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Abstract
This article obtains locally R-optimal designs for a logistic regression model with two

explanatory variables. The R-optimality criterion has been proposed in the literature as
an alternative to the most frequently used D-optimality criterion when the experimenter
wishes to minimize the volume of the confidence region for unknown parameters based on
Bonferroni t-intervals. The necessary and sufficient conditions of this optimality criterion
are confirmed through the equivalence theorem.
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1. Introduction

The Generalized Linear Models (GLMs) are mostly used in those experiments where
the responses are categorical type. These models are broadly applied in various types of
studies when the experimenter wishes : (i) to estimate individual treatment effects in a mul-
ticenter clinical trial (see Lee and Nelder, 2002), (ii) to investigate the pattern of distribution
of important tree species, and (iii) to identify the relationship between the risk of HIV (Hu-
man immunodeficiency virus) infection and the number of contacts with other partners and
explanatory variables (see Jewell and Shiboski, 1992). McCullagh and Nelder (1989) have
provided a detailed discussion on the analysis of data using GLMs and their application in
different interdisciplinary areas.

The basic objective of finding an optimal design based on a certain criterion is to
discuss statistical inference about the response of interest by selecting the control variable
appropriately. The values of the control variables are chosen to minimize the variability of the
estimators of the unknown parameters involved with the regression model. The pioneering
work on optimal design was laid out by Kiefer (1959) and Kiefer and Wolfowitz (1959). The
task of finding the optimal design for the GLM becomes quite challenging as the information
matrix depends upon the unknown parameters i.e., to find the best design to estimate the
unknown parameters and yet one has to know the parameters to obtain the best design.
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Chernoff (1953) proposed an approach that targets obtaining a local optimal design for a
best guess value of the parameter.

For a logistic model with two variables, Abdelbasit and Plackett (1983) established
that a D-optimal k-point design is a 2-point design when k is even and a 3-point design
when k is odd. Minkin (1987) modified the result of the D-optimal design by relaxing the
various constraints imposed on the design space. Chaloner and Larntzin (1989) discussed
Bayesian D-optimal designs for the logistic regression model. Using a geometric approach,
Ford et al. (1992) obtained C-optimal and D-optimal designs for the discussed model. Sitter
and Wu (1993) obtained D-, A-, and F-optimal designs for the logistic model, while Dette
and Haines (1994) found E-optimal designs for the same model. Mathew and Sinha (2002)
derived a unified approach of D-, A-, and E- optimal designs for binary data under the logistic
model with two parameters. Woods et al. (2006), Dror and Steinberg (2006), and McGree
and Eccleston (2008) reported optimal designs for two variable binary logistic models with
interaction. These designs were constructed by using numerical methods. In this article,
we obtain locally R-optimal designs for a logistic regression model with two explanatory
variables. Dette (1997) proposed the R-optimality criterion in the literature as an alternative
to the most frequently used D-optimality criterion. He recommended that an experimenter
can prefer the R-optimality criterion in comparison to the D-optimality criterion when he/she
wishes to minimize the volume of the confidence region for unknown parameters based on
the Bonferroni t-intervals.

The rest of the article is organized as follows. Section 2 provides the preliminaries. In
Section 3, we obtain R-optimal designs for the logistic model with two variables. In Section
4, we discuss the robustness of the proposed optimal design through a simulation study.
Finally, the article is concluded with some discussion and conclusions in Section 5.

2. Preliminaries

Let us consider a binary response variable Y which follows a Bernoulli distribution
and takes two values i.e. it takes value 1 for a success/positive response and 0 for a fail-
ure/negative response. If the response variable Y is related to the explanatory variables x1
and x2 through the two-variable binary logistic model, then the probability of success, p,
can be expressed in terms of the logit

µ = logit(p) = ln
p

1 − p
= β0 + β1x1 + β2x2 (1)

where x1 and x2 are considered to be concentrations of the doses of two drugs with x1 ≥ 0,
and x2 ≥ 0. In addition, the probability of a positive response is expected to increase with
dose concentrations for both drugs, and thus β1 and β2 can be considered a strictly positive
value [see Haines et al. (2007), and Haines et al. (2018)]. Due to practical considerations,
the values of the parameter β0 may be chosen as negative values in different experiments.
Based on the scaled doses i.e. z1 = β1x1 and z2 = β2x2, the model Equations (1) can be
expressed as

logit(p) = β0 + z1 + z2 z1 ≥ 0 and z2 ≥ 0. (2)
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Consider an approximate design ξ that assigns weights wi on the distinct points zi = (z1i, z2i)
for i = 1, 2, . . . , r is denoted by

ξ =
{

(z11, z21) . . . (z1r, z2r)
w1 . . . wr

}
, where 0 < wi < 1 and

r∑
i=1

wi = 1.

The information matrix for the model Equation (2) based on the above design is given
by

M(ξ) =
r∑

i=1
wif(zi)f ′(zi) (3)

where

f(z)f ′(z) = k

 1 z1 z2
z1 z2

1 z1z2
z2 z1z2 z2

2



with k = eµ

(1 + eµ)2 , f(z) = eµ/2

(1 + eµ)(1, z1, z2) and µ = β0 + z1 + z2.

Selection of initial designs: To obtain the R-optimal design for the model Equation (2)
we consider the support points of 3-point and 4-point D-optimal designs (see Haines, 2007)
and define them as follows:

3-point design : ξ =

 (0, 0) (µ − β0, 0) (0, µ − β0)
1 − w

w

2
w

2

 (4)

4-point design : ξ1 =

(−µ − β0, 0) (0, −µ − β0) (µ − β0, 0) (0, µ − β0)
w w

1
2 − w

1
2 − w

 (5)

respectively. The support points of the design ξ1 are having complimentary µ-values. These
points are located on the boundary of the design space on lines of constant. Further, the
weights allocated to these points are based on the symmetric position of the support points.

R-optimal design: A design ξ∗ ∈ Ω with a non-singular matrix M (ξ∗) is called R-optimal
for the model equation (3) if it minimizes

Ψ(ξ) =
q∏

i=1
(M−1(ξ))ii =

q∏
i=1

e′
iM

−1(ξ)ei (6)

for all ξ ∈ Ω, where ei denotes the ith unit vector in Rq where q is the number of parameters
associated with the model Equation (2). The necessary and sufficient conditions for the
R-optimality can be verified using the following equivalence theorem. For further details,
one can refer to the article of Dette (1997).

Theorem 1: For model Equation (2) let

φ(z, ξ) = f(z)M−1(ξ)
( q∑

i=1

eie
′
i

e′
iM

−1(ξ)ei

)
M−1(ξ)f ′(z). (7)
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A design ξ∗ ∈ Ω is R-optimal if and only if

sup
z∈∆

φ(z, ξ∗) = q

with equality holds at the support points of ξ∗. Here ∆ is the experimental region of interest.

3. R-optimal designs

In this section, we obtain locally R-optimal designs which minimize the product of
the diagonal elements of the information matrix at best guesses of the unknown parameters
β0, β1, and β2.

3.1. Designs based on 3 points

Consider a 3-point design ξ of the form given by Equation (4) and assume that µ > β0
whenever β0 < 0 and µ < β0 whenever β0 > 0. Then we have the following theorem.

Theorem 2: The design ξ∗ that assigns a weight of 0.2324 to the point (µ − β0, 0), 0.5352
to the point (0, 0), and 0.2324 to the point (0, µ − β0) in ∆ is an R-optimal design where

∆ = {(z1, z2) : z1 ≥ 0, z2 ≥ 0, z1 + z2 ≤ 3.7422}.

Proof: The information matrix for the model Equation (2) at the three-point design ξ
defined in Equation (4) is given by

M (ξ) =



eµ

(1 + eµ)2
eµw(µ − β0)
2(1 + eµ)2

eµw(µ − β0)
2(1 + eµ)2

eµw(µ − β0)
2(1 + eµ)2

eµw(µ − β0)2

2(1 + eµ)2 0
eµw(µ − β0)
2(1 + eµ)2 0 eµw(µ − β0)2

2(1 + eµ)2


.

The inverse of the above information matrix is given by

M−1(ξ) =

a b b
b c d
b d c

 (8)

with

a = −2(1 + cosh(µ))
−1 + w

, c = 2(−2 + w)(1 + cosh(µ))
(β0 − µ)2(−1 + w)w ,

b = −2(1 + cosh(µ))
(β0 − µ)(−1 + w) , and d = −2(1 + cosh(µ))

(β0 − µ)2(−1 + w) .

Using Equation (8), we obtain the function

Ψ(ξ) = −8(−2 + w)2(1 + cosh(µ))3

(β0 − µ)4(−1 + w)3w2 . (9)
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Next, we wish to minimize Ψ(ξ) w.r.t. µ and w for that we obtain the partial derivatives of
Equation (9) w.r.t. µ and w and set them equal to 0. Then we get

d

dµ
Ψ(ξ) = −8(−2 + w)2(1 + cosh(µ))2(4 + 4cosh(µ) + 3(β0 − µ)sinh(µ))

(β0 − µ)5(−1 + w)3w2 = 0, (10)

d

dw
Ψ(ξ) =

64(−2 + w)(4 + w(−10 + 3w))cosh
(

µ

2

)6

(3 + µ)4(−1 + w)4w3 = 0. (11)

Here cosh(µ) and sinh(µ) are defined as the cosine and sine hyperbolic functions evaluated
at µ. Next, Equation (10) leads to the following cases:

(i) w = 2,

(ii) cosh(µ) = −1,

(iii) 4 + 4cosh(µ) + 3(β0 − µ)sinh(µ) = 0,

and Equation (11) leads to the following cases:

(iv) w = 2,

(v) cosh
(

µ

2

)
= 0,

and (vi) 4+w(-10+3w) = 0.

Out of these above-mentioned cases, the four cases i.e. (i), (ii), (iv), and (v) are the
absurd cases. Therefore, we need to consider cases (iii) and (vi) only. Case (iii) implies

4 + 4cosh(µ) + 3(β0 − µ)sinh(µ) = 0

⇒β0 − µ = −4
3sinh(µ) − 4coth(µ)

3

⇒β0 − µ = −4cosech(µ)
3 − 4coth(µ)

3
⇒β0 = µ − 4

3[cosech(µ) − coth(µ)], (12)

where the functions cosech(µ) and coth(µ) are the cosecant and cotangent hyperbolic func-
tions evaluated at µ. Further, considering the first four terms of the Taylor series expansion
of cosech(µ), and coth(µ) in Equation (12), we get the following

β0 = µ − 4
3

[
1
µ

− µ

6 + 7µ3

360 − 31µ5

15120 + . . .

]
− 4

3

[
1
µ

+ µ

3 − µ3

45 + 2µ5

45 + . . .

]

⇒β0 = 703µ5

11340 + µ3

270 + 7µ

9 − 8
3µ

. (13)
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Next considering case (vi), we get two values of w out of which one value is feasible i.e., the
optimal value of w denoted by

w∗ = 5 −
√

13
3 = 0.4648 . (14)

Here the optimal value µ should satisfy Equation (13). From the numerical solutions obtained
for Equation (13), we see that there is a unique solution exists for all values µ > β0. Let us
denote the solution by µ∗. As the solution can not be represented in an explicit form thus
we provide the optimal values µ∗ for some selected values of β0 in Table 1.

The necessary and sufficient condition of the locally R-optimal design i.e. sup
z∈∆

φ(z, ξ∗) =
q is confirmed by using the equivalence theorem which is as follows:

φ(z, ξ∗) =k
{

a + bz1 + bz2 − (β0 − µ)w(b + cz1 + dz2)
−2 + w

− (β0 − µ)w(b + dz1 + cz2)
−2 + w

+ z2

(
b + dz1 + cz2

− w(b + cz1 + dz2)
−2 + w

+ a + bz1 + bz2

β0 − µ

)
+z1

(
b + cz1 + dz2

+ a + bz1 + bz2

β0 − µ
− w(b + dz1 + cz2)

−2 + w

)}
. (15)

Next, we provide the values of φ(z, ξ∗) for some selected values of z1 and z2 in Table 2. We
verify equivalence theorem for locally R-optimal design ξ∗ by plotting a 3-dimensional plot of
φ(z, ξ∗) against z1 ≥ 0 and z2 ≥ 0 within the region ∆ (see Figure 1). This proves Theorem
2.

Table 1: Values of µ∗ for selected β0 for 3-point designs

β0 -3 -2.5 -2 -1.5 -1 -0.5 0
µ∗ 0.7422 0.8386 0.9543 1.0896 1.2392 1.3917 1.5355

Table 2: Values of φ(z, ξ∗) for different values of z1 and z2

z1 z2 φ(z, ξ∗)
0 0 3
0 3.742231 3

3.742231 0 3
3.5 0.5 2.88382
3 1 2.34827

2.5 1.5 2.02694
1.87112 1.87112 1.5

2 1 0.774831
0.5 2 0.663202
1.25 1.45 0.494252
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Figure 1: Plot of the φ(z, ξ∗) against z1 and z2

3.2. Designs based on 4 points

In this section, we consider a 4-point design ξ1 of the form given by Equation (5) and
assume that 0 ≤ µ ≤ −β0. Then we have the following theorem.

Theorem 3: For the model Equation (2), there exists no mass-symmetric design of the form
ξ1 based on the four support points given by Equation (5).

Proof: The information matrix for the model Equation (2) at the four-point design ξ1 is
given by

M(ξ1) =

M11 M12 M13
M21 M22 M23
M31 M32 M33


where

M11 = eµ

(1 + eµ)2 ,

M12 = M21 = M13 = M31 = eµ

(1 + eµ)2

{
µ

2 − β0

2 − 2µw
}

,

M22 = M33 = eµ

(1 + eµ)2

{
−2µ2w − 2wβ2

0 + 4wµβ0 + µ2

2 + β2
0

2 − µβ0

}
,

and M23 = M32 = 0.

The inverse of the above information matrix is

M−1(ξ1) =

M+
11 M+

12 M+
13

M+
21 M+

22 M+
23

M+
31 M+

32 M+
33

 (16)
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with

M+
11 = −((β0 − µ)2 + 8β0µw)(1 + cosh(µ))

4µ2w(−1 + 2w) ,

M+
12 = M+

21 = M+
13 = M+

31 = −(β0 + µ(−1 + 4w))(1 + cosh(µ))
4µ2w(−1 + 2w) ,

M+
22 = M+

33 = −e−µ(1 + eµ)2((β0 − µ)2 + 8µ(β0 − µ)w − 16µ2w2)
8µ2w(−1 + 2w)((β0 − µ)2 + 8β0µw) ,

and M+
23 = M+

32 = − (β0 + µ(−1 + 4w)2)(1 + cosh(µ))
4µ2w(−1 + 2w)((β0 − µ)2 + 8β0µw) .

Using Equation (6), we obtain the function

Ψ(ξ1) = e−3µ(1 + eµ)6((β0 − µ)2 + 8µ(β0 + µ)w − 16µ2w2)2

512µ2w2(−1 + 2w)3((β0 − µ)2 + 8β0µw) . (17)

Next, we wish to minimize Ψ(ξ1) w.r.t. µ and w for that we obtain the partial
derivatives of Equation (17) w.r.t. µ and w and set them equal to 0. Here we also replace the
functions sinh(µ/2) and cosh(µ/2) by the first three terms of their Taylor series expansion
respectively. Then, we get

d

dµ
Ψ(ξ1) = −κ1(µ, β0, w)

κ2(µ, β0, w) = 0 , (18)

d

dw
Ψ(ξ1) = −λ1(µ, β0, w)

λ2(µ, β0, w) = 0 (19)

where

κ1(µ, β0, w) =
(

e

−5µ

2 (1 + eµ)5((−β0 − µ)2 − 8µ(β0 + µ)w + 16µ2w2)(
2((3β0 − 2µ)(β0 − µ)3 + 4(β0 − µ)2µ(11β0 + 4µ)w

+ 16µ2(9β2
0 + 9β0µ − 2µ2)w2 − 192β0µ

3w3)cosh(µ

2 )

+ 3µ((β0 − µ)2 + 8β0µw)(−(β0 − µ)2 − 8µ(β0 + µ)

w + 16µ2w2)sinh(µ

2 )
))

,

κ2(µ, β0, w) = 256µ7w3(−1 + 2w)3((β0 − µ)2 + 8β0µw)2,

λ1(µ, β0, w) =e−3µ(1 + eµ)6((−β0 − µ)2 + 8µ(β0 + µ)w − 16µ2w2)
(3β4

0(−1 + 4w) − 12β0µ
3(1 − 4w)2(−1 − 2w + 4w2)

+ 18β2
0µ2(−1 + 4w)(1 − 4w + 8w2) + 4β3

0µ(3
+ 22w(−1 + 2w) + µ4(−3 + 4w(1 + 4(3 − 4w)w))),
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and λ2(µ, β0, w) = 512µ6(−1 + 2w)4w4((β0 − µ)2 + 8β0µw)2.

Equation (17) leads to the following cases:

(a) e

−5µ

2 = 0,

(b) 1 + eµ = 0,

(c) −(β0 − µ)2 − 8µ(β0 + µ)w + 16µ2w2 = 0,

(d)
(

2((3β0 − 2µ)(β0 − µ)3 + 4(β0 − µ)2µ(11β0 + 4µ)w + 16µ2(9β2
0 + 9β0µ − 2µ2)w2 −

192β0µ
3w3)cosh(µ

2 )+3µ((β0−µ)2+8β0µw)(−(β0−µ)2−8µ(β0+µ)w+16µ2w2)sinh(µ

2 )
)

=
0,

and Equation (18) leads to the following cases:

(e) e−3µ = 0,

(f) (1 + eµ)6 = 0,

(g) (−β0 − µ)2 + 8µ(β0 + µ)w − 16µ2w2) = 0,

(h) (3β4
0(−1+4w)−12β0µ

3(1−4w)2(−1−2w +4w2)+18β2
0µ2(−1+4w)(−1−4w +8w2)+

4β3
0µ(3 + 22w(−1 + 2w) + µ4(−3 + 4w(1 + 4(3 − 4w)w))) = 0.

Out of the above-mentioned cases (a), (b), (e), and (f) are the absurd cases. Case (c) leads
to two possible values of µ i.e.

µ =
−β0 + 4β0w ± 4

√
−β2

0w + 2β2
0w2

16w2 − 8w − 1 . (20)

However, the values given in Equation (19) will be real provided w ≥ 1/2 which is again
meaningless. Further, by solving the pair of Equations corresponding to cases (c) and (g)
we get w = 1/2 which is not permissible. Next, we observe that the solutions of Equations
corresponding to cases (d) and (h) (for different values of β0 ) do not satisfy the restrictions
0 < w < 1/2, and 0 < µ < −β0. This indicates that there does not exist a four-point mass
symmetric R-optimal design of the form ξ1 for the model Equation (2).

4. Robustness and simulation study

In this section, we examine the robustness of the proposed optimal design through
a simulation study. First of all, we generate a sample of 50 observations of the unknown
parameter β0 from the U(−10, 10) distribution and obtain the corresponding value of µ using
Equation (13) by considering the assumptions about the parameter β0 and µ as discussed in
section 3.1. Next, for the pair of values of ( β0, µ) we find the supremum value of φ(z, ξ∗)
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over the set ∆ using Equation (2.7). The values of β0, µ and sup
z∈∆

φ(z, ξ∗) are shown in Table

3 (Appendix I). From Table 3, we observe that the value of sup
z∈∆

φ(z, ξ∗) is equal to 3 and

it exists at all the support points of optimal design ξ∗ as defined in Equation (4). This
shows that the necessary and sufficient condition of the locally R-optimal design i.e. the
equivalence theorem is satisfied for different values of β0. Thus, it can be concluded that the
proposed optimum design is robust or insensitive toward variation in parameter values.

5. Discussion and conclusions

In the literature on the construction of optimal designs, the widely used optimality
criterion is the D-optimality criterion. An experimenter decides to consider the D-optimality
criterion when he/she is interested in the confidence ellipsoid of the estimators of the un-
known parameters However, if the experimenter wishes to construct a rectangular confidence
region then he/she should prefer an R-optimal design instead of a D-optimal design.

This present article obtains locally R-optimal designs for the logistic regression model
in two variables subject to the constraint that the values of the variables are greater than or
equal to zero. It is observed that the constructed designs depend upon the two unknown pa-
rameters through a scaled transformation of the explanatory variables whereas the intercept
parameter β0 provides the basic structure of the design.

Haines et al. (2018) have obtained D-optimal designs for the two-variable binary
logistic regression model with interaction where the design points consist of an origin, two
axial points, and a ray point, which lies within the design space that accommodates inter-
action. In this article, it is assumed that equal weights are assigned to each of the design
points. An interesting research problem is to investigate locally R-optimal designs for the
same model. For this purpose, the design points proposed by Haines et al. (2018) can be
used. This shall be an interesting and challenging research problem as the weights assigned
to each design point in the case of locally R-optimal designs may not be the same. We look
forward to exploring this open problem in future research.
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Appendix-I

Table 3: Values β0, µ and sup
z∈∆

φ(z, ξ∗)

S.N. β0 µ sup
z∈∆

φ(z, ξ∗) S.N. β0 µ sup
z∈∆

φ(z, ξ∗)

1 -5.6013 0.448 3 26 6.5924 2.4696 3
2 -3.1882 0.7104 3 27 -8.9667 2.6341 3
3 -4.7036 0.5216 3 28 1.3853 1.854 3
4 -3.9974 0.5969 3 29 -5.1861 0.4795 3
5 -6.5366 0.3898 3 30 -1.4474 1.1048 3
6 -9.3569 0.2785 3 31 -1.7531 1.0188 3
7 8.5955 2.6108 3 32 -9.2929 0.2803 3
8 -9.9134 0.2635 3 33 -3.2952 0.6934 3
9 -4.1403 0.5801 3 34 -8.1109 0.319 3
10 -5.7407 0.4383 3 35 8.8737 2.6283 3
11 9.2823 2.6534 3 36 -0.41 1.4185 3
12 5.6955 2.3958 3 37 9.629 2.674 3
13 -4.7861 0.5139 3 38 9.036 2.6384 3
14 -0.4474 1.4074 3 39 7.3492 2.5263 3
15 7.1903 2.5148 3 40 -0.4009 1.4212 3
16 -2.9595 0.7493 3 41 -4.3566 0.5563 3
17 6.2333 2.441 3 42 -3.2532 0.7 3
18 -3.0336 0.7363 3 43 -8.1627 0.317 3
19 7.5542 2.5409 3 44 -0.1417 1.4961 3
20 -2.4755 0.8437 3 45 -0.0297 1.5273 3
21 1.822 1.9327 3 46 -1.8701 0.9876 3
22 6.2163 2.4396 3 47 -9.2231 0.2823 3
23 3.6757 2.1933 3 48 -7.3585 0.3494 3
24 1.4215 1.8608 3 49 -3.5446 0.6562 3
25 1.675 1.9071 3 50 -1.4147 1.1143 3
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