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Abstract

Bayesian estimation is carried out for the scale parameter of Gumbel distribution
under various loss functions. A new class of loss functions is introduced and an extensive
Monte Carlo simulation study is carried out for the comparison of estimators under loss
functions. Two different prior distributions for scale parameter are used. The posterior
distributions have no closed form hence Lindley approximation as well as Markov Chain
Monte Carlo methods are used for deriving estimates. The study is illustrated through a
real life data.
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1. Introduction

Extreme value distributions are the limiting distributions of maximum (minimum)
of a large collection of independent and identically distributed random variables from an
arbitrary distribution. The non-degenerate asymptotic distribution of maximum Mn must
belong to one of the three possible general families of distributions called Type I, Type
II and Type III extreme value distributions, also known as Gumbel, Frechet, and Weibull
distributions respectively. These three distributions can be unified into a single family of
distributions namely generalized extreme value distribution (GEVD), by incorporating an
additional parameter. This unification work is done independently by Von Mises (1964) and
Jenkinson (1955) and is a very helpful model for fitting purposes. The distribution function
of GEVD has the form,

F (x; α, θ, ξ) = e
−
(

1+ξ

(x − α

θ

))−
1
ξ

,

where x > α − θ/ξ, α, θ and ξ are the location, scale and shape parameters respectively.
The Type I, Type II and Type III extreme value distributions correspond to the cases
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ξ = 0, ξ > 0, and ξ < 0, respectively. The Gumbel case, the case ξ = 0 is interpreted as
limξ→0 F (x; α, θ, ξ) and the distribution function corresponding to this can be derived as,

F (x; α, θ) = e−e

−

(
x − α

θ

)
, −∞ < x < ∞; (1)

where −∞ < α < ∞ and θ > 0. Detailed literature on extreme value distributions and other
related issues of GEVD can be seen in Leadbetter et al. (1983), Embrechts et al. (2013) and
Coles (2001). The parameter estimation of extreme value distributions and GEVD are stud-
ied by many authors in a series of papers. The maximum likelihood (ML) estimation of
GEVD are studied by Prescott and Walden (1983), Hosking (1985) and Smith (1985). Since
the ML estimators do not exist in some cases other traditional methods of estimation were
employed to estimate parameters of extreme value distributions and GEVD. Moment es-
timators can be derived in explicit form for location and scale parameters, however, they
do not perform well in many situations. The probability weighted moments (PWM) esti-
mators of Gumbel parameters were being studied by Landwehr et al. (1979). Mahdi and
Cenac (2005) compared it with moment estimators and ML estimators and were seen to
be favorable with the moment estimators and ML estimators. The PWM estimators of the
parameters and quantiles of the GEVD were considered by Hosking et al. (1985). Another
method of estimation similar to PWM was introduced by Hosking (1990) called method of
L-moments. Hosking derived L-moment estimators for generalized extreme value distribu-
tion and showed that they are reliably efficient with those of ML estimators. Comparison
of moment estimators, ML estimators, maximum entropy estimators, and PWM estimators
of Gumbel distribution were studied by Phien (1987). Phien summarized that the moment
estimators do not perform very satisfactorily as compared to the remaining three estimators
also PWM is the best choice when considering unbiased estimators. The moment estimators
have almost the same performance as the ML estimators.

Bayesian estimation techniques for estimating location and scale parameters of Gum-
bel distribution were also used by several authors. Effect of prior assumptions on the pos-
terior distributions were examined by Coles and Tawn (1996). Coles and Powell (1996)
discussed the modeling ideas using approximation techniques as well as exploring the feasi-
bility of performing Bayesian analysis when ML method fails. A conjugate prior distribution
for Gumbel parameters were considered by Chechile (2001) and provided the solution for
posterior normalization constant along with the marginal distribution for scale parameter.
Record value based analysis were studied by Mousa et al. (2002) for estimation of location
and scale parameters of Gumbel distribution. The estimators of parameters, reliability, and
failure rate functions of Gumbel distribution were derived by Al-Aboud (2009) using type
II censoring and Lindley approximation. The estimators are derived under both symmetric
and asymmetric loss functions such as squared error loss, linex loss, and entropy loss. They
observed that linex loss and entropy loss functions are sensitive to parameter values. A
non-informative prior distribution for the location parameter and three different prior distri-
butions for the scale parameter were considered in Vidal (2014). Under these conditions the
posterior distribution of location and scale parameters, posterior modes, expected values,
quantiles, and credibility intervals are also derived.

Recently, Yılmaz et al. (2021) compared various estimation techniques to determine
the best estimators of Gumbel parameters including classical and Bayesian methods. They
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considered maximum likelihood, moments, least square, weighted least square, ordinary least
square, percentile, L-moments, trimmed L-moments, and Bain and Engelhardt’s method of
estimation. Bayesian parameter estimation was considered under squared error loss function
and assumed normal prior for location and gamma prior for scale parameters. To obtain
Bayes estimators they used Lindley’s approximation technique and Markov Chain Monte
Carlo (MCMC) method. In accordance with them, the Bayes method of estimation has
better performance among all other classical methods, and suggest Lindley’s approximation
techniques over MCMC. It is remarkable that most of the Bayesian inference approaches
have been developed under squared error loss function which is symmetric in nature, and
the posterior mean will be the corresponding estimate. However, squared error loss may be
inappropriate in many cases. The aim of this work is to obtain the Bayes estimators of scale
parameter of Gumbel distribution under a class of loss functions including the squared error
loss. The Bayes estimators under various losses and various priors are also compared. The
rest of the paper is arranged as follows. In Section 2, we list the various loss functions and
their corresponding Bayes estimators that we come across in the later sections of this paper.
A new class of loss function is introduced in this section and related estimators are derived.
Bayesian estimation procedures using Lindley’s approximation method and MCMC method
are presented in Section 3. A Monte Carlo simulation study is performed and included in
Section 4. The findings in Section 3 are also applied to a real life data in Section 5 and a
brief conclusion is given in Section 6.

2. Bayesian estimators under various loss functions

The Bayesian method of estimation is an old method of estimation when more addi-
tional information about the parameter θ is known prior to observing data. This assumes
that θ has some probability distribution over the parameter space Θ, known as prior distri-
bution, π(θ). When data X = x is observed, the prior distribution can be updated with the
sample information to obtain posterior distribution π(θ | x) using Bayes rule as follows,

π(θ | x) = L(x; θ)π(θ)
m(x) ,

where m(x) =
∫

Θ L(x; θ)π(θ) is the marginal distribution of x and L(x; θ) is the likelihood
function. Another additional information about parameter θ is the consequences of our
decision known as the loss function, L(θ, θ̂), which is a function that assigns a penalty when
θ̂ is an estimator for true parameter θ. Then the Bayes estimator under the loss L(θ, θ̂) is
that θ̂ which minimizes the Bayes risk function defined by,

r(θ, θ̂) =
∫

Θ

∫
X

L(θ, θ̂)L(x; θ)π(θ)dxdθ.

Since L(x; θ)π(θ) = π(θ | x)m(x),

r(θ, θ̂) =
∫

Θ

∫
X

L(θ, θ̂)π(θ | x)m(x)dxdθ.

Minimum of this integral is the same as the minimum of the integral,∫
Θ

L(θ, θ̂)π(θ | x)dθ, (2)
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which is known as the posterior expected loss. When doing Bayesian analysis, a number of
symmetric and asymmetric loss functions are used in the Bayesian literature. The symmetric
loss functions are useful when the positive and negative errors or the over estimation and un-
der estimation are treated equally. In contrast, the asymmetric loss functions gives different
weights to positive error and negative error of the same magnitude. Compared with symmet-
ric loss, asymmetric losses have more applications in real life. See for more details, Zellner
(1986), Varian (1975), Calabria and Pulcini (1994), Norstrom (1996), and Berger (2013).
Some of the loss functions relevant to this paper and corresponding Bayes estimators that
minimize the posterior expected loss given in (2), are given in the next section.

2.1. Various loss functions and corresponding estimators

Squared error loss function (sqlf) is an extensively used loss function in Bayesian
analysis because of its simplicity and does not yield any extensive calculations. The sqlf is
given in the form,

Ls(θ, θ̂) = (θ − θ̂)2. (3)
Under this loss function mean of the posterior distribution is the Bayes estimator of θ, i.e,

θ̂s = Eπ(θ|x)(θ | x) = E(θ | x). (4)

The squared error loss can be generalized to the weighted squared error loss and has the
form,

Lws(θ, θ̂) = w(θ)(θ − θ̂)2,

where w(θ) is the weight function. The Bayes estimate θ̂ws under this loss is given by,

θ̂ws = E(θw(θ) | x)
E(w(θ) | x) .

Both of these loss functions are symmetric in nature. As an alternative to symmetric loss,
Norstrom (1996) defined a specific class of asymmetric loss functions called precautionary
loss functions (pqlf) and is given by,

Lp(θ, θ̂) = (θ − θ̂)2

θ̂k
w(θ), 0 ≤ k ≤ 2, w(θ) > 0, (5)

where w(θ) is an arbitrary weight function and the constant k ≤ 2 ensures that the cost
increases as the difference θ − θ̂ grows, so that k is known as the precautionary index. When
k = 0 and w(θ) = 1, the precautionary loss reduces to the squared error loss and when k = 0
it reduces to the weighted squared error loss. Norstrom showed that the Bayes estimator, θ̂p

corresponds to precautionary loss has the form,

θ̂p = 1
Ψ1(x)

[
k̄ +

√
k̄2 + Ψ1(x)Ψ2(x)

]
, (6)

where Ψ1(x) = (1+k̄)E(w(θ) | x)/E(θw(θ) | x), Ψ2(x) = (1−k̄)E(θ2w(θ) | x)/E(θw(θ) | x),
and k̄ = 1 − k. When k = 1 and w(θ) = 1, the loss function in equation (5) will reduces to

Lp(θ, θ̂) = (θ − θ̂)2

θ̂
, (7)
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and the Bayes estimator corresponds to this loss is,

θ̂p =
√

E(θ2 | x), (8)

the square root of the second moment of the posterior distribution. Varian (1975) introduced
another asymmetric loss function called linex loss and Zellner (1986) studied its properties
and used it for estimating the mean of normal random variate. The linex loss has the form,

Ll(θ, θ̂) = b(ea(θ̂−θ) − a(θ̂ − θ) − 1), a ̸= 0, b > 0. (9)
This function rises approximately exponential on one side of zero and approximately linear
on the other side. The linex loss reduces to squared error loss if | a |→ 0. Under the linex
loss, the Bayes estimator, θ̂l is given by,

θ̂l = −1
a

log E(e−aθ | x).

For a = 1,
θ̂l = − log E(e−θ | x). (10)

As an alternative to linex loss, Calabria and Pulcini (1994) considered a loss function called
general entropy loss and has the form,

Le(θ, θ̂) =
(

θ̂

θ

)p

− p log
(

θ̂

θ

)
− 1, (11)

where p ̸= 0 is the shape parameter. This is a generalization of the entropy loss used by
Dey et al. (1986), when the shape parameter p in equation (11) is equal to 1. When p > 0,
a positive error causes more serious consequences than a negative error and vice versa. The
Bayes estimator, θ̂e under this loss is,

θ̂e =
[
E(θ−p | x)

]−1/p
,

and for p = 1,
θ̂e =

[
E(θ−1 | x)

]−1
. (12)

That is, θ̂ is the harmonic mean of the posterior distribution, and the Bayes estimator under
this loss is the same as that of weighted squared error loss with w(θ) = 1/θ and when
p = −1 the estimator coincides with the estimator under squared error loss function given
in equation (3). El-Sayyad (1967) considered another loss function in the form,

Lel(θ, θ̂) = w(θ)(log θ̂ − log θ)2, (13)

the Bayes estimator under this loss, θ̂el is given by,

θ̂el = e
E(w(θ) log θ|x)

E(w(θ)|x) ,

and for w(θ) = 1,
θ̂el = eE(log θ|x). (14)

In the discussion above we saw that mean and the square root of the second order moment
of the posterior distribution are the Bayes estimator under the loss functions sqlf and pqlf
respectively. In the next section we introduce a new class of loss function which is a function
of sqlf and pqlf and try to get Bayes estimator in terms of the first and second order moments
of the posterior distribution.
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2.2. A generalized class of loss functions

Generally loss functions are non-negative functions that increase to infinity when
the distance between θ and θ̂ increases and decrease to zero when the distance between
θ and θ̂ decreases. Further most of them are smooth convex functions. Here we define a
new class of loss functions which is a function of squared error loss defined in equation (3)
and precautionary loss defined in equation (7) discussed in the Section 2.1. Let g(.) be a
real-valued monotone function, the new class of loss functions Lg(θ, θ̂) is defined as,

Lg(θ, θ̂) = g−1(λg(Ls(θ, θ̂)) + (1 − λ)g(Lp(θ, θ̂))), λ ∈ [0, 1], (15)

where Ls(θ, θ̂) is the sqlf in (3) and Lp(θ, θ̂) is the pqlf in (7). Note that when λ = 0, Lg(θ, θ̂)
reduces to Lp(θ, θ̂) in (7) and when λ = 1 it reduces to Ls(θ, θ̂) in (3). The Bayes estimators
under these losses are discussed in Section 2.1. Hence, here onward we consider only the case
λ ∈ (0, 1) in equation (15). We consider three cases where g(.) is g1(z) = log z, g2(z) = 1/z
and g3(z) = z and discuss these in the following three cases.

Case 1

Let g(z) = g1(z) = log z, then g−1
1 (z) = ez and Lg(θ, θ̂) in (15) becomes,

Lg1(θ, θ̂) = g−1
1 (λg1(Ls(θ, θ̂)) + (1 − λ)g1(Lp(θ, θ̂)))

= (θ − θ̂)2

θ̂1−λ
.

This is a special case of precautionary loss function defined in equation (5), where k = 1 − λ
and w(θ) = 1. The Bayes estimator corresponds to this loss can be derive from (6) by
substituting k = 1 − λ and w(θ) = 1 as,

θ̂g1 = 1
Ψ1(x)

[
λ +

√
λ2 + Ψ1(x)Ψ2(x)

]
,

with Ψ1(x) = (1 + λ)/E(θ | x) and Ψ2(x) = (1 − λ)E(θ2 | x)/E(θ | x). That is,

θ̂g1 =
λE(θ | x) +

√
E(θ2 | x) + λ2((E(θ | x))2 − E(θ2 | x))

λ + 1 . (16)

That is θ̂g1 can be expressed as the combinations of first order and second order moments of
the posterior distribution. For comparison purpose and simplicity we denote these posterior
moments as u = E(θ | x) and v = E(θ2 | x) and the Bayes estimator in equation (16) can
be rewritten as,

θ̂g1 =
λu +

√
v + λ2(u2 − v)
λ + 1 . (17)
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Case 2

Let g(z) = g2(z) = 1/z, then g−1
2 (z) = 1/z and Lg(θ, θ̂) in (15) becomes,

Lg2(θ, θ̂) = g−1
2 (λg2(Ls(θ, θ̂)) + (1 − λ)g2(Lp(θ, θ̂)))

= (θ − θ̂)2

λ + (1 − λ)θ̂
.

The loss Lg2(θ, θ̂) does not correspond to any existing form of losses discussed earlier, the
Bayes estimator under this loss can be derived by minimizing posterior expected loss given
in equation (2) and can be derived as,

θ̂g2 = λ −
√

v + 2uλ − 2vλ + λ2 − 2uλ2 + vλ2

λ − 1 , (18)

where u = E(θ | x) and v = E(θ2 | x).

Case 3

Let g(z) = g3(z) = z then g−1
3 (z) = z and Lg(θ, θ̂) in (15) becomes,

Lg3(θ, θ̂) = g−1
3 (λg3(Ls(θ, θ̂)) + (1 − λ)g3(Lp(θ, θ̂)))

= λ(θ − θ̂)2 + (1 − λ)(θ − θ̂)2

θ̂
.

Again by minimizing posterior expected loss given in equation (2) we get the Bayes estimator
θ̂g3 as,

θ̂g3 = 1 − λ − 2uλ

6λ
+ 1 − λ − 2uλ2

3 × 22/3λ(H1(u, v, λ) +
√

H2(u, v, λ) + (H1(u, v, λ))2)1/3
+

1
6 × 21/3λ

(H1(u, v, λ) +
√

H2(u, v, λ) + (H1(u, v, λ))2)1/3,

(19)

where H1(u, v, λ) = −2+6λ+12uλ−6λ2 −24uλ2 −24u2λ2 +108vλ2 +2λ3 +12uλ3 +24u2λ3 +
16u3λ3 − 108vλ3, H2(u, v, λ) = −4(1 − λ − 2uλ)6, u = E(θ | x) and v = E(θ2 | x).

The estimators θ̂g1 , θ̂g2 have a simple form with the combination of first order moment
and second order moment of posterior distribution. Although θ̂g3 has a lengthy expression of
first order moment and second order moment, it can be calculated easily. The derivation of
these estimators are included in the appended Annexures. The posterior risks under different
loss functions are derived and given in Table 1, where θ̂g1 , θ̂g2 and θ̂g3 have the expression
given in equations (17), (18) and (19) respectively. In the next section we find the Bayes
estimators of location and scale parameters of Gumbel distribution under these loss functions
using two different prior information.
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Table 1: Posterior risk under various loss functions

Loss function Posterior risk
Ls(θ, θ̂) E(θ2 | x) − (E(θ | x))2

Lp(θ, θ̂) 2
(√

E(θ2 | x) − E(θ | x)
)

Ll(θ, θ̂) log E(e−θ | x) + E(θ | x)
Le(θ, θ̂) E(log θ | x)+ log E(θ−1 | x)
Lel(θ, θ̂) E((log θ)2) − (E(log θ))2

Lg1(θ, θ̂) θ̂λ−1
g1 E(θ2 | x) − 2θ̂λ

g1E(θ | x) + θ̂λ+1
g1

Lg2(θ, θ̂) (E(θ2 | x) − 2θ̂g2E(θ | x) + θ̂2
g2)/(λ + (1 − λ)θ̂g2)

Lg3(θ, θ̂) λ(E(θ2 | x) − 2θ̂g3E(θ | x) + θ̂2
g3) + ((1 − λ)(E(θ | x) + θ̂2

g3))/(θ̂g3)

3. Bayes estimator of Gumbel scale parameter

We derive the Bayes estimator of the Gumbel scale parameter, with the location
parameter set to zero, under various loss functions given in Section 2. The probability
density function of Gumbel distribution with location zero has the form,

f(x; θ) = 1
θ

e
−
(x

θ

)
e−e

−

(x

θ

)
, −∞ < x < ∞,

where θ > 0 is the scale parameter. Based on a sample, x = (x1, x2, . . . , xn), the likelihood
function is given by,

L(x; θ) = 1
θn

e
−
∑n

i=1

(
xi

θ

)
e−
∑n

i=1 e

−

(
xi

θ

)
. (20)

For a prior distribution π(θ), the posterior distribution can be derived as,

π(θ | x) ∝ L(x; θ)π(θ).

Here we assume two different prior distributions for θ. As the first case, let π(θ) ∝ θ−1, a
Jeffreys prior. It follows that the posterior distribution of θ is given by,

π(θ | x) ∝ 1
θn+1 e

−
∑n

i=1

(
xi

θ

)
e−
∑n

i=1 e

−

(
xi

θ

)
. (21)

Now we assume gamma prior for θ as the second case. That is π(θ) ∝ θc1−1e−c2θ, where c1,
and c2 are the hyper parameters. Then the posterior distribution corresponds to this prior
has the form,

π(θ | x) ∝ θc1−1e−c2θ 1
θn

e
−
∑n

i=1

(
xi

θ

)
e−
∑n

i=1 e

−

(
xi

θ

)
. (22)

In order to find the Bayes estimator of θ, the scale parameter of Gumbel distribution, under
the loss functions discussed in Section 2, we have to find the posterior expectations, E(θ | x),
E(θ2 | x) , E(e−θ | x), E(θ−1 | x) and E(log θ | x). Whereas the posterior distributions
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under two assumed priors have no closed form, we use two approximation techniques to
evaluate these expectations, following Lindley (1980) method and the Markov chain Monte
Carlo method in this section. Yılmaz et al. (2021) applied these methods to acquire Bayes
estimates for the parameters of the Gumbel distribution under the squared error loss function
and Abbas et al. (2019) used to derive Bayes estimates of power Lindley distribution. A
brief overview of these two methods are provided, along with the derivation of the posterior
expectations for the Gumbel scale parameter in the following subsections.

3.1. Lindley approximation

The work of Lindley (1980) provides an asymptotic solution for the ratio of two
integrals commonly encountered while evaluating the posterior expectations. Let q(θ) be
any function of θ then,

E(q(θ) | x) ≈
∫

q(θ)L(x; θ)π(θ)dθ∫
L(x; θ)π(θ)dθ

, (23)

where π(θ) is the prior distribution and L(x; θ) is the likelihood function. According to
Lindley (1980), this ratio of integrals can be approximated by,

E(q(θ) | x) ≈ q(θ̃) + 0.5(q̃11 + 2q̃1π̃1)σ̃11 + 0.5(q̃1L̃111σ̃
2
11), (24)

where θ̃ is the ML estimate of θ,

q̃1 = ∂q(θ̃)
∂θ̃

, q̃11 = ∂2q(θ̃)
∂θ̃2

, π̃1 = ∂ log π(θ̃)
∂θ̃

,

L̃111 = ∂3 log L(x, θ̃)
∂θ̃3

, L̃11 = ∂2 log L(x, θ̃)
∂θ̃2

, σ̃11 = −1
L̃11

.

The approximation of posterior expectations given in Section 2 for Jeffreys prior can be
achieved by utilizing equation (24) in the following manner.

E(θ | x) ≈ θ̃ + π̃1σ̃11 + 0.5(L̃111σ̃
2
11)

E(θ2 | x) ≈ θ̃2 + (1 + 2θ̃π̃1)σ̃11 + θ̃L̃111σ̃
2
11

E(e−θ | x) ≈ e−θ̃ + 0.5(e−θ̃ − 2e−θ̃π̃1)σ̃11 − 0.5(e−θ̃L̃111σ̃
2
11)

E(θ−1 | x) ≈ θ̃−1 + (θ̃−3 − θ̃−2π̃1)σ̃11 − 0.5(θ̃−2L̃111σ̃
2
11)

E(log θ | x) ≈ θ̃−1 + 0.5(−θ̃−2 + 2θ̃−1π̃1)σ̃11 − 0.5(θ̃−1L̃111σ̃
2
11),

where,

L̃111 = −2n

θ̃3
+ 6

n∑
i=1

xi

θ̃4
+ 6

n∑
i=1

e
−

xi

θ̃
xi

θ̃4
− 6

n∑
i=1

e
−

xi

θ̃
x2

i

θ̃5
+

n∑
i=1

e
−

xi

θ̃
x3

i

θ̃6
,

L̃11 = n

θ̃2
− 2

n∑
i=1

xi

θ̃3
− 2

n∑
i=1

e− xi
θ̃

xi

θ̃3
+

n∑
i=1

e− xi
θ̃

x2
i

θ̃3
,

σ̃11 = −1
L̃11

, π̃1 = −1
θ̃

.

The Bayes estimate corresponds to each loss function can now be evaluated by plug in
these approximations of posterior expectations in equations given in Section 2 accordingly.
Similarly one can evaluate estimates for scale parameter θ under gamma prior.
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3.2. MCMC method

MCMC method was first introduced by Metropolis et al. (1953) and Hastings (1970).
The Metropolis-Hastings algorithm is among the straightforward MCMC techniques used
to generate samples from distributions that might otherwise be challenging to sample from.
Here we use the Metropolis-Hasting algorithm to generate sample from posterior distribution.
Let π(. | x) be the posterior distribution and consider normal distribution as a proposal
distribution, the algorithm can be framed as follows,

1. Initialize θ1 = θ̃ and set t = 1

2. Repeat : t = 1 to N

(a) Generate y from I(θ > 0)N(θt, 0.1)
(b) Generate U from Uniform (0,1) and if

U ≤ π(y | x)
π(θt | x)

accept y and set θt+1 = y otherwise set θt+1 = θt

(c) increment t.

Using this algorithm we can generate observations for θ from posteriors in equation (21)
curresponds to Jeffreys prior and in equation (22) for gamma prior. Thus we can calcu-
late the posterior expectations after discarding first b (burn in period) observations by the
approximation,

E(q(θ)|x) = 1
N − b

N−b∑
t=1

q(θt).

Substituting q(θ) as θ, θ2, e−θ, θ−1 and log θ the posterior expectations can be obtained. The
Bayes estimates corresponding to each loss function can now be evaluated by substituting
these approximations of posterior expectations into the equations provided in Section 2
accordingly.

4. Simulation and calculations

Extensive analysis is conducted through Monte Carlo simulation to estimate and
compare the scale parameter of the Gumbel distribution under various loss functions and
priors. We simulate 1000 samples of sizes 30, 50, and 100 using the inverse transformation
method. For the gamma prior, we set the hyper parameters as c1 = c2 = 1. The estimators
under the loss functions Lg1(θ, θ̂), Lg2(θ, θ̂) and Lg3(θ, θ̂) were derived using Mathematica
software. To evaluate the estimates θ̂g1 , θ̂g2 and θ̂g3 , we assume some arbitrary values for λ
ranging from 0 to 1, specifically tabulated for λ = {0.25, 0.5, 0.75} for simplicity. Also we
compute the Bayes estimates based on 20000 MCMC samples and burn in period b is set
as 5000. The maximum likelihood estimate and all other computations are done using the
R software. The simulated estimates, posterior risk and absolute bias, for θ = 1 under
Jeffreys prior and gamma prior using Lindley approximation are presented in Table 2 and
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Table 2: The Bayesian estimates and respective simulated absolute bias and
posterior risk for θ = 1 under Jeffreys prior and gamma prior using Lindleys
method

Jeffreys prior Gamma prior
n Estimator Estimate Posterior risk Absolute Estimate Posterior risk Absolute

bias bias
30 θ̂s 1.084661 0.009769 0.084661 0.974197 0.021422 0.025803

θ̂p 1.089181 0.009039 0.089181 0.985135 0.021876 0.014865
θ̂l 1.079026 0.004773 0.079026 0.963569 0.001344 0.036431
θ̂e 1.071072 0.082695 0.071072 0.952852 0.147326 0.047149
θ̂el 0.986032 0.067908 0.013967 1.104104 0.063667 0.104104

θ̂g1,.25 1.088051 0.009220 0.088051 0.982404 0.021784 0.017596
θ̂g1,.5 1.086922 0.009402 0.086922 0.979674 0.021677 0.020326
θ̂g1,.75 1.085793 0.009585 0.085793 0.976940 0.021557 0.023060
θ̂g2,.25 1.018206 0.020074 0.018206 0.982366 0.021783 0.017634
θ̂g2,.5 1.015716 0.020152 0.015716 0.979616 0.021675 0.020384
θ̂g2,.75 1.013205 0.020218 0.013205 0.976892 0.021555 0.023108
θ̂g3,.25 1.087983 0.009226 0.087983 0.983520 0.021823 0.016481
θ̂g3,.5 1.086835 0.009410 0.086835 0.979731 0.021679 0.020269
θ̂g3,.75 1.085729 0.009591 0.085729 0.976990 0.021558 0.023010

50 θ̂s 1.048778 0.009065 0.048778 0.983729 0.012326 0.016271
θ̂p 1.053094 0.008630 0.053094 1.009107 0.012302 0.009107
θ̂l 1.043957 0.008190 0.043956 0.980286 0.009294 0.019718
θ̂e 1.038437 0.044702 0.038437 0.974213 0.082056 0.025787
θ̂el 0.993037 0.025964 0.006963 1.057525 0.024007 0.057525

θ̂g1,.25 1.052015 0.008741 0.052015 0.991104 0.012470 0.008896
θ̂g1,.5 1.050937 0.008850 0.050937 0.989543 0.012440 0.010457
θ̂g1,.75 1.049858 0.008958 0.049858 0.987982 0.012405 0.012018
θ̂g2,.25 1.011043 0.012073 0.011043 0.991093 0.012470 0.008907
θ̂g2,.5 1.009542 0.012103 0.009542 0.989527 0.012440 0.010473
θ̂g2,.75 1.008032 0.012129 0.008032 0.987968 0.012404 0.012032
θ̂g3,.25 1.051974 0.008743 0.051974 0.991114 0.012470 0.008886
θ̂g3,.5 1.050884 0.008852 0.050884 0.989560 0.012440 0.010440
θ̂g3,.75 1.049820 0.008960 0.049820 0.987996 0.012405 0.012004

100 θ̂s 1.021974 0.005365 0.021974 0.991169 0.006144 0.008831
θ̂p 1.024596 0.005243 0.024596 0.994263 0.006189 0.005737
θ̂l 1.019216 0.002123 0.019216 0.988110 0.002443 0.011890
θ̂e 1.016277 0.021730 0.016277 0.985059 0.040463 0.014941
θ̂el 0.994431 0.018080 0.005569 1.025735 0.017843 0.025735

θ̂g1,.25 1.023941 0.005274 0.023941 0.993490 0.006180 0.006510
θ̂g1,.5 1.023286 0.005305 0.023286 0.992716 0.006169 0.007284
θ̂g1,.75 1.022630 0.005336 0.022630 0.991943 0.006157 0.008057
θ̂g2,.25 1.003335 0.006091 0.003335 0.993486 0.006180 0.006514
θ̂g2,.5 1.002574 0.006095 0.002574 0.992711 0.006169 0.007289
θ̂g2,.75 1.001813 0.006099 0.001813 0.991938 0.006157 0.008062
θ̂g3,.25 1.023929 0.005275 0.023929 0.993493 0.006180 0.006507
θ̂g3,.5 1.023271 0.005306 0.023271 0.992722 0.006169 0.007278
θ̂g3,.75 1.022619 0.005336 0.022619 0.991948 0.006157 0.008052

using MCMC method in Table 3. From these tables, we can observe that the posterior risk
and absolute bias under Lindley method are lesser than that of MCMC method. Hence,
we can conclude that Lindley approximation performs slightly better than MCMC method,
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Table 3: The Bayesian estimates and respective simulated absolute bias
and posterior risk for θ = 1 under Jeffreys prior and gamma prior using
MCMC method

Jeffreys prior Gamma prior
n Estimator Estimate Posterior risk Absolute Estimate Posterior risk Absolute

bias bias
30 θ̂s 1.024823 0.023535 0.024823 1.080640 0.029746 0.080640

θ̂p 1.036099 0.022551 0.036099 1.094007 0.026734 0.094007
θ̂l 1.013464 0.011360 0.013464 1.055327 0.014247 0.055327
θ̂e 1.003360 0.010495 0.003360 1.066392 0.011725 0.066392
θ̂el 1.013918 0.021217 0.013918 1.067756 0.023725 0.067756

θ̂g1,.25 1.033283 0.022785 0.033283 1.090669 0.027430 0.090669
θ̂g1,.5 1.030469 0.023027 0.030469 1.087332 0.028163 0.087332
θ̂g1,.75 1.027651 0.023277 0.027651 1.083991 0.028932 0.083991
θ̂g2,.25 1.033354 0.022749 0.033354 1.090895 0.027353 0.090895
θ̂g2,.5 1.030568 0.022978 0.030568 1.087652 0.028043 0.087652
θ̂g2,.75 1.027728 0.023240 0.027728 1.084244 0.028836 0.084244
θ̂g3,.25 1.033194 0.022821 0.033194 1.090403 0.027520 0.090403
θ̂g3,.5 1.030370 0.023075 0.030370 1.087019 0.028284 0.087019
θ̂g3,.75 1.027591 0.023313 0.027591 1.083782 0.029025 0.083782

50 θ̂s 1.000461 0.012736 0.000461 1.058818 0.015640 0.058818
θ̂p 1.006735 0.012548 0.006735 1.066092 0.014547 0.066092
θ̂l 0.994210 0.006252 0.005791 1.044764 0.007634 0.044764
θ̂e 0.988231 0.006116 0.011769 1.051185 0.006640 0.051185
θ̂el 0.994293 0.012300 0.005707 1.051711 0.013385 0.051711

θ̂g1,.25 1.005168 0.012589 0.005168 1.064275 0.014805 0.064275
θ̂g1,.5 1.003601 0.012634 0.003601 1.062458 0.015073 0.062458
θ̂g1,.75 1.002032 0.012683 0.002032 1.060640 0.015351 0.060640
θ̂g2,.25 1.005177 0.012576 0.005177 1.064361 0.014780 0.064361
θ̂g2,.5 1.003615 0.012616 0.003615 1.062578 0.015038 0.062578
θ̂g2,.75 1.002045 0.012669 0.002045 1.060734 0.015324 0.060734
θ̂g3,.25 1.005151 0.012603 0.005151 1.064177 0.014830 0.064177
θ̂g3,.5 1.003586 0.012652 0.003586 1.062339 0.015107 0.062339
θ̂g3,.75 1.002027 0.012697 0.002027 1.060559 0.015376 0.060559

100 θ̂s 0.999136 0.006171 0.000864 1.026637 0.006858 0.026637
θ̂p 1.002999 0.006126 0.002999 1.029954 0.006634 0.029954
θ̂l 0.996880 0.003055 0.003119 1.020079 0.003399 0.020079
θ̂e 0.993901 0.003018 0.006099 1.023238 0.003197 0.023238
θ̂el 0.996901 0.006054 0.003097 1.023345 0.006409 0.023345

θ̂g1,.25 1.002234 0.006136 0.002234 1.029125 0.006688 0.029125
θ̂g1,.5 1.001468 0.006146 0.001468 1.028296 0.006743 0.028296
θ̂g1,.75 1.000702 0.006158 0.000702 1.027467 0.006800 0.027467
θ̂g2,.25 1.002236 0.006132 0.002236 1.029144 0.006684 0.029144
θ̂g2,.5 1.001471 0.006142 0.001471 1.028322 0.006738 0.028322
θ̂g2,.75 1.000705 0.006154 0.000705 1.027487 0.006796 0.027487
θ̂g3,.25 1.002230 0.006140 0.002230 1.029105 0.006692 0.029105
θ̂g3,.5 1.001465 0.006151 0.001465 1.028271 0.006749 0.028271
θ̂g3,.75 1.000701 0.006161 0.000701 1.027450 0.006804 0.027449

which supports the findings of Yilmaz et al. (2021). As the sample size increases, both
methods exhibit nearly identical performance. When comparing Jeffreys prior and gamma
prior, Jeffreys prior outperforms the gamma prior for the parameter θ. The posterior risk
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Table 4: Table for estimate, posterior risk and absolute bias for various θ under
Jeffreys prior and each loss functions

Loss function Parameter Estimate Posterior Risk Absolute Bias
Ls(θ, θ̂) 0.1 0.15271 0.00086 0.05273
Lp(θ, θ̂) 0.15542 0.00536 0.05542
Ll(θ, θ̂) 0.15231 0.00043 0.05231
Le(θ, θ̂) 0.14731 0.01827 0.04731
Lel(θ, θ̂) 0.15002 0.03628 0.05002
Lg1(θ, θ̂) 0.15408 0.00214 0.05408
Lg2(θ, θ̂) 0.15310 0.00147 0.05310
Lg3(θ, θ̂) 0.15455 0.00199 0.05455
Ls(θ, θ̂) 0.2 0.24213 0.00150 0.04213
Lp(θ, θ̂) 0.24502 0.00578 0.04502
Ll(θ, θ̂) 0.24138 0.00075 0.04138
Le(θ, θ̂) 0.23618 0.01262 0.03618
Lel(θ, θ̂) 0.23917 0.02494 0.03917
Lg1(θ, θ̂) 0.24358 0.00293 0.04358
Lg2(θ, θ̂) 0.24272 0.00236 0.04272
Lg3(θ, θ̂) 0.24443 0.00365 0.04443
Ls(θ, θ̂) 0.5 0.54204 0.00243 0.04204
Lp(θ, θ̂) 0.54435 0.00461 0.04435
Ll(θ, θ̂) 0.54083 0.00122 0.04083
Le(θ, θ̂) 0.53738 0.00485 0.03738
Lel(θ, θ̂) 0.53971 0.00966 0.03971
Lg1(θ, θ̂) 0.54320 0.00332 0.04320
Lg2(θ, θ̂) 0.54283 0.00314 0.04283
Lg3(θ, θ̂) 0.54357 0.00353 0.04357
Ls(θ, θ̂) 2 1.90446 0.00320 0.09554
Lp(θ, θ̂) 1.90536 0.00180 0.09464
Ll(θ, θ̂) 1.90286 0.00160 0.09714
Le(θ, θ̂) 1.90266 0.00054 0.09734
Lel(θ, θ̂) 1.90356 0.00108 0.09644
Lg1(θ, θ̂) 1.90491 0.00238 0.09509
Lg2(θ, θ̂) 1.90503 0.00227 0.09497
Lg3(θ, θ̂) 1.90480 0.00250 0.09520
Ls(θ, θ̂) 5 4.76435 0.00382 0.23565
Lp(θ, θ̂) 4.76476 0.00081 0.23524
Ll(θ, θ̂) 4.76244 0.00191 0.23756
Le(θ, θ̂) 4.76354 0.00009 0.23646
Lel(θ, θ̂) 4.76394 0.00018 0.23606
Lg1(θ, θ̂) 4.76455 0.00175 0.23545
Lg2(θ, θ̂) 4.76468 0.00133 0.23532
Lg3(θ, θ̂) 4.76443 0.00231 0.23558

and bias under the newly defined generalized class of loss functions fall between the posterior
risk and absolute bias of squared error and precautionary loss. As λ increases from 0 to 1,
the posterior risk varies from posterior risk of precautionary loss to that of squared error
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loss. The bias under the new generalized class of loss function also behaves similarly. Con-
sequently, it is observed that when squared error loss overestimates (underestimates) and
precautionary loss underestimates (overestimates) the parameters, the new generalized class
of loss functions outperforms squared error loss and precautionary loss in terms of absolute
bias. For a comprehensive comparison of the loss functions outlined in Section 2, we com-
puted Bayes estimates for various values of θ and determined their corresponding posterior
risk and absolute bias under these loss functions. Since Jeffreys prior demonstrates superior
performance compared to the gamma prior, the results are presented exclusively for Jeffreys
prior under the Lindley method, as shown in Table 4. For smaller parameter values, sqlf
and linex loss functions exhibit lower posterior risk, while linex loss shows a slightly smaller
risk to a certain extent. As the parameter value increases, entropy loss and El-Sayyad loss
functions display lower posterior risk; however, entropy loss outperforms the El-Sayyad loss
function. Additionally, the posterior risk under sqlf increases with the increase of parameter
values compared to other loss functions. It’s noteworthy that we are not confined to selecting
the squared error loss function or the posterior mean as an estimator.

5. Application

To demonstrate the practical implementation of the estimation techniques delineated
in this paper, we analyze a dataset provided by Nelson (1982). The dataset pertains to a
life-test experiment involving specimens of a specific electrical insulating fluid exposed to
a constant voltage stress of 34 KV/minutes. Nelson, in his analysis, presumed a Weibull
distribution for the breakdown times. Al-Aboud (2009) explored log-breakdowns times to
derive Bayesian estimates for the parameters of the Gumbel distribution. The log-breakdown
times are given by,

-1.66073 -0.24846 -0.04082 0.27003 1.02245 1.15057 1.42311
1.54116 1.57898 1.87180 1.99470 2.08069 2.11263 2.48989
3.45789 3.48186 3.52371 3.60305 4.28895

The Bayes estimates and posterior risk of the scale parameter θ of Gumbel distribution
under different loss functions were computed and tabulated in Table 5. It is clear from the
table that posterior risk is smaller for scale parameter θ under entropy loss function for both
Jeffreys prior and gamma prior. Squared error loss function has greater posterior risk in both
cases. The new loss functions Lg1(θ, θ̂), Lg2(θ, θ̂) and Lg3(θ, θ̂) have posterior risk smaller
than that of sqlf but greater than pqlf.

6. Conclusion

For a better choice of loss function while estimating the scale parameters of Gumbel
distribution using Bayesian approach we consider different loss functions that are available
in literature. It is concluded that entropy loss function has smaller posterior risk among
other loss functions. El-Sayyad loss function also performs in similar way. In most of
the research work squared error loss function is considered and posterior mean will be the
estimator. However here we shows that squared error loss function has greater posterior risk
when the parameter values are moderately large. The generalized class of loss function has
smaller bias when squared error loss function overestimate(underestimate) and precautionary
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Table 5: The Bayesian estimates and posterior risk for θ under Jeffreys prior
and gamma prior using for real data

Jeffreys prior Gamma prior
Estimator Estimate Posterior risk Estimate Posterior risk
Ls(θ, θ̂) 1.1572 0.1958 1.1436 0.2068
Lp(θ, θ̂) 1.0692 0.1759 1.0492 0.1886
Ll(θ, θ̂) 1.2336 0.0764 1.2238 0.0802
Le(θ, θ̂) 1.2538 0.0327 1.2450 0.0344
Lel(θ, θ̂) 1.2134 0.0771 1.2028 0.0815
Lg1(θ, θ̂) 1.1136 0.1838 1.0969 0.1954
Lg2(θ, θ̂) 1.1113 0.1835 1.0948 0.1952
Lg3(θ, θ̂) 1.1161 0.1840 1.0992 0.1956

loss function underestimate(overestimate) the parameters. The class can be enlarged by
considering other loss functions in the place of sqlf and pqlf.
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ANNEXURE

Annexure A. Derivation for the Bayesian estimator under the loss Lg1(θ, θ̂)

Consider the case g(z) = g1(z) = log z then the loss function has the form

Lg1(θ, θ̂) = (θ − θ̂)2

θ̂1−λ
.

Here we derive the Bayes estimator under this loss by minimizing the posterior expected
loss. The posterior expected loss is then given by,

E(Lg1(θ, θ̂) | x) = 1
θ̂1−λ

E(θ2 | x) − 2θ̂λE(θ | x) + θ̂1+λ.

Let u = E(θ | x) and v = E(θ2 | x) then the above equation can be written as

E(Lg1(θ, θ̂) | x) = 1
θ̂1−λ

v − 2θ̂λu + θ̂1+λ.

The Bayesian parameter estimator θ̂, which minimizes the posterior expected loss is then
the solution of the equation,

d

dθ̂
E(Lg1(θ, θ̂) | x) = 0.

Implies that,
v(λ − 1)θ̂λ−2 − 2uλθ̂λ−1 + (λ + 1)θ̂λ = 0.

Multiplying by θ̂2−λ,
v(λ − 1) − 2uλθ̂ + (λ + 1)θ̂2 = 0

which is a quadratic equation in θ̂ and the two solutions for this equation are

θ̂ = uλ +
√

v + u2λ2 − vλ2

λ + 1 ,
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and,

θ̂ = uλ −
√

v + u2λ2 − vλ2

λ + 1 .

For the Gumbel distribution, the second case is not feasible. So we consider the estimator
θ̂g1 under the loss Lg1(θ, θ̂) as

θ̂g1 = uλ +
√

v + u2λ2 − vλ2

λ + 1 .

Annexure B. Derivation for the Bayesian estimator under the loss Lg2(θ, θ̂)

For g(z) = g2(z) = 1/z and the loss function Lg2(θ, θ̂) is given as

Lg2(θ, θ̂) = (θ − θ̂)2

θ̂(1 − λ) + λ
.

The posterior expected loss

E(Lg2(θ, θ̂) | x) = 1
θ̂(1 − λ) + λ

E(θ2 | x) − 2θ̂E(θ | x) + θ̂2.

Letting u = E(θ | x) and v = E(θ2 | x), we have,

E(Lg2(θ, θ̂) | x) = 1
θ̂(1 − λ) + λ

v − 2θ̂u + θ̂2.

Setting first derivative equal to zero

d

dθ̂
E(Lg2(θ, θ̂) | x) = 0.

Implies,
2θ̂ − 2u

θ̂(1 − λ) + λ
− (v − 2θ̂u + θ̂2)(1 − λ)

(θ̂(1 − λ) + λ)2
= 0.

That is,
θ̂2(1 − λ) + 2θ̂λ + v(λ − 1) − 2uλ = 0.

This is again a quadratic equation in θ̂ and the two solutions are,

θ̂ = λ +
√

v + 2uλ − 2vλ + λ2 − 2uλ2 + vλ2

λ − 1
and

θ̂ = λ −
√

v + 2uλ − 2vλ + λ2 − 2uλ2 + vλ2

λ − 1 .

Here the first case is not feasible for the Gumbel parameters. Then we consider the estimator
θ̂g2 under the loss function Lg2(θ, θ̂) as

θ̂g2 = λ −
√

v + 2uλ − 2vλ + λ2 − 2uλ2 + vλ2

λ − 1 .
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Annexure C. Derivation for the Bayesian estimator under the loss Lg3(θ, θ̂)
Now for g(z) = z and,

Lg3(θ, θ̂) = λ(θ − θ̂)2 + (1 − λ)(θ − θ̂)2

θ̂

= λθ2 − 2λθθ̂ + λθ̂2 + θ2

θ̂
− 2θ + θ̂ − λθ2

θ̂
+ 2λθ − λθ̂.

Then posterior expected loss can be find as,
E(Lg3(θ, θ̂) | x) = λE(θ2 | x) − 2λE(θ | x)θ̂ + λθ̂2 + 1

θ̂
E(θ2 | x) − 2E(θ | x) + θ̂ − λ

θ̂
E(θ2 |

x) + 2λE(θ | x) − λθ̂.

Substituting u = E(θ | x) and v = E(θ2 | x) we have,

E(Lg3(θ, θ̂) | x) = λv − 2λuθ̂ + λθ̂2 + v

θ̂
− 2u + θ̂ − λ

θ̂
v + 2λu − λθ̂.

To find the Bayes estimator under the loss function Lg3(θ, θ̂) that minimize the posterior
expected loss we equate first derivative with respect to θ̂ equal to zero, i.e,

d

dθ̂
E(Lg3(θ, θ̂) | x) = −2λu + 2λθ̂ − v

θ̂2
+ 1 + λv

θ̂2
− λ = 0.

Multiplying both side by θ̂2 we get a cubic polynomial on θ̂ as,

2λθ̂3 + (1 − λ − 2λu)θ̂2 + (λ − 1)v = 0.

The three solutions for θ̂ are given by,

θ̂ = 1 − λ − 2uλ

6λ
+ (1 − λ − 2uλ)2

3 × 22/3λ
[
H1(u, v, λ) +

√
H2(u, v, λ) + (H1(u, v, λ))2

]1/3 +

1
6 × 21/3λ

[
H1(u, v, λ) +

√
H2(u, v, λ) + (H1(u, v, λ))2

]1/3
,

or,

θ̂ = 1 − λ − 2uλ

6λ
+ (1 + i

√
3)(1 − λ − 2uλ)2

6 × 22/3λ
[
H1(u, v, λ) +

√
H2(u, v, λ) + (H1(u, v, λ))2

]1/3 −

1
12 × 21/3λ

(1 − i
√

3)
[
H1(u, v, λ) +

√
H2(u, v, λ) + (H1(u, v, λ))2

]1/3
,

or,

θ̂ = 1 − λ − 2uλ

6λ
+ (1 − i

√
3)(1 − λ − 2uλ)2

6 × 22/3λ
[
H1(u, v, λ) +

√
H2(u, v, λ) + (H1(u, v, λ))2

]1/3 −

1
12 × 21/3λ

(1 + i
√

3)
[
H1(u, v, λ) +

√
H2(u, v, λ) + (H1(u, v, λ))2

]1/3
,
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where,

H1(u, v, λ) = −2 + 6λ + 12uλ − 6λ2 − 24uλ2 − 24u2λ2 + 108vλ2+
2λ3 + 12uλ3 + 24u2λ3 + 16u3λ3 − 108vλ3,

H2(u, v, λ) = −4(1 − λ − 2uλ)6.

Here two of these solutions are complex conjugates. Since our parameter space is restricted
to real, we can only assume real values for θ̂ so the estimator θ̂g3 under the loss Lg3(θ, θ̂) can
be taken as

θ̂ = 1 − λ − 2uλ

6λ
+ (1 − λ − 2uλ)2

3 × 22/3λ
[
H1(u, v, λ) +

√
H2(u, v, λ) + (H1(u, v, λ))2

]1/3 +

1
6 × 21/3λ

[
H1(u, v, λ) +

√
H2(u, v, λ) + (H1(u, v, λ))2

]1/3
.
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