Neutrosophic reliability measures

In this section, we develop several properties related to lifetime analysis, including
survival analysis and the hazard function. The survival function is defined as the probability
that an event or observation in survival data occurs after a specified time point. The survival
function for the NMOE Burr-XII distribution is given as follows.

SN (xN ; α, β, γ) =
α

[
1 + {(1 + IN) xL}β

]−γ[
1 − (1 − α) [1 + {(1 + IN) xL}β]−γ

] (5)

The hazard rate function is a fundamental concept in survival analysis, which exam-
ines time-to-event data. The hazard rate function (HRF) for the NMOE Burr-XII distribu-
tion is derived as follows.

hN (xN ; α, β, γ) = βγ (1 + IN) {(1 + IN) xL}β−1[
1 − (1 − α) [1 + {(1 + IN) xL}β]−γ

]
[1 + {(1 + IN) xL}β]

(6)

Figure 2 presents the HRF shapes with various values of parameters and with different
IN . HRF of the NMOE Burr-XII distribution exhibits monotone increasing trend.
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The cumulative hazard rate function for the NMOE Burr-XII distribution is

H (xN , α, β, γ) = −ln

 α
[
1 + {(1 + IN) xL}β

]−γ[
1 − (1 − α) [1 + {(1 + IN) xL}β]−γ

]


The reversed hazard rate function for the NMOE Burr-XII distribution is

r (xN , α, β, γ) =
αβγ (1 + IN) [(1 + IN) xL]β−1

[
1 + {(1 + IN) xL}β

]−γ−1[
1 − (1 − α) [1 + {(1 + IN) xL}β]−γ

] [
1 − [1 + {(1 + IN) xL}β]−γ

]

In the context of neutrosophic reliability measures, censoring can be accommodated
by incorporating neutrosophic sets to handle the uncertainty and indeterminacy associated
with censored data. This approach allows for a more flexible representation of reliability
metrics, where traditional binary logic (failure or survival) is extended to include degrees of
membership, indeterminacy, and non-membership, thus providing a nuanced way to account
for incomplete information due to censoring.

4. Some statistical properties of neutrosophic Marshall Olkin extended
Burr-XII distribution

This section explores various statistical properties of the NMOE Burr-XII distribu-
tion, including the mean, variance, quantile function, skewness, and kurtosis.
The mean of the neutrosophic MOE Burr-XII distribution is derived as

µN = E [(1 + IN) XL] = (1 + IN) E (XL) (7)

Where,

E (XL) = E (X) =
� ∞

0
x

αβγxβ−1
(
1 + xβ

)−γ−1

[
1 − (1 − α) (1 + xβ)−γ

]2 dx

The above expression does not have a closed form, so we can determine its numerical
values by substituting the parameter values.

Similarly, the variance of the neutrosophic MOE Burr-XII distribution is obtained as

σ2 = V ar [(1 + IN) XL] = (1 + IN)2 V ar (XL) (8)

The variance also does not have a closed form. Therefore, we can determine its
numerical values by substituting the parameter values.

Another important statistical property of the NMOE Burr-XII distribution is the
quantile function, which is crucial for the Monte Carlo simulation approach. This function
is also useful for generating random numbers from the probability distribution model. The
quantile function of the NMOE Burr-XII distribution is derived as follows.

QN(p) = F −1
N (Xp)
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Figure 2: HRF plots for the NMOE Burr-XII distribution for different values of
IN , and parameters
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QN(p) =

[(
1−p

1−p(1−α)

)− 1
γ − 1

] 1
β

(1 + IN) (9)

The median, first quartile, third quartile and Inter quartile range (IQR) for proposed
distribution are calculated as Median = QN(0.5), First quartile = QN(0.25), Third quartile=
QN(0.75) and IQR = QN(0.75) − QN(0.25).

Neutrosophic Measure of Skewness and Kurtosis based on the Quantile function for
NMOE Burr-XII distribution are given as follows,

SKN = QN(6/8) − 2QN(4/8) + QN(2/8)
QN(6/8) − QN(2/8) (10)

and
KN = QN(7/8) − QN(5/8) + QN(3/8) − QN(1/8)

QN(6/8) − QN(2/8) (11)

5. Parameter estimation

In this section, we discuss the estimation of unknown parameters for the NMOE
Burr-XII distribution using the method of maximum likelihood estimator (MLE).

Maximum likelihood estimation method

Given the observed data, this method is used to find the parametric values of the
proposed distribution. Suppose that (1 + IN)XN1, (1 + IN)XN2, . . . ., (1 + IN)XNn, be a
neutrosophic random samples of NMOE Burr-XII distribution then log-likelihood function
is derived as:

The loglikelihood function is:

l (α, β, γ) = log(α) + log(β) + log(γ) + log(1 + IN) + (β − 1)
n∑

i=1
log(1 + IN)xi

−(γ + 1)log
n∑

i=1

[
1 + {(1 + IN)x}β

]
− 2log

n∑
i=1

[
1 − (1 − α)

[
1 + {(1 + IN) xL}β

]−γ
] (12)

To find the values of parameters, obtain the derivative of the above expression with respect
to α, β and γ.

∂l

∂α
= 1

α
−

[
1 + {(1 + IN)x}β

]−γ[
1 − (1 − α) [1 + {(1 + IN) xL}β]−γ

] (13)

∂l

∂β
= 1

β
+ log{(1 + IN)x} − (γ + 1){(1 + IN)x}βlog{(1 + IN)x}

[1 + {(1 + IN)x}β]

−
2γlog{(1 + IN)x + 1}

[
−

[
−(α − 1){(1 + IN)x + 1}β

]−γ
]

1 − (1 − α) [1 + {(1 + IN)x}β]−γ

(14)

∂l

∂γ
= 1

γ
− log{1 + {(1 + IN)x}β} −

2
[
1 + {(1 + IN)x}β

]−γ
log

[
1 + {(1 + IN)x}β

]
1 − (1 − α) [1 + {(1 + IN)x}β]−γ (15)
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5.1. Simulation study

In this section, we conduct a Monte Carlo simulation study to evaluate the perfor-
mance of the estimated parameters for the NMOE Burr-XII distribution. We assess the
performance of the neutrosophic Maximum Likelihood estimator using the neutrosophic av-
erage biased (ABN) and the neutrosophic root mean square error (RMSE).

ABN = 1
N

N∑
i=1

(
θ̂Ni

− θN

)

and

RMSEN = 1
N

N∑
i=1

(
θ̂Ni

− θN

)2

In R software, a Monte Carlo simulation with varying sample sizes and fixed values
of the Neutrosophic parameters α = [0.01, 0.2], β = [2.0, 2.7] and γ = [1.2, 1.8] is conducted.
The NMOE Burr-XII is used to build an imprecise dataset with α = [0.01, 0.2], β = [2.0, 2.7]
and γ = [1.2, 1.8], and simulation is replicated N = 10000 times with sample sizes of n =
50, 100, 300, 500, respectively. The performance of the neutrosophic Maximum Likelihood
estimators is then computed and shown in Tables 1, 2, 3 and 4. In the tables from 1-4,
it is observed as the sample size increases the MSE, MRE and bias is decreasing for all
parameters. Moreover, comparing estimated results when the IN has been calculated from
respective parameters i.e. INparameters with when IN = 0. Then the MSE, Bias and MRE for
INα given in table 1, INβ

given in table 2, and INγ given in table 3, are less as compared to
when IN = 0, given in table 4.
Table 1: Parameter’s bias, average bias, mean square error (MSE), and mean
relative error (MRE) for αN = [0.01, 0.09], βN = [0.5, 1.5], γN = [0.05, 1.5] and INα =
0.89 calculated from αN

Sizes MLE Estimates αN = [0.01, 0.09] βN = [0.5, 1.5] γN = [0.05, 1.5]

50

Bias [0.1641, 1.2994] [0.4957, 1.4747] [0.2716, 2.5005]
Average Bias [0.1566, 1.2434] [0.0487,0.1905] [0.2339, 1.4319]
MSE [20.8938, 196.1348] [0.0038, 0.0635] [0.2364, 5.1005]
MRE [15.6634, 17.8155] [0.0974, 0.1270] [4.6771, 0.9546]

100

Bias [0.0358, 0.5668] [0.4973, 1.4839] [0.1589, 2.0133]
Average Bias [0.0285, 0.5085] [0.0339, 0.1324] [0.1218, 0.9201]
MSE [0.0036, 89.8824] [0.0018, 0.0301] [0.0517, 1.9413]
MRE [2.8496, 5.6503] [0.0678, 0.0882] [2.4361, 0.6134]

300

Bias [0.0170, 0.1080] [0.4996,1.4960] [0.0824, 1.6468]
Average Bias [0.0098, 0.0427] [0.0189, 0.0731] [0.0459, 0.4588]
MSE [0.0003, 0.0040] [0.0006, 0.0085] [0.0055, 0.3739]
MRE [0.9829, 0.4742] [0.0379, 0.0487] [0.9182, 0.3058]

500

Bias [0.0137, 0.1006] [0.4998, 1.4971] [0.0672, 1.5890]
Average Bias [0.0064, 0.0313] [0.0149, 0.0559] [0.0302, 0.3473]
MSE [0.0001, 0.0019] [0.0004, 0.0050] [0.0021, 0.2086]
MRE [0.6396, 0.3487] [0.0297, 0.0373] [0.6055, 0.2315]
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Table 2: Parameter’s bias, average bias, mean square error (MSE), and mean
relative error (MRE) for αN = [0.01, 0.09], βN = [0.5, 1.5], γN = [0.05, 1.5] and INβ

=
0.67 calculated from βN

Sizes MLE Estimates αN = [0.01, 0.09] βN = [0.5, 1.5] γN = [0.05, 1.5]

50

Bias [0.1553, 1.4602] [0.4958, 1.4721] [0.2834, 2.5290]
Average Bias [0.1477, 1.4042] [0.0501, 0.1899] [0.2453, 1.4662]
MSE [30.9636, 232.3428] [0.0041, 0.0641] [0.2568, 5.3880]
MRE [14.7735, 15.6019] [0.1001, 0.1266] [4.9058, 0.9774]

100

Bias [0.0350, 0.3235] [0.4979, 1.4878] [0.1562, 1.9594]
Average Bias [0.0278, 0.2666] [0.0342, 0.1303] [0.1196, 0.8842]
MSE [0.0033, 30.7377] [0.0019, 0.0280] [0.0483, 1.7041]
MRE [2.7784, 2.9620] [0.0683, 0.0868] [2.3922, 0.5895]

300

Bias [0.0167, 0.1083] [0.4999, 1.4970] [0.0809, 1.6536]
Average Bias [0.0095, 0.0429] [0.0192, 0.0725] [0.0448, 0.4618]
MSE [0.0003, 0.0041] [0.0006, 0.0085] [0.0054, 0.3837]
MRE [0.9519, 0.4764] [0.0383, 0.0484] [0.8950, 0.3079]

500

Bias [0.0139, 0.1009] [0.4997, 1.4974] [0.0682, 1.5950]
Average Bias [0.0066, 0.0316] [0.0147, 0.0562] [0.0314, 0.3505]
MSE [0.0001, 0.0019] [0.0003, 0.0051] [0.0023, 0.2099]
MRE [0.6631, 0.3513] [0.0293, 0.0375] [0.6272, 0.2336]

Table 3: Parameter’s bias, average bias, mean square error (MSE), and mean
relative error (MRE) for αN = [0.01, 0.09], βN = [0.5, 1.5], γN = [0.05, 1.5] and INγ =
0.97 calculated from γN

Sizes MLE Estimates αN = [0.01, 0.09] βN = [0.5, 1.5] γN = [0.05, 1.5]

50

Bias [0.1257, 1.4512] [0.4954, 1.4742] [0.2921, 2.5106]
Average Bias [0.1183, 1.3951] [0.0507, 0.1901] [0.2544, 1.4363]
MSE [6.8381, 231.8247] [0.0041, 0.0638] [0.2779, 5.1529]
MRE [11.8248, 15.5015] [0.1014, 0.1267] [5.0875, 0.9576]

100

Bias [0.0349, 0.4358] [0.4978, 1.4863] [0.1563, 1.9758]
Average Bias [0.0276, 0.3778] [0.0343, 0.1311] [0.1194, 0.8831]
MSE [0.0031, 60.1300] [0.0019, 0.0288] [0.0485, 1.7537]
MRE [2.7619, 4.1978] [0.0687, 0.0874] [2.3882, 0.5888]

300

Bias [0.0170, 0.1085] [0.4994, 1.4952] [0.0821, 1.6575]
Average Bias [0.0098, 0.0430] [0.0187, 0.0728] [0.0459, 0.4647]
MSE [0.0003, 0.0040] [0.0006, 0.0085] [0.0055, 0.3847]
MRE [0.9831, 0.4776] [0.0374, 0.0485] [0.9187, 0.3098]

500

Bias [0.0138, 0.0996] [0.4999, 1.4989] [0.0678, 1.5792]
Average Bias [0.0065, 0.0313] [0.0148, 0.0563] [0.0307, 0.3494]
MSE [0.0001, 0.0019] [0.0003, 0.0050] [0.0022, 0.2066]
MRE [0.6473, 0.3478] [0.0295, 0.0375] [0.6144, 0.2329]
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Table 4: Parameter’s bias, average bias, mean square error (MSE), and mean
relative rrror (MRE) for αN = [0.01], βN = [0.5], γN = [0.05] and IN = 0

Sizes MLE Estimates αN = [0.01] βN = [0.5] γN = [0.05]

50

Bias 0.1923 0.4954 0.2899
Average Bias 0.1849 0.0503 0.2523
MSE 27.206 0.0041 0.2861
MRE 18.4847 0.1007 5.0461

100

Bias 0.0348 0.4978 0.1552
Average Bias 0.0275 0.0344 0.1186
MSE 0.0031 0.0019 0.0469
MRE 2.7534 0.0687 2.3711

300

Bias 0.0171 0.4994 0.0828
Average Bias 0.0099 0.0189 0.0465
MSE 0.0003 0.0006 0.0056
MRE 0.9923 0.0377 0.9292

500

Bias 0.0140 0.4998 0.0688
Average Bias 0.0067 0.0147 0.0319
MSE 0.0001 0.0003 0.0023
MRE 0.6712 0.0295 0.6376

6. Applications

In this section, we apply the NMOE Burr-XII model to two real-world datasets char-
acterized by uncertain or complex values. We aim to gauge the suitability of the NMOE
Burr-XII model for such data. Various model selection methods are employed to assess the
performance of the proposed distribution and compare it with other competing distribu-
tions to determine the best model. Two datasets are used in this study, that are Remission
time dataset and Covid-19 dataset. The understudy datasets are presented in interval form,
meaning they exhibit uncertainty in the upper bounds of their data values, rather than pro-
viding single, fixed values. This inherent uncertainty may result in insufficient information.
To address this issue, the upper bounds in each dataset are calculated using the indetermi-
nacy component IN , thereby converting them into neutrosophic statistics. The values of IN

can be changed to 2%, 5%, or 10% based on the desired degree of assurance or uncertainty.
By immediately identifying and incorporating uncertainties into each dataset, this technique
enables a more nuanced analysis and improves the comprehensiveness and utility of the
data in medical research and decision-making across different investigations. In applications
IN = 0.05 is used to find the upper values of the datasets. A balance between being cautious
and accommodating of data uncertainties is achieved by setting IN = 0.05. It allows for
considerable flexibility while maintaining a respectable degree of analytical precision.

Remission time dataset

The first data consists of a collection of 128 cancer patients’ remission durations
measured in months. After getting therapy, each value indicates how long a patient stayed
in remission. When it comes to cancer therapy, remission is the time when the disease’s
symptoms and indicators are either minimal or nonexistent. This data has been taken from
bladder cancer study reported by Lee and Wang (2003). The understudy data (remission
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time) is available in neutrosophic form. We took the lower limit of the data from the source
and estimated the upper limit by applying an indeterminacy factor of IN = 0.05. This
same indeterminacy factor was then used to calculate the descriptive statistics shown in 7,
estimate the values of neutrosophic parameters also in Table 8, and model the proposed
density in Table 10 for the remission time data. [Note: this factor can be taken any other
value.].

Table 5: Remission time Dataset

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.2
2.23 3.52 4.98 6.97 9.02 13.29 0.4 2.26 3.57
5.06 7.09 9.22 13.8 25.74 0.5 2.46 3.64 5.09

[7.26, 8.2] 9.47 14.24 25.82 0.51 2.54 3.7 5.17 7.28
9.74 14.76 [5.3,7.1] 0.81 2.62 3.82 5.32 7.32 10.06

[12, 14.77] 32.15 2.64 3.88 5.32 7.39 10.34 14.83 34.26
0.9 2.69 4.18 5.34 7.59 10.66 15.96 36.66 1.05
2.69 4.23 5.41 7.62 10.75 16.62 43.01 1.19 2.75
4.26 5.41 7.63 [15, 17.2] 46.12 1.26 2.83 4.33 5.49
7.66 11.25 17.14 [75.02, 81] 1.35 2.87 5.62 7.87 11.64
17.36 1.4 3.02 4.34 5.71 7.93 11.79 18.1 1.46
4.4 5.85 8.26 11.98 19.13 1.76 3.25 4.5 6.25
8.37 12.02 [1.5, 3.2] 3.31 4.51 6.54 [7.5, 8.2] 12.03 20.28
2.02 3.36 6.76 12.07 21.73 2.07 3.36 6.93 8.65
12.63 22.69 — — — — — — —

Covid-19 dataset

The data research by Almongy et al. (2021) describes the duration of relief in hours for
30 patients who received analgesic medication, likely as a part of a treatment for managing
COVID-19-related symptoms. The data displays a range of response times, which suggests
that patients in the research group had varying responses to the medicine. The relief time
data is available from the source in neutrosophic form. We considered the lower limit of the
data and calculated the upper limit by using an indeterminacy value of IN = 0.05. This
same indeterminacy value is later used to determine the descriptive statistics in Table 7,
estimate the neutrosophic parameters in Table 9, and model the proposed density in Table
11 for the relief time data.

Table 6: Covid-19 Dataset

(14.918, 15.6639) (10.056, 11.1888) (12.274, 12.88770) (10.289, 10.80345)
(10.832, 11.3736) (7.099, 7.4539) ( 5.928, 6.22440) (13.211, 13.87155)
(7.968, 8.36640) (7.584, 7.96320) (5.555, 5.83275) (6.027, 6.32835)
(4.097, 4.30185) (3.611, 3.79155) ( 4.960, 5.20800) (7.498, 7.87290)
(6.940, 7.28700) (5.307, 5.57235) (5.048, 5.30040) (2.857, 2.99985)
(2.254, 2.36670) (5.431, 5.70255) (4.462, 4.68510) (3.883, 4.07715)
(3.461, 3.63405) (3.647, 3.82935) (1.974, 2.07270) (1.273, 1.33665)
(1.416, 1.48680) (4.235, 4.44675) — —
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Table 7: Descriptive statistics for both data sets from proposed density

Descriptives Remission time data COVID-19
Mean [0.9010, 0.8945] [0.8162, 0.8205]
Variance [0.0009, 0.0007] [1.1e-05, 2.587e-06]
Median [0.9004, 0.8941] [0.8169, 0.8212]
First Quartile [0.8821, 0.8785] [0.8141, 0.8189]
Third Quartile [0.9191, 0.9100] [0.8193, 0.8230]
Skewness [0.4324, 0.7092] [-13.4441, -121.5781]
Kurtosis [0.7801, 0.5726] [177.7792, 941.5738]

Table 8: ML estimates and standard errors remission time dataset

NMOE Burr-XII
α [63.6772, 58.4272] [59.2463, 47.0918]
β [59.2463, 47.0918] [0.955, 0.9926]
γ [0.955, 0.9926] [0.3767, 0.3711]

N-Burr-III θ [1.033, 1.0232] [0.0601, 0.0591]
λ [0.0601, 0.0591] [4.3325, 4.5161]

Burr-XII θ [2.3454, 2.3303] [0.355, 0.3518]
λ [0.355, 0.3518] [0.2351, 0.235]

Table 9: ML estimates and standard errors for the COVID-19 (relief time) data

NMOE Burr-XII
α [97.7882, 118.707] [81.9116, 102.2903]
β [81.9116, 102.2903] [25.5239, 23.8676]
γ [25.5239, 23.8676] [30.2665, 86.2472]

N-Burr-III θ [1.6581, 1.6477] [0.1983, 0.1974]
λ [0.1983, 0.1974] [10.657, 11.3512]

Burr-XII θ [21.4342, 15.715] [32.6983, 23.3943]
λ [32.6983, 23.3943] [0.0283, 0.0375]

From Table 7, the following results information is obtained.

• The average remission time (in months) for bladder cancer patients is between the
interval by mean is [0.9010, 0.8945] and by median is [0.9004, 0.8941] with spread
[0.0009, 0.0007]. From the skewness and kurtosis, it is seen that the remission time
data is slightly positively skewed, and platykurtic. From the first quartile it is seen
that 25% of the patients have less remission time by this interval [0.8821, 0.8785] and
from third quartile it is seen that 75% of the patients have less remission time by this
interval [0.9191, 0.9100].

• The average relief times for bladder cancer patients is between the interval by mean
is [0.8162, 0.8205] and by median is [0.8169, 0.8212] with spread [1.1e-05, 2.587e-06].
From the skewness and kurtosis, it is seen that the relief times data is extremely
negatively skewed, and leptokurtic. From the first quartile it is seen that 25% of the
patients have relief times by this interval [0.8141, 0.8189] and from third quartile it is
seen that 75% of the patients have less relief times by this interval [0.8193, 0.8230].
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Model Selection Criteria with estimates for the remission time dataset is shown in
table 8 and 10. Model Selection Criteria with estimates for the COVID-19 (relief time) data
is shown in tables 9 and 11. The estimated values of the parameters in tables 8 and 9 are in
interval form because the parameters are neutrosophic due the uncertainty in the data sets.

7. Comparative study

This section presents a comparative study of the proposed model using two real-life
datasets. The comparison is conducted with the neutrosophic Burr-II and classical Burr-XII
models.

In Tables 10 and 11, the proposed neutrosophic density NMOE-Burr-XII is modeled
and compared for both datasets, with the indeterminacy component IN set at 0.05. This
value represents the uncertainty in the datasets. When IN equals 0, the density is in its
classical form, such as NMOE Burr-XII and N-Burr-III, with the test statistic criterion
being the lower bound only. However, when IN is 0.05 or any other value, the densities
become neutrosophic, and the test statistic criterion is presented in interval form due to the
neutrosophic nature of the data.

In table 10, the modeling of the proposed density on remission time for bladder
cancer patients’ data shows that NMOE Burr-XII distribution shows more flexibility over
the neutrosophic Burr-III (N-Burr-III) and classical Burr-XII distributions due to the lowest
values of AIC, BIC, CAID, HQIC KS test and larger p-value for the KS test. It is also
observed that Burr-XII shows p-value as 0.000 which particularly shows its inadequacy for
the neutrosophic data, while NMOE Burr-XII and N-Burr-III both fit the data, but NMOE
Burr-XII provides very strong p-value which shows its superiority. Table 11 shows the
modeling of the proposed model on the relief time for COVID-19 data, the results shows
that the NMOE Burr-XII distribution shows more flexibility as compared to the N-Burr-III
and classical Burr-XII distributions due to the lowest values of AIC, BIC, CAID, HQIC KS
test and larger p-value for the KS test.

Furthermore, the proposed density demonstrates superior flexibility and provides ev-
idence across all three datasets compared to the classical Burr-XII and even the N-Burr-III
distribution. Importantly, it is observed that the classical Burr-XII distribution does not
fit well on both neutrosophic datasets (remission time for bladder cancer and relief time for
COVID-19 datasets), yielding a p-value of 0.000.

In conclusion, the neutrosophic Marshall-Olkin Extended Burr-XII distribution emerges
as a valuable tool particularly in scenarios where data is indeterminate, contrasting with the
classical Burr-XII distribution. Classical distributions are unsuitable for modeling indeter-
minate and ambiguous datasets. The two data examples discussed above fall under the
neutrosophic setup because they deal with lifetime data that inherently includes elements of
uncertainty and incomplete information, which are better handled using neutrosophic statis-
tics. While classical methods rely on precise probabilities, neutrosophic methods provide
a more comprehensive framework by incorporating indeterminacy and partial truth values,
thus offering more robust and realistic estimates in the presence of real-world complexities.
This allows for better decision-making and reliability assessments in environments where
data is not perfectly exact or complete.
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8. Conclusion

In this study, we introduce a novel model called the neutrosophic Marshall-Olkin Ex-
tended Burr-XII distribution. We demonstrate that this model is advantageous for analyz-
ing survival and reliability datasets with indeterminacies compared to classical distributions.
Various neutrosophic properties are explored, including the neutrosophic survival function,
hazard function, mean, variance, mode, skewness, and kurtosis. The distribution exhibits
left-skewed, right-skewed, and symmetric shapes. The hazard rate function displays a mono-
tonically increasing trend. Parametric values are determined using the maximum likelihood
method. A simulation study assesses the performance of estimators across small, medium,
and large sample sizes, revealing a decrease in mean square error with increasing sample
size. Additionally, the proposed NMOE Burr-XII distribution is applied to two real-life
datasets with uncertain values, demonstrating its superior flexibility compared to classical
distributions.
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