
Special Proceedings of the 22nd Annual Conference of SSCA held at Savitribai Phule Pune
University, Pune, during January 02-04, 2020; pp 1-10

Correlated Inverse Gaussian Frailty Model

David D. Hanagal
Symbiosis Statistical Institute, Symbiosis International University, Pune-411016, India

and
Department of Statistics, Savitribai Phule Pune University, Pune-411007, India.

Received: 31 January 2020; Revised: 07 February 2020; Accepted: 09 February 2020

Abstract

Frailty models are used in the survival analysis to account for the unobserved heterogeneity
in individual risks to disease and death. To analyze the bivariate data on related survival times, the
shared frailty models were suggested. Shared frailty models are used despite their limitations. To
overcome their disadvantages correlated frailty models may be used. In this paper, we introduce
the inverse Gaussian correlated frailty models.
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1. Introduction

The frailty model is a random effect model for time to event data which is an extension of
the Cox’s proportional hazards model. Shared frailty models are the most commonly used frailty
models in literature, where individuals in the same cluster share a common frailty. Frailty models
(Vaupel et al. 1979) are used in the survival analysis to account for the unobserved heterogeneity
in the individual risks to disease and death. The frailty model is usually modeled as an unobserved
random variable acting multiplicatively on the baseline hazard function. Hanagal and Dabade
(2013), Hanagal and Bhambure (2015, 2016) and Hanagal and Pandey (2014a, 2014b, 2015a,
2015b, 2016, 2017a) analyzed kidney infection data and Australian twin data using shared gamma
and inverse Gaussian frailty models with different baseline distributions for the multiplicative
model. Hanagal and Sharma (2013, 2015a, 2015b, 2015c) analyzed acute leukemia data, kidney
infection data and diabetic retinopathy data using shared gamma and inverse Gaussian frailty
models for the multiplicative model. Hanagal and Bhambure (2014) developed shared inverse
Gaussian frailty model based on the reversed hazard rate for Australian twin data. Hanagal et
al.(2017) discussed correlated gamma frailty models for bivariate survival data to analyze kidney
infection data and Hanagal and Pandey (2017b) proposed correlated gamma frailty models for
bivariate survival data based on reversed hazard rate for Australian twin data. Hanagal (2017) gave
extensive literature review on different shared frailty models.
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In a univariate frailty model, let a continuous random variable T be a lifetime of an individual
and the random variable Z be frailty variable. The conditional hazard function for a given frailty
variable, Z = z at time t > 0 is,

h(t | z) = zh0(t)e
Xβ, (1)

where h0(t) is a baseline hazard function at time t > 0, X is a row vector of covariates, and β is a
column vector of regression coefficients. The conditional survival function for given frailty at time
t > 0 is,

S(t | z) = e−
∫ t
0 h(x|z)dx = e−zH0(t)eXβ

, (2)

where H0(t) is the cumulative baseline hazard function at time t > 0. Integrating over the range of
frailty variable Z having density fZ(z), we get the marginal survival function as,

S(t) =

∫ ∞
0

S(t | z)fZ(z)dz

=

∫ ∞
0

e−zH0(t)eXβ

fZ(z)dz

= LZ(H0(t)e
Xβ), (3)

where LZ(.) is the Laplace transformation of the distribution of Z. Once we get the survival
function at time t > 0, of life time random variable for an individual, we can obtain probability
structure and make their inferences based on it.

Shared frailty explains correlation’s between subjects within clusters. However, it does have
some limitations. Firstly, it forces the unobserved factors to be the same within the cluster, which
may not always reflect reality. For example, at times it may be inappropriate to assume that all
partners in a cluster share all their unobserved risk factors. Secondly, the dependence between
survival times within the cluster is based on marginal distributions of survival times. However,
when covariates are present in a proportional hazards model with gamma distributed frailty the
dependence parameter and the population heterogeneity are confounded (Clayton and Cuzick,
1985). This implies that the joint distribution can be identified from the marginal distributions
(Hougaard, 1986). Thirdly, in most cases, a one-dimensional frailty can only induce positive
association within the cluster. However, there are some situations in which the survival times for
subjects within the same cluster are negatively associated. For example, in the Stanford Heart
Transplantation Study, generally the longer an individual must wait for an available heart, the
shorter he or she is likely to survive after the transplantation. Therefore, the waiting time and the
survival time afterwards may be negatively associated.

To avoid these limitations, correlated frailty models are being developed for the analysis of
multivariate failure time data, in which associated random variables are used to characterize the
frailty effect for each cluster. Correlated frailty models provide not only variance parameters of
the frailties as in shared frailty models, but they also contain additional parameter for modeling
the correlation between frailties in each group. Frequently one is interested in construction of
a bivariate extension of some univariate family distributions (e.g., gamma). For example, for
the purpose of genetic analysis of frailty one might be interested in estimation of correlation



SPL. PROC.] CORRELATED INVERSE GAUSSIAN FRAILTY MODEL 3

of frailty. It turns out that it is possible to carry out such extension for the class of infinitely-
divisible distributions (Iachine 1995a, 1995b). In this case an additional parameter representing
the correlation coefficient of the bivariate frailty distribution is introduced.

2. Inverse Gaussian Frailty

The gamma distribution is most commonly used frailty distribution because of its
mathematical convenience. Another choice is the inverse Gaussian distribution. The inverse
Gaussian makes the population homogeneous with time, whereas for gamma the relative
heterogeneity is constant (Hougaard, 1984). Duchateau and Janssen (2008) fit the inverse
Gaussian (IG) frailty model with Weibull hazard to the udder quarter infection data. The IG
distribution has a unimodal density and is a member of the exponential family. While its shape
resembles that of other skewed density functions, such as lognormal and gamma, it provides much
flexibility in modeling. Furthermore, there are many striking similarities between the statistics
derived from this distribution and those of the normal; see Chhikara and Folks (1986). These
properties make it potentially attractive for modeling purposes with survival data. The models
derived above are bases on the assumption that a common random effect acts multiplicatively on
the hazard rate function.

Alternative to the gamma distribution, Hougaard (1984) introduced the inverse Gaussian as
a frailty distribution. It provides much flexibility in modeling, when early occurrences of failures
are dominant in a life time distribution and its failure rate is expected to be non-monotonic. In such
situations, the inverse Gaussian distribution might provide a suitable choice for the lifetime model.
Also inverse Gaussian is almost an increasing failure rate distribution when it is slightly skewed
and hence is also applicable to describe lifetime distribution which is not dominated by early
failures. Secondly, for the inverse Gaussian distribution, the surviving population becomes more
homogeneous with respect to time, where as for gamma distribution the relative heterogeneity
is constant. The inverse Gaussian distribution has shape resembles the other skewed density
functions, such as log-normal and gamma. These properties of inverse Gaussian distribution
motivate us to use inverse Gaussian as frailty distribution. The inverse Gaussian distribution
has a history dating back to 1915 when Schrodinger and Smoluchowski presented independent
derivations of the density of the first passage time distribution of Brownian motion with positive
drift. Villman et al., (1990) have studied the histomorphometrical analysis of the influence of
soft diet on masticatory muscle development in the muscular dystrophic mouse. The muscle fibre
size distributions were fitted by an inverse Gaussian law. Barndorff-Nielsen (1994) considers a
finite tree whose edges are endowed with random resistances, and shows that, subject to suitable
restrictions on the parameters, if the resistances are either inverse Gaussian or reciprocal inverse
Gaussian random variables, then the overall resistance of the tree follows a reciprocal inverse
Gaussian law. Gacula and Kubala (1975) have analyzed shelf life of several products using the IG
law and found to be a good fit. For more real life applications (see Seshadri, 1999).

Consider a continuous random variable Z follows inverse Gaussian distribution with
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parameters µ and σ2 then density function of Z is,

fZ(z) =


[

1

2πσ2

] 1
2

z−
3
2 e

(z−µ)2

2zσ2µ2 ; z > 0, µ > 0, σ2 > 0

0 ; otherwise,

(4)

and the Laplace transform is,

LZ(s) = exp

[
1

µσ2
−
(

1

σ4µ2
+

2s

σ2

) 1
2

]
. (5)

The mean and variance of frailty variable are E(Z) = µ and V (Z) = µ3σ2. For identifiability, we
assume Z has expected value equal to one i.e. µ = 1. Under this restriction, the density function
and the Laplace transformation of the inverse Gaussian distribution reduces to,

fZ(z) =


[

1

2πσ2

] 1
2

z−
3
2 e

(z−1)2

2zσ2 ; z > 0, σ2 > 0

0 ; otherwise,

(6)

and the Laplace transform is,

LZ(s) = exp

[
1− (1 + 2σ2s)

1
2

σ2

]
, (7)

with variance of Z as σ2. The frailty variable Z is degenerate at Z = 1 when σ2 tends to zero. Let
T1 and T2 be failure times of the pair of individuals like kidney, lungs, eyes or any paired organ of
an individual or lifetimes of twins. The unconditional bivariate distribution function of lifetimes
T1 and T2 with inverse Gaussian frailty is,

LZ(H1(t1) +H2(t2)) = exp

[
1− (1 + 2θ(H1(t1) +H2(t2)))

1
2

θ

]
= S(t1, t2) (8)

where H1(t1) and H2(t2) are the cumulative baseline hazard functions of the lifetime T1 and T2
respectively. Clayton (1978) define cross-ratio function as,

θ∗(t1, t2) =

∂2S(t1,t2)
∂t1∂t2

S(t1, t2)
∂S(t1,t2)
∂t1

∂S(t1,t2)
∂t2

The cross ratio function of inverse Gaussian frailty is,

θ∗(t1, t2) = 1 +
1

1
θ
− ln(S(t1, t2))

The highest value is obtained at the start and equals 1 + θ, and goes to one as the survival function
goes to zero. It is decreasing function of t1, t2.
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The joint bivariate survival functions in (8) can be expressed in terms of survival copula as
(see Nelsen (2006) for details)

C(u, v) = exp

{
1− [(1− θ log u)2 + (1− θ log v)2 − 1]

1
2

θ

}

where u = ST1(·) and v = ST2(·). This is a new copula and not appeared in the earlier
literature.

3. Correlated Frailty

The correlated frailty model is the second important concept in the area of multivariate
frailty models. It is a natural extension of the shared frailty approach on the one hand, and of the
univariate frailty model on the other. In the correlated frailty model, the frailties of individuals in
a cluster are correlated but not necessarily shared. It enables the inclusion of additional correlation
parameters, which then allows the addressing of questions about associations between event times.
Furthermore, associations are no longer forced to be the same for all pairs of individuals in a
cluster. This makes the model especially appropriate for situations where the association between
event times is of special interest, for example, genetic studies of event times in families. The
conditional survival function in the bivariate case (here without observed covariates) looks like

S(t1, t2|Z1, Z2) = S1(t1|Z1)S2(t2|Z2) = e−Z1H01(t1)e−Z2H02(t2), (9)

where Z1 and Z2 are two correlated frailties. The distribution of the random vector (Z1, Z2)
needs to be specified and determines the association structure of the event times in the model.
Integrating the above bivariate survival function over Z1 and Z2, we get unconditional bivariate
survival function as

S(t1, t2) = EZ1,Z2 [e
−Z1H01(t1)e−Z2H02(t2)] (10)

where (Z1, Z2) has some known bivariate frailty distribution.

Consider some bivariate event times – for example, the lifetimes of twins, or age at onset of a
disease in spouses, time to blindness in the left and right eye, or time to failure in the left and right
kidney of patients. In the (bivariate) correlated frailty model, the frailty of each individual in a
pair is defined by a measure of relative risk, that is, exactly as it was defined in the univariate case.
For two individuals in a pair, frailties are not necessarily the same, as they are in the shared frailty
model. We are assuming that the frailties are acting multiplicatively on the baseline hazard function
(proportional hazards model) and that the observations in a pair are conditionally independent,
given the frailties. Hence, the hazard of the individual i(i = 1, 2) in pair j(i = j, ..., n) has the
form

h(t|Xij, Zij) = Zijh0i(t)e
β′Xij , (11)

where t denotes age or time, Xij is a vector of observed covariates, β is a vector of regression
parameters describing the effect of the covariates Xij , h0i(.) are baseline hazard functions, and
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Zij are frailties. Bivariate correlated frailty models are characterized by the joint distribution of
a two-dimensional vector of frailties (Z1j, Z2j). If the two frailties are independent, the resulting
lifetimes are independent, and no clustering is present in the model. If the two frailties are equal,
the shared frailty model is obtained as a special case of the correlated frailty model with correlation
one between the frailties (Wienke(2011)).

In order to derive a marginal likelihood function, the assumption of conditional independence
of lifespans, given the frailty, is used. Let δij be a censoring indicator for individual i(i = 1, 2) in
pair j(j = 1, ..., n). Indicator δij is 1 if the individual has experienced the event of interest, and 0
otherwise. According to (2.2), the conditional survival function of the ith individual in the jth pair
is

S(t|Xij, Zij) = e−ZijH0i(t)eβ
′Xij , (12)

with H0i(t) denoting the cumulative baseline hazard function. The contribution of individual i(i =
1, 2) in pair j(j = 1, ..., n) to the conditional likelihood is given by[

Zijh0i(t)e
β′Xij

]δij
eZijH0i(tij)eβ

′Xij , (13)

where tij stands for observation time of individual i from pair j. Assuming the conditional
independence of lifespans, given the frailty, and integrating out the frailty, we obtain the marginal
likelihood function

n∏
j=1

∫
R×

∫
R

[
u1jh01(t1j)e

β′X1j

]δ1j
eu1jH01(t1j)eβ

′X1j

[
u2jh02(t2j)e

β′X2j

]δ2j
eu2jH02(t2j)eβ

′X2jf(z1j, z2j)dz1jdz2j (14)

where f(., .) is the probability density function of the corresponding frailty distribution. All these
formulas can be easily extended to the multivariate case, but need a specification of the correlation
structure between individuals in a cluster in terms of the multivariate density function, which
complicates analysis. For more details see (Hanagal(2011, 2019) and Wienke(2011)).

4. Correlated Inverse Gaussian Frailty Model

Let Z be an infinitely divisible frailty variable with Laplace transformation LZ(s) and ρ ∈
[0, 1], then there exist random variables Z1, Z2 each with univariate Laplace transform LZ(s) such
that the Laplace transform of Z1, Z2 is given by:

L(s1, s2) = LρZ(s1 + s2)L
1−ρ
Z (s1)L

1−ρ
Z (s2) (15)

If Z has a variance the Corr(Z1, Z2) = ρ.
The respective bivariate survival model is identifiable under mild regularity conditions on Z
provided that ρ > 0. The case ρ = 1 is known as the shared frailty model.

The above equation can be extended to multivariate case (ρ > 0) as below.

L(s1, s2, ...., sk) = LρZ(s1, s2, ...., sk)L
1−ρ
Z (s1)....L

1−ρ
Z (sk).
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The case ρ = 1 leads to shared frailty. If ρ = 0, Z1, ....Zk are mutually independent.

Let Zi be the inverse Gaussian distributed with mean 1, variance σ2, and Laplace transform

L(si, σ
2) = exp[

1− (1 + 2σ2si)
1
2

σ2
] (16)

The bivariate Laplace transform for the correlated inverse Gaussian frailty model is given by

L(s1, s2, σ
2, ρ) = exp

[
ρ
1− (1 + 2σ2(s1 + s2))

1
2

σ2

]
exp

[
(1− ρ)1− (1 + 2σ2s1)

1
2

σ2

]

exp

[
(1− ρ)1− (1 + 2σ2s2)

1
2

σ2

]
(17)

where Corr(Z1, Z2) = ρ.
The correlated frailty model with inverse Gaussian frailty distribution is characterized by the
bivariate survival function of the form:

S(t,t2j) = exp

[
ρ
1− (1 + 2σ2ηj(H1(t1j) +H2(t2j)))

1
2

σ2

]
exp

[
(1− ρ)1− (1 + 2σ2ηjH1(t1j))

1
2

σ2

]

exp

[
(1− ρ)1− (1 + 2σ2ηjH2(t2j))

1
2

σ2

]
(18)

where H01(t1j) and H02(t2j) are the cumulative baseline hazard functions of the life time random
variables T1j and T2j respectively.

According to different assumptions on the baseline distributions we get different correlated
inverse Gaussian frailty models.

5. Likelihood Specification and Bayesian Estimation of Parameters

Suppose there are n individuals under study, whose first and second observed failure
times are represented by (t1j, t2j). Let c1j and c2j be the observed censoring times for the jth

individual (j = 1, 2, 3, ..., n) for first and second recurrence times respectively. We also assume
that independence between the censoring time and the life-times of individuals.

The contribution of the bivariate life time random variable of the jth individual in likelihood
function is given by,

Lj(t1j, t2j) =


f1(t1j, t2j), t1j < c1j, t2j < c2j,
f2(t1j, c2j), t1j < c1j, t2j > c2j,
f3(c1j, t2j), t1j > c1j, t2j < c2j,
f4(c1j, c2j), t1j > c1j, t2j > c2j.

and the likelihood function is,

L(ψ,β, θ) =

n1∏
j=1

f1(t1j, t2j)

n2∏
j=1

f2(t1j, c2j)

n3∏
j=1

f3(c1j, t2j)

n4∏
j=1

f4(c1j, c2j) (19)
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where θ, ψ and β are respectively the frailty parameter (σ1, σ2, ρ), the vector of baseline
parameters and the vector of regression coefficients.

The counts n1, n2, n3 and n4 are the number of individuals for which first and second failure
times (t1j, t2j) lie in the ranges t1j < c1j, t2j < c2j; t1j < c1j, t2j > c2j; t1j > c1j, t2j < c2j and
t1j > c1j, t2j > c2j respectively and

f1(t1j, t2j) =
∂2S(t1j, t2j)

∂t1j∂t2j

f2(t1j, c2j) =
∂S(t1j, c2j)

∂t1j

f3(c1j, t2j) =
∂S(c1j, t2j)

∂t2j
and f4(c1j, c2j) = S(c1j, c2j) (20)

Usually maximum likelihood estimators can be used to estimate the parameters invloved in
the model. Unfortunately computing the maximum likelihood estimators (MLEs) involves solving
a fourteen dimensional optimization problem for Model I and Model III and eleven dimensional
optimization problem for Model II and Model IV. As the method of maximum likelihood fails
to estimate the parameters due to convergence problem in the iterative procedure, so we use the
Bayesian approach. The traditional maximum likelihood approach to estimation is commonly
used in survival analysis, but it can encounter difficulties with frailty models. Moreover, standard
maximum likelihood based inference methods may not be suitable for small sample sizes or
situations in which there is heavy censoring (see Kheiri et al. (2007)). Thus, in our problem a
Bayesian approach, which does not suffer from these difficulties, is a natural one, even though it is
relatively computationally intensive

To estimate parameters of the model, the Bayesian approach is now popularly used, because
computation of the Bayesian analysis become feasible due to advances in computing technology
[for more details on Bayesian estimation of the parameters and data analysis based on correlated
inverse Gaussian frailty model, see Hanagal and Pandey, 2020].
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