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Abstract

In industrial sectors, understanding machine behaviour in real-time is crucial for min-
imizing unscheduled downtime and maximizing production with expected quality. Advanced
machines like injection molding machine used for manufacturing plastic bottles for soft drinks
are equipped with sensors that record event log times. We adopt a hierarchical paramet-
ric model to predict machine failure time based on its current state, that are, “running
with alerts,” “running without alerts,” and system breakdown. The model utilizes Weibull
distribution for the event duration to predict failure times.
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1. Injection molding machine

Running manufacturing equipment involves maintenance of machines on a regular
basis. Preventive maintenance is a popular and well accepted approach, however, such tasks
are carried out according to a timetable, and not always done when the equipment specifically
calls for them. Thus, it is crucial to predict machine failures with enough lead time.

Several predictive models have been proposed by different authors to predict the fail-
ure time using the sequence of events. Li et al. (2007) developed a Cox-proportional hazard
(CPH) model to predict the time to failure model. Luo et al. (2014) proposed a frame-
work which consists of three stages: data pre-processing, event extraction, and correlation
analysis. In the data pre-processing stage. A few other works on the correlation based
event prediction model are Motahari-Nezhad et al. (2011); Wu et al. (2010); Zhu and
Shasha (2002); Lou et al. (2010). Agrawal et al. (1993) use association mining to learn a
pattern based on a historical sequence of past events to predict the probable occurrence of
next event(s). In retail sector, the market basket analysis has been recognized as a proven
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and successful application of association rule mining for cross selling, product placement,
promotion affinity analysis, and product promotion and targeting (Kohavi et al. , 2004),
for mining gene sequence expression (Jiang and Gruenwald , 2005) and for web-log mining
(Huang and An , 2002; Rudin et al. , 2011).

The main objective of this study is to propose a time to failure model of an injection
molding (IM) machine for a plastic soft drink bottle (see Figure 1).

Figure 1: An injection molding (IM) machine schematic diagram (source:
https://prototechasia.com/en/injection-molding/questions-injection-molding)

Industry 4.0 brings forth intelligent machines equipped with sophisticated sensors,
embedded software, and robotics which gather and store data as machine logs in a semi-
structured format. These data are usually collected while machine is in running condition,
and primarily consists of operation events, performance counters, and alert messages, among
others. This research focuses on the system logs data that are captured through various
sensors mounted in the IM machine (see Figure 2).

Figure 2: A schematics of IM machine with various sensors.
Figure 3 depicts different operational sequence of a few events of an IM machine which

typically provide sufficient information for engineers to diagnose the working condition of
equipment.

The alert messages have been clubbed into three groups. When the machine is running
smoothly and does not produce any message or alert we label it as “running without alert”.
Alternatively, when the machine is running but generate some warning or requires human
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Figure 3: An example of sequence of events while machine is in operational
condition.

intervention, we call it as “running with alert”. Finally, “failure” refers to the state of the
machine when the system is down and requires maintenance.

Furthermore, if there are two or more consecutive occurrences of the same type of
events (say, “running with alert”) then Pal et al. (2024) clubbed them together as one event.
This implied that “running without alert” and “running with alert” will occur alternatively
followed by “failure”. It may also be possible that the machine experiences only one type
of events, say “running without alert” or “running with alert” in an epoch before “failure”.
One sequence of events until the failure is also referred to as an epoch. In this illustrative
image only two epochs are shown for the purpose of understanding. Figure 4 illustrate the
sequence of events leading to failure.

Figure 4: Illustration of a snapshot of different states of the machine (i.e., “run-
ning without alert”, “running with alert” and “failure”).

The data considered by Pal et al. (2024) consists of 45 epochs, in which the total
number of “running with alert” events is 1584, whereas the total number of “running without
alert” events is 1606 (i.e., 3190 running events and 45 failures). Moreover, the IM machine
considered here consists of 72 different sensors that may explain the reasons behind the time
spent on the three states. These sensors are majorly related to mold surface temperature,
cooling rate of cavities, post gate cavity pressure, filled area of post gate cavity, filled area of
molding, injection fill time, screw runtime, etc.
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2. Model developed by Pal et al. (2024)

This section summarizes the key aspects of the failure time prediction methodologies
developed by Pal et al. (2024).

1. Pre-processing of the data: the machine states are labelled into three categories: failure,
running with alert, and running without alert. Furthermore, the consecutive (different)
alerts with the same label (e.g., running with alert) are clubbed together as the same
state / event.

2. Distributional assumption of the key variables:

(a) Number of events per epoch (Ri): Since Ri ≥ 1 (0 is not possible), a shifted
Poisson distribution is assumed. The probability mass function (PMF) is

P (Ri = ri) = e−µ µ(ri−1)

(ri − 1)! ; ri = 1, 2, · · · . (1)

(b) Duration of a “running without alert” event j in epoch i (denoted by X1
ij): expo-

nential with rate parameter λ1

(c) Duration of a “running with alert” event j in epoch i (denoted by X2
ij): exponen-

tial with rate parameter λ2

3. Let N1
i be the number of “running without alert” events in the i-th epoch, and N2

i

refers to the number of “running with alert” event in the i-th epoch. Grouping of
epochs into four situations:

(a) Situation 1: The epoch starts with the event “running without alert” and the
number of events ri is odd. Hence N1

i = ri+1
2 and N2

i = ri−1
2 .

(b) Situation 2: The epoch starts with the event “running without alert” and the
number of events ri is even. Hence N1

i = ri

2 and N2
i = ri

2 .
(c) Situation 3: The epoch starts with the event “running with alert” and the

number of events ri is odd. Hence N1
i = ri−1

2 and N2
i = ri+1

2 .
(d) Situation 4: The epoch starts with the event “running with alert” and the

number of events ri is even. Hence N1
i = ri

2 and N2
i = ri

2 .

4. Likelihood calculation: the likelihood for Situation 1 can be written as:

L1(θ) = c1
∏

i∈S1

P (Ri = ri) × p ×
ri+1

2∏
j=1

f 1(x1
ij) ×

ri−1
2∏

j=1
f 2(x2

ij)

 , (2)

where, fk(.) is the probability density function (PDF) of exponential distribution with
mean 1/λk, for k = 1, 2, p is the probability of the first event being “running without
alert”, and c1 is the proportionality constant independent of the parameters θ. Af-
ter ignoring the constant, using appropriate PDFs and PMF in the above likelihood
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function, and taking natural-log we get the log-likelihood,

L1(θ) = − n1 µ + ln(µ)
∑
i∈S1

(ri − 1) −
∑
i∈S1

ln((ri − 1)!) + ln(λ1)
∑
i∈S1

(
ri + 1

2

)

− λ1
∑
i∈S1

ri+1
2∑

j=1
x1

ij + ln(λ2)
∑
i∈S1

(
ri − 1

2

)
− λ2

∑
i∈S1

ri−1
2∑

j=1
x2

ij + n1ln(p).
(3)

For other situations, the likelihood expression will be similar and the readers can refer
to Appendix A1 in Pal et al. (2024). Subsequently, the log-likelihood of the data from
all n epochs and four situations can be written as, L(θ) = L1(θ)+L2(θ)+L3(θ)+L4(θ).
The parameter vector θ = (λ1, λ2, p, µ) is estimated by maximizing L(θ). By defining
N s

il = ri+as
l

2 and

as
l =


(−1)s+1, if l = 1
0, if l = 2, 4
(−1)s, if l = 3

for s = 1, 2, the closed form analytical expression of the maximum likelihood estimators
(MLEs) are given by

λ̂s =

4∑
l=1

∑
i∈Sl

N s
il

4∑
l=1

∑
i∈Sl

Ns
il∑

j=1
xs

ij

for s = 1, 2, p̂ = n1 + n2

n
and µ̂ = 1

n

4∑
l=1

∑
i∈Sl

(ri − 1). (4)

5. Since there are 72 sensors, important ones that might influence the current state of
the machine are identified via variable importance method within the random forest
model framework.

6. Subsequently, these m important sensor-based covariates are introduced in the model
via generalized linear regressors. That is, the generalized linear model (GLM) consid-
ered for λ1, λ2 and µ in i-th epoch can be written as,

λ1i = exp
(

β0 +
m∑

k=1
Fkiβk

)
, λ2i = exp

(
γ0 +

m∑
k=1

Fkiγk

)
, µi = exp

(
η0 +

m∑
k=1

Fkiηk

)
,

where βk, γk, ηk for k = 0, 1, · · · , m denote the unknown regression coefficients and Fki

denotes the k-th sensor value in the i-th epoch.

7. Next, the MLEs of these regression parameters are obtained using numerical opti-
mization. Additionally, uncertainty bounds for these estimates are obtained through
non-parametric (asymptotic and Bootstrap) confidence intervals.

8. Finally, Pal et al. (2024) addressed the main objective of the paper, i.e., the derivation
of the expected time to fail for the IM machine. Given that the epochs in four situations
are based on whether the number of events is even or odd, and whether the first event
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is of “running with alert” or “running without alert”, the expected time to fail can be
written as:

E[Time to fail] = (1 − e−2µ)(µ + 1)
4

( 1
λ1

+ 1
λ2

)
+(1 + e−2µ)

4

[
µ + 2p

λ1
+ µ + 2(1 − p)

λ2

]
. (5)

In practice, the values of λ1, λ2, µ and p are required, which in-turn requires the values
of covariates, to compute the expected time to fail for an out-of-sample epoch. Pal et
al. (2024) have taken the epoch-wise average value of covariates for comparison the
model performance. Alternatively, one can take the average sensor values across all 45
epochs (i.e., over 3190 events) to estimate the expected time to fail. Of course, if we
know the true values of the sensors, one can use that instead, however these values are
typically not known in advance.

Pal et al. (2024) implemented the methodology on the data obtained from the IM
machine that manufactures softdrink bottles. The performance comparison of the actual time
to fail with the expected time to fail derived in Step 8, and the popular Cox-proportional
hazard (CPH) model is presented in Figure 5.
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Figure 5: Plot of epoch-wise actual and expected time to fail by the proposed
model and the CPH model.

The visual comparison between the three sets of values in Figure 5 clearly show the
superior performance of the proposed model as compared to the CPH model. However, one
can compute various goodness of fit measures for quantitative comparison as well. Table 1
presents the mean square error (MSE), mean absolute error (MAE), maximum error (MaxE)
and correlation between actual data and the proposed model.
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Table 1: Performance of the proposed model vs CPH model

Model MSE MAE MaxE Correlation
Proposed 1299394.36 796.38 2881.12 0.89

CPH 5389542.03 1102.77 10477.12 0.48

3. Proposed extension

Although the model proposed by Pal et al. (2024) demonstrates superior perfor-
mance than the popular CPH model, there is a room for further investigation and possible
improvement. For instance, the distribution of Xk

ij (j-th event of type k (k = 1, 2) in epoch
i), the time duration spent by the machine on a given state (i.e., duration of “running with-
out alert” or “running with alert”) was assumed to be exponential because of popularity and
simplicity. It turns out that Weibull distribution is more general and hence a better choice
than exponential for modeling Xk

ij. This paper discusses the key expressions of Pal et al.
(2024) that need to be modified as per the Weibull distribution.

Let Xk
ij ∼ Weibull(αk, λk), for k = 1, 2. For simplicity, one can take identical shape

parameters, i.e., αk = α. As a result, the PDF of Xk
ij is given by

fk(x) = λkαxα−1e−λkxα

,

with mean 1
λ1/k Γ(1 + 1

α
).

First, the likelihood in (2), and for other situations, will be modified as

L1(θ) = c1
∏

i∈S1

P (Ri = ri) × p ×
ri+1

2∏
j=1

{
λ1α(x1

ij)α−1e−λ1(x1
ij)α
}

×
ri−1

2∏
j=1

{
λ2α(x2

ij)α−1e−λ2(x2
ij)α
} .

This leads to the update of the log-likelihood expression in (3) as

L1(θ) = −n1 µ + ln(µ)
∑
i∈S1

(ri − 1) −
∑
i∈S1

ln((ri − 1)!) + ln(α)
∑
i∈S1

ri + n1ln(p)

+ln(λ1)
∑
i∈S1

(
ri + 1

2

)
− λ1

∑
i∈S1

ri+1
2∑

j=1
(x1

ij)α + (α − 1)
∑
i∈S1

ri+1
2∑

j=1
ln(x1

ij)

+ln(λ2)
∑
i∈S1

(
ri − 1

2

)
− λ2

∑
i∈S1

ri−1
2∑

j=1
(x2

ij)α + (α − 1)
∑
i∈S1

ri−1
2∑

j=1
ln(x2

ij).

AS earlier, the total log-likelihood of the data from all n epochs and four situations,
L(θ) = L1(θ) + L2(θ) + L3(θ) + L4(θ), can be maximized to obtain

λ̂s =

4∑
l=1

∑
i∈Sl

N s
il

4∑
l=1

∑
i∈Sl

Ns
il∑

j=1
(xs

ij)α̂

for s = 1, 2, p̂ = n1 + n2

n
and µ̂ = 1

n

4∑
l=1

∑
i∈Sl

(ri − 1), (6)
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where, α̂ can be obtained by maximizing the profile log-likelihood function of α, given by,

g(α) = ln(α)
4∑

l=1

∑
i∈Sl

ri −
2∑

s=1

4∑
l=1

∑
i∈Sl

(
ri + as

l

2

)
ln

( 4∑
l=1

∑
i∈Sl

Ns
il∑

j=1
(xs

ij)α

)

+α
2∑

s=1

4∑
l=1

∑
i∈Sl

Ns
il∑

j=1
ln(xs

ij). (7)

The uniqueness of α̂ can be established with the help of the following two theorems

Theorem 1: The profile log-likelihood of α, given by, g(α) in (7) is a concave function.

Proof: We skip the derivation of the first derivative of g(α) and directly jump to the second
derivative of g(α), i.e.,

d2g(α)
dα2 = − 1

α2

4∑
l=1

∑
i∈Sl

ri −
2∑

s=1

4∑
l=1

∑
i∈Sl

(
ri + as

l

2

)
(Ds(α) − Es(α))

( 4∑
l=1

∑
i∈Sl

Ns
il∑

j=1
(xs

ij)α

)−2

,

where, Ds =
4∑

l=1

∑
i∈Sl

Ns
il∑

j=1
(xs

ij)α
4∑

l=1

∑
i∈Sl

Ns
il∑

j=1
(xs

ij)α(ln(xij))2 and Es =
( 4∑

l=1

∑
i∈Sl

Ns
il∑

j=1
(xs

ij)αln(xij)
)2

.

Using Cauchy-Schwarz inequality, we get Ds(α)−Es(α) ≥ 0 confirming d2g(α)/dα2 ≤
0. Hence g(α) is a concave function.

Theorem 2: The profile log-likelihood of α, given by, g(α) in (7) has a unique maximum.

Proof: Given Theorem 1, we only need to show that the first order derivative of g(α) has a
unique root. Note that dg(α)/dα = 0 can be written as G(α) − H(α) = 0,

where, G(α) =

4∑
l=1

∑
i∈Sl

ri

α
+

2∑
s=1

4∑
l=1

∑
i∈Sl

Ns
il∑

j=1
ln(xs

ij),

and H(α) =
2∑

s=1

4∑
l=1

∑
i∈Sl

(
ri + as

l

2

) 4∑
l=1

∑
i∈Sl

Ns
il∑

j=1
(xs

ij)αln(xs
ij)( 4∑

l=1

∑
i∈Sl

Ns
il∑

j=1
(xs

ij)α

) . (8)

Clearly G(α) is a decreasing function of α. Also the first order derivative of H(α) is

d

dα
H(α) =

2∑
s=1

4∑
l=1

∑
i∈Sl

(
ri + as

l

2

)
Ds(α) − Es(α)( 4∑

l=1

∑
i∈Sl

Ns
il∑

j=1
(xs

ij)α

)2

,
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where, Ds(α) and Es(α) are defined in Theorem 1. By using Cauchy-Schwarz inequality, it
can be noted that dH(α)/dα ≥ 0, ensuring H(α) is an increasing function of α. Since G(α)
is a decreasing function of α and the function g(α) has at-least one maximum, it is clear
that G(α) and H(α) intersect at only one point ensuring unique solution of (8). Hence g(α)
has the unique maximum value.

Using Theorem 1 and Theorem 2, it is proved that α̂ exists and is unique. By using
invariance property of MLE, λ̂1 and λ̂2 are also unique.

As proposed by Pal et al. (2024), the sensors-based covariates are used to form
generalized linear regression with the same re-parametrization as follows,

λ1i = exp
(

β0 +
m∑

k=1
Fkiβk

)
, λ2i = exp

(
γ0 +

m∑
k=1

Fkiγk

)
, µi = exp

(
η0 +

m∑
k=1

Fkiηk

)
.

For the sake of simplicity, the parameter α is not parametrized in terms of the covariates
although one can re-parametrize it if needed as αi = exp (ζ0 +∑m

k=1 Fkiζk), for some unknown
regression coefficients ζk for k = 0, 1, · · · m.

Following the similar approach by Pal et al. (2024), the expression for the expected
time to fail can be written as:

E[Time to fail] = Γ
(

1 + 1
α

)(1 − e−2µ)(µ + 1)
4

(
1

λ
1/α
1

+ 1
λ

1/α
2

)

+(1 + e−2µ)
4

[
µ + 2p

λ
1/α
1

+ µ + 2(1 − p)
λ

1/α
2

]. (9)

Therefore after substituting the values of α̂, λ̂1, λ̂2 and p̂ in (9), the estimated time
to fail of the machine is obtained.

4. Concluding remarks

This study extends the model proposed by Pal et al. (2024) to analyze sequential data
from an IM machine, focusing on alternating periods of operation with alerts and without
alerts, resulting in machine failure. The durations with alerts is assumed to follow Weibull
distribution with scale parameter λ1 and shape parameter α, while durations without alerts
is assumed to follow Weibull distribution independently with scale parameter λ2 and the
same shape parameter α, allowing for flexible modeling. Notably setting α = 1 recovers the
earlier model by Pal et al. (2024) as a special case. The number of events before failure
is modeled using a conditional Poisson distribution, given at least one has happened prior
to failure. We have derived maximum likelihood estimators for the parameters and used
these to formulate the expected time to machine failure. However we have not reported the
numerical findings of the proposed model and we at this stage leave it for a future work.
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