
  

Corresponding Author: Godfrey Joseph Saqware 
Email: godjose70@yahoo.com 

 

Statistics and Applications {ISSN 2454-7395 (Online)} 
Volume 20, No. 1, 2022 (New Series), pp 1-15 

Markov-Switching GARCH and Mixture of GARCH-type 
Models for Accuracy in Forecasting 

Godfrey Joseph Saqware1 and Ismail B.2 

1Deparment of Statistics, Mangalore University, Karnataka, India 
2Department of Statistics, Yenepoya (Deemed to be University), Mangalore, Karnataka, India 

Received:15 May 2020; Revised: 07 January 2021; Accepted: 18 January 2021 

Abstract 

The stock markets all over the world have been experiencing fluctuations. These 
fluctuations are due to some political and administrative decisions. For example, in Tanzania, 
structural transformations in the economic sectors have been happening time after time, which 
resulted in fluctuations in the stock market.  In this paper, the stock market's volatility was 
modelled using Markov-Switching GARCH (MS GARCH) and the mixture of GARCH type 
models. The Bayesian Information Criterion (BIC) was employed to get the best GARCH type 
models with respective conditional distributions. The GARCH (1, 1) with skewed normal 
distribution, EGARCH (1, 1) with student’s t-distribution and Glosten, Jagannathan and 
Runkle-GARCH (GJR GARCH) (1, 1) with generalized error distribution selected for further 
analysis. The study found that the three-state heterogeneous regime MS GARCH and Mixture 
of the selected GARCH type models provide the best fit and the dynamic feedback between 
components for the DSEI All-share stock data. The Bayesian Markov Chain Monte Carlo 
(MCMC) method resulted in an acceptance rate of 28.7%, which lies between 20% and 50% 
as the requirement of the rule of thumb. The different sample sizes employed on the Bayesian 
MCMC technique have also proven the fitted model's powerfulness since all acceptance 
sampler rate falls within the range. Furthermore, the forecasting results for the next 30, 60, 90, 
and 120 days have shown a continuous fluctuation in the DSEI All-share Stock Index. 

Key words: MS GARCH; GARCH; GJR GARCH; Bayesian MCMC; DES. 

1. Introduction 
 
The global economy has been experiencing fluctuations in response to policy directives. 

Stock Market performance is also affected by the economic and other related instabilities. 
Stochastic models play essential roles in the forecasting stock market volatility. The famous 
symmetric models such as Autoregressive Heteroscedasticity (ARCH) (Engle, 1982) and 
Generalized ARCH (Bollerslev, 1986); and asymmetric models namely Exponential GARCH 
(Nelson, 1991), Threshold GARCH (Glosten et al., 1993), GARCH-M (Hamilton, 1994) and  
Fractionally Integrated Generalized Autoregressive Conditional Heteroscedastic (FIGARCH) 
(Baillie et al.,1996) were extended from Generalized ARCH model to capture asymmetric 
characteristics in the stock market. The complexity and uncertainty of the financial time series 
have resulted in the continuous modification of the GARCH-type model. To handle volatility 
prediction in the stock market. The best way forward to the question is to allow the GARCH 
model parameters to vary over time by considering the regime-switching. A single regime is 
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inflexible; thus, it’s crucial to incorporate regime-switching. The Markov-Switching GARCH 
(MS GARCH) model is a new approach introduced in more than one decade. It enables a quick 
adaption to the unconditional volatility variations (Oseifua and Korkpoe, 2018). 

 
This paper will be the first in incorporating the heterogeneous regimes-switching model 

to the DSEI All-share Index log-returns. The annotated article is distributed into four major 
sections. The first section covers the introduction; the second section will cover the literature 
reviews on modelling volatility based on Markov-Switching GARCH models. Part three will 
formally lay out the materials and methods employed in the study. Section four covers 
empirical analysis and discussion. Finally, section five concludes the paper. 

 
2. Related Work 

The MS GARCH models' history goes back to introducing the mixed normal distribution 
that was combined with the GARCH-type structure (MN-GARCH) that captures conditional 
variance and the dynamic feedback between the components(Haas et al., 2004). Recent studies 
have shown that volatility predictions using GARCH type models failed to capture the stock 
market volatility's actual variation due to the regime changes and volatility dynamics (Korkpoe 
and Kawor, 2018). The MS GARCH models are flexible alternatives to GARCH models with 
fixed parameters. Bayesian inference estimate based on data augmentation has solved the path 
dependence problem. Furthermore, the model is useful for capturing changes in the dynamics 
and volatilities in the financial market (Bauwens et al., 2014). Based on this perspective, the 
effective and efficient prediction of the market volatility has been crucial for smooth economic 
growth. 

Moreover, the era of fast-growing technology and computer applications resulted in gaps 
in the modelling and forecasting volatility. The MS GARCH models with regime-switching 
have shown the best forecasting performances based on the management perspective compared 
to forecasting based on a single regime (Ardia et al., 2016). The MS GARCH model provides 
a better evaluation of volatility by imposing the higher volatility component in each state, 
which results in the dynamic structure regime that reacts to the various species of shocks 
(Alemohammad et al., 2016). The MS GARCH with the two-regime has exhibited the best in-
sample performance with an inverted leverage effect in low and high volatility regimes and 
their volatility dynamics (Ardia et al., 2019). The regime-switching models revealed a better 
volatility forecast than the constant-variance or a single-regime GARCH (Bibi and Ghezal, 
2018). Thus, the earlier researchers have tried to model volatility without defining clearly the 
process of obtaining conditional distributions. The study involves selecting the conditional 
distribution and applying the three-state heterogeneous MS GARCH and the Mixture of 
GARCH-type models to the stock data.   

3. Materials and Methods 

3.1. The Markov-switching GARCH models 
 
The method allows the regime-switching in the conditional variance process. If 

is the information set denoted by  for the observation up to . The 
general Markov Switching specification is given by 

 

{ }1 1 , 0t tr i- -I º > 1t-I 1t -

\ ( , ) ~ (0, , ) (1)1 ,r s k D ht t t t k kx= I -
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where refers to a continuous distribution with mean zero, is the time-varying 
variance and   is the additional shape parameter and  is the number of regimes. The 
Stochastic variable  defined under the discrete space  characterizes the Markov-
Switching GARCH Models. 

3.1.1. Markov-switching ARCH model 

The ARCH model (Engle, 1982) that incorporates  the regime can be written as:- 

 

The  is required for the positivity while in each regime for the covariance-
stationarity . 

3.1.2.  Markov-switching GARCH model 

The GARCH model (Bollerslev, 1986) that incorporates the  regimes Markov-
Switching is given by 

 

The  is required for the positivity while in each regime for the covariance-
stationarity . 

3.1.3.  Markov-switching EGARCH model 

The Exponential GARCH Model (Nelson, 1991) that incorporates the  regimes is given 
by 

The model considers the leverage effects, where the past negative values influence conditional 
volatility compared to the previous positive values.  The covariance stationary in each regime 
to be achieved requires . 

3.1.4.  Markov-switching GJR GARCH model 

The GJR GARCH model (Glosten et al., 1993) captures as well the asymmetric 
conditional volatility. The GJR GARCH model that incorporates the  regimes Markov-
Switching is expressed by 
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To ensure positivity,  and , whereas for the covariance stationarity 

 

3.1.5. Markov-switching TGARCH model 

The Threshold GARCH model of Zakoian (1994) included conditional volatility as the 
dependent variable instead of the conditional variance. The model in (7) incorporates Markov-
Switching. 

 

To ensure positivity, ;  and , while for the covariance stationarity

 

3.2. Conditional distributions 
 

The specification of the model to be completed requires conditional distributions. The 
commonly used conditional distributions are Normal distribution, Student’s t-distribution and 
the generalized error distribution. 

Normal distribution: The probability distribution function for the normal distribution is given 
by 

 

Student’s t distribution: The probability distribution function for the Student’s t-distribution 
is given by 

 

The  is the Gamma function, and  for the existence of the second moment. 

Generalized error distribution:  The probability distribution function for the generalized 
error distribution (GED) is given by 
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Skewed distributions: Recently, the unimodal standardized distributions introduced skewness 
in estimating the EGARCH, GJR GARCH, and TGARCH models (Trottier and Ardia, 2016). 

3.3. Model estimation 

The estimation of the MS GARCH and the Mixture of the GARCH type models can 
either based on the Bayesian Markov Monte Carlo (MCMC) or Maximum Likelihood (ML) 
methods. The two methods require evaluation under the maximum likelihood function. 

3.3.1. The maximum likelihood method 

Let  be the vector of the model parameters whose likelihood function 

is given by 

 

where refers to the density function of  given the past observations, is the 

information set and  the model parameters. 

The MS GARCH model for the conditional density of  is given by 

 

where  refers to the filter probability of state  and time . 

Moreover, for the Mixture of the GARCH type models, the conditional density function 
for  becomes 

 

Combining the two, the conditional density of the  in-state or component  given 
 and  is denoted by . 
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3.3.2. Bayesian Markov Monte Carlo (MCMC) method 

The MCMC estimation requires a combination of the likelihood with a truncated prior 
 to building kernel of the posterior distribution . The unknown form of posterior 

distribution should be approximated based on the simulation techniques. The random-walk 
Metropolis sampler generates draws of the posterior distribution (Vihola, 2012). 

  Furthermore, for the Bayesian estimation, the likelihood function is combined with a 
prior  in building kernel of the posterior distribution . The build prior based on 
the independent diffuse priors is done as follows 

where  and  denotes the covariance stationarity and the positivity conditions for the 

regime  , respectively. 

3.4. Data specification 

The website hosted at https://www.investing.com/indices/tanzania-all-share is the source 
of the data for this investigation. The data contain information such as stock day open, low, high 
and close prices. The dataset ranged from 15/08/2009 to 20/1/2020 with a total of 2067 
observations. Tanzania DSEI All-share Index has the market capitalization-weighted index with 
1000 base reference. The index includes all stocks listed at the Dar Es Salaam Stock Exchange 
categorized into Commercial Banks, Cement Companies, Tanzania Breweries companies, 
Tanzania Cigarette Company and Liquefied Natural Gas and Oil companies.  
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4. Empirical Results and Discussions 

4.1. Descriptive statistics for the log-returns 

The summary statistics reported in Table 1 below shows that the mean log-return is the 
positive value of 0.0004 and a standard deviation of 0.0175. The most significant price drop is 
–32.09%, and the largest price increase is 32.81%. Data exhibit a positive skewness and a very 
large excess kurtosis. The Jarque-Bera test for normality has shown that the data is not normally 
distributed (p < 0.05). The suitable distributions for this kind of data are the skewed conditional 
distributions. 

Table 1: Summary statistics 

Statistic Mean Min Max SD Skewness Kurtosis JB JB(p-value) 

Value 0.0004 –0.321 0.3281 0.0175 0.3847 168.563 3647640 2.20E-16 

The computations of the log-returns for the DSEI All-share closing price is given by 

, where  is the daily log-return, while    are the stock prices 

for time respectively.   

4.2. Time series of the DSEI all-share stock index 

The sharp decline in the DSEI All-share stock Index at different periods was a result of 
various factors. The drop observed almost every year since DSEI All-share Stock Market 
started its operation in August 2011. The Central Bank of Tanzania (BOT) merged some banks 
because of bankruptcy in 2018/2019. Moreover, the closure and liquidation non-performing 
banks aimed at stabilizing the banking system. The current President of the United Republic 
of Tanzania Hon. Dr John Pombe Magufuli has tried to support the economy; nevertheless, 
some companies failed to survive since he came into power in October 2015. The log-returns 
exhibited a continuous and frequent period of high and low volatility since the stock market 
started operation in August 2011. Figure 1 below shows a time series plot for DSEI All-share 
Stock Index. 

log log 1r P Pt t t= - - tr 1t tP and P-

1t and t -
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Figure 1: Time series plot of the DSEI series 

The plots of the DSEI All-share Index log-returns have also revealed a presence of 
volatility clustering. The prolonged stock instability observed between 2013 and 2018. The 
fluctuation has resulted in the collapse and closure of different companies and merging of the 
key players in the DSEI All-share Stock Market. Figure 2 below shows the plotting of the log-
returns series for the DSEI All-share Index. 

Figure 2: Plot of the DSEI log-return series 

The Augmented Dickey-Fuller test confirmed that the return series is stationary since the 
p-value is less than 5% (p-value = 0.01). Moreover, the GARCH model building has been done 
by first confirming the (G) ARCH effects in the stock data. The ARCH-LM test gave a
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 with 10 degrees of freedom and p-value less than 5%. Therefore, we conclude 
the presence of (G) ARCH in the log-return series. 

4.3. Model estimation and selection 

This paper extended the study by Haas (2004) with the Markov-Switching GARCH 
(MSGARCH) and mixture GARCH type model, incorporating three heterogeneous state 
regimes and conditional distributions. The selected GARCH type models based on the 
minimum Bayesian Information Criterion (BIC) are; GARCH (1, 1) with the skewed student-
t-distribution (sstd), EGARCH (1, 1) with the skewed generalized distribution (sged) and GJR 
GARCH (1, 1) with the skewed generalized distribution (sged). The study by (Catania et al., 
2018) has come up with regimes without telling where they made the GARCH-type models 
selection with the conditional distributions. Still, in this paper, we made some initial effort 
before proceeding with model estimation. Table 2 below shows the result of the model 
selection based on the BIC.   

Table 2: BIC values for conditional distributions 

Model GARCH (1,1) EGARCH (1,1) GJR GARCH (1,1) 

Distribution snorm sstd sged snorm sstd sged snorm sstd sged 

BIC –6.3832 –7.8578 –4.1269 –6.974 –7.9305 –8.2764 –6.3403 –7.8551 –8.097 

 
4.3.1. Model estimation based on maximum likelihood (ML) method 

The estimated parameters depict the difference in the volatility process from one regime 
to another. The difference in negative past reactions levels of unconditional volatility of

,  and   for the three-state heterogeneous regimes. The 

volatility persistence for the model reports ,  

and  in three-states, respectively. The result implies that the first 

regime characterized by low unconditional volatility, a strong volatility reaction to the past 
negative log-returns, and the low volatility process persistence. The second and third regimes 
are characterized by high unconditional volatility, weak volatility reaction to the past negative 
log-returns, and high volatility.  The market participants can categorize regime one as “tranquil 
market condition” compared to regimes two and three, which has the “turbulent market 
condition”. Table 3 shows the estimated model summary based on the ML technique. 
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Table 3: Estimated model summary for ML technique 

K Parameter Estimate t value P-value 

1  0.0000 1.0000E+8 <1e-16 
 0.1092 5.43394E+21 <1e-16 

  0.7948 6.91272E+22 <1e-16 
  3.7560 1.26907E+22 <1e-16 
 0.9784 6.05698E+21 <1e-16 

2  –0.4566 –3.67276E+20 <1e-16 
 0.1421 3.03187E+20 <1e-16 
 –0.0148 –9.8235E+19 <1e-16 

 0.9519 3.19745E+22 <1e-16 
 1.2262 3.75161E+23 <1e-16 
 0.9855 1.41481E+22 <1e-16 

3  0.000 3.05331E+21 <1e-16 
 0.2527 2.74911E+22 <1e-16 
 0.7213 3.26518E+24 <1e-16 

 0.3856 3.64538E+26 <1e-16 
 0.7000 7.4042E+36 <1e-16 
 0.9998 1.0202E+8 <1e-16 

The stable probabilities of being in the three states are about 32.15%, 63.97%, and 3.88% 
respectively. The results indicate that the likelihood of being in the three states differs. The 
unconditional probabilities reports; 4.57%, 40.41% and 20.97 for state 1, state 2, and state 3 
respectively. Thus, this implies a high unconditional probability in state two compared to the 
rest of the states. Moreover, all the three states' smooth probabilities are closer to one; this 
evidence a sharp increase in the volatility process. Table 4 below shows the stable probabilities, 
unconditional volatility, and smooth probabilities for the three states. 

Table 4: Results for the three states probabilities and unconditional volatility 

State 1 2 3 

Stable Probabilities 0.3215 0.6397 0.0388 

Unconditional Volatility 0.0457 0.4041 0.2097 

Smooth Probability 0.9675 0.9958 0.9994 
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4.3.2. Model estimation based on Bayesian Markov Chain Monte Carlo (MCMC) 
method 

The estimation model based on Maximum likelihood seems to be not more powerful than 
the Bayesian MCMC method due to a stuck in the local maximum which may result in 
unreliable estimates (Billio and Cavicchioli, 2017; Das and Yoo, 2004). The adaptive MCMC 
estimation always based on the posterior distribution. The MCMC sampler requires 
decomposition and the Eigenvalue computations, therefore, it largely depends on the Linear 
Algebra library (Vihola, 2012). The proposed three-state heterogeneous regimes MS GARCH 
and the Mixture of GARCH type models such as GARCH, EGARCH and GJR GARCH model 
with skewed normal, Student’s t and generalized error conditional distributions respectively, 
has used 10000 iterations, 5000 burn-in phase and ten thinning factors in the estimation of the 
Bayesian Markov Monte Carlo (MCMC) estimation. The acceptance rate of 28.5% was 
obtained in the model estimation. The acceptance rate lied within 20%-50%  'rule of thumb' as 
recommended (Chib and Greenberg, 1995; Roberts and Rosenthal, 2009). 

The number of independent and identically distributed sample draws from the posterior 
distribution is required for the relative numerical efficiency (RNE). This determines how 
quickly the convergence of the algorithm occurs. The checking of the MCMC sampling scheme 
for the output quality is necessary (Geweke, 1992; Korkpoe and Kawor, 2018). In the proposed 
model, we found the values of RNE relatively low (<1), which are considered better for the 
fast convergence of the MCMC chains. Table 5 below shows the summary of parameter 
estimated for the three states heterogeneous regimes for the MS GARCH and Mixture of 
GARCH type models using the Bayesian MCMC method. 

The increase of the number of the MCMC draws say 15000, 20000, 30000, 50000, 
100000, 500000 and 1000000 for the estimation three state heterogeneous regimes MS 
GARCH and the Mixture of GARCH type models resulted into the same range of the 
acceptance rate of (20-50) %. The acceptance rate reveals the consistency of the estimated 
model. The best model is usually based on the minimum Deviance Information Criterion 
(Spiegelhalter et al., 2002). Moreover, at least 4000 burn-in phase is recommended for the 
model estimation (Raftery and Lewis, 1992). The thin of every tenth minimizes the posterior 
draws autocorrelations. The high autocorrelations can result in bias and Monte Carlo standard 
errors. The number of researchers has raised concern on the appropriate number of thinning, 
but the thinning number of 10L sounds good (Link and Eaton, 2012; Owen, 2017). Table 6 
shows the estimated model summary for the different MCMC sample draws.  
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Table 5: Estimated model summary for the Bayesian MCMC technique 

K Parameter Mean SD SE TSSE RNE 

1 

 0.3509 0.0325 0.001 0.0086 0.0142 

 0.5768 0.024 0.0008 0.0065 0.0138 
 2.2511 0.0431 0.0014 0.0153 0.0079 
 0.992 0.0325 0.001 0.003 0.1180 

2 

 –0.0351 0.0427 0.0013 0.0223 0.0036 
 0.4177 0.0391 0.0012 0.0056 0.0496 
 –0.0983 0.0201 0.0006 0.0019 0.1128 

 0.9955 0.0042 0.0001 0.0024 0.0031 
 0.7337 0.0273 0.0009 0.0174 0.0025 
 0.9999 0.0005 0.0000 0.0000 0.3027 

3 

 0.1737 0.0461 0.0015 0.0260 0.0031 
 0.0021 0.0018 0.0001 0.0008 0.0048 

 0.7816 0.0194 0.0006 0.0100 0.0038 
 0.7000 0.0000 0.0000 0.0000 0.0033 
 14.1021 6.3244 0.200 3.9098 0.0026 

 

Table 6: Estimated model summary for different MCMC sample draws 

nithin nburn nmcmc Acceptance Rate DIC 

10 5000 15000 27.6% –22609.639 

10 5000 20000 28.3% –10986.542 

10 5000 25000 27.5% –23339.681 

10 5000 30000 28.0% –21846.993 

10 5000 50000 27.4% –23881.170 

10 5000 100000 27.2% –22595.525 

10 5000 500000 26.1% –19464.122 

10 5000 1000000 25.7% –11562.360 
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4.3.3. Forecasting of the conditional volatility based on Bayesian MCMC estimated 
model 

The prediction based on 30, 60, 90 and 120 days ahead has shown fluctuations in the 
DSEI All-share Index log-returns. The study identified the number of future periods of high 
conditional volatility; March for the 60 days forecasts in (b), April for the 90 days forecasts in 
(c), and May for the 120 days forecasts in (d) for four months in the year 2020.  The results 
still show instability in the stock market for the next four months. Figure 3 below shows stock 
volatility for the next four months.  

 

Figure 3: Conditional volatility forecasting 
 

4. Conclusion 

The stock market volatility will continue to be topical in finance since traders and 
investors observe historical data trends for future investments. The insertion of the regime 
changes become indispensable to model volatility in the stock market. The changing economic 
condition has caused persistent fluctuations in the stock market across regimes. The study acts 
as a benchmark for the countries to adopt the best trading policies and strategies to buffer 
downside. The Central Bank of Tanzania (BOT) reported a decline of shares, trading, market 
capitalization and underperformance of the Dar Es Salaam Stock Exchange (BOT, 2018). 

Moreover, stockbrokers like the five social security funds were joined into Public Service 
Social Security Fund (PSSSF) that serves public-sector employees and the National Social 
Security Fund (NSSF) for the private-sector employees and self-employed persons in 
2018/2019. The situation has disturbed the performance of the stock market. Eventually, the 

(a) 

(d) (c) 

(b) 
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country’s business environment's control and regulation become inevitable for the stock 
markets' growth. 
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