
Statistics and Applications {ISSN 2454-7395 (online)}
Volume 20, No. 2, 2022 (New Series), pp 265–277

Modeling and Analysis of Competing Risks Cure Rate
Regression Model with Weibull Distribution

P. G. Sankaran1 and P. P. Rejani1,2
1Department of Statistics, Cochin University of Science and Technology, Kerala, India

2Department of Community Medicine, Govt.Medical College, Kerala, India

Received: 04 September 2021; Revised: 08 December 2021; Accepted: 30 December 2021

Abstract
Cure rate models have been widely applied in the analysis of lifetime data in the

presence of cured fractions. Regression models need more attention when investigators are
interested to study the effects of given treatments. The presence of competing risks is an
additional challenge for researchers to analyze lifetime data with cured proportion. In this
paper, we propose a parametric cure rate regression model incorporating competing risks for
the analysis of survival data. The parameters of the model are estimated by the maximum
likelihood estimation procedure via EM algorithm. A simulation study is carried out to
evaluate the performance of the proposed model. The practical relevance of the model is
illustrated by applying the model to a dataset on heart transplantation.
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1. Introduction

The recent advancements in diagnostic and other drug design experiments resulted
increased rate of favorable response of patients to their received treatments and a good
proportion of patients have become free from diseases. These disease-free individuals in a
set of survival data are said to be immunes and the proportion of immunes that exists in
the data is called cured proportion. The presence of immunes in survival data influences
the outcome measures in survival studies. While analysing such data, it can be seen that
the survival curve does not taper off to zero at the end of the study period. Hence ordinary
survival analysis techniques are not suitable to analyse such data and new models have been
developed incorporating cured proportions. Such models are said to be cure rate models
in survival analysis. Boag (1949) first proposed cure rate model to estimate the cured
proportion of breast cancer patients. Cure rate models have been extended its applicability
in several areas like financial, criminology, demography, and industrial reliability. Nelson
(1982) explained the life expectancy of electric motors with cure rate model. Yamaguchi
(1992) applied the cure rate model to describe inter-firm job mobility in Japan. For further
reading one can refer to Maller and Zhou (1996), Sy and Tailor (2000), Ortega et al. (2014),
Shen et al. (2019), and Sreedevi and Sankaran (2021).
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Competing risks occur when the study subjects experience more than one events that
compete the event of interest. For example, when a researcher observing peritoneal dialysis
patients until they develop peritonitis, kidney transplantation can be regarded as a competing
cause because the chance of occurrence of peritonitis is very less among patients who have
undergone kidney transplantation. The competing risks aspect seeks more attention in the
analysis and interpretation of survival data. It is known that age-related mortality is high
among older people than others. Also, the probability of death due to the disease is found
to be low in clinical trials with the desired effect. In both cases, deaths occur due to other
competing causes rather than the event of interest. Hence failure to consider competing
risks in the analysis of such data yields reporting of inaccurate and misleading results. The
competing risks models are discussed by many authors. Crowder (2001) and Kalbfleisch and
Prentice (2011) are prime among them. Wright et al. (2020) and Papastefanou et al. (2021)
are two recent works that draw out the significance of competing risks in the medical field.

In survival studies carry out in the field of medicine and epidemiology, the investigators
focus on determining the effect of factors associated with the time to occurrence of the event
such as death or disease recurrence. Regression models such as Cox proportional hazards
models or parametric models are usually used to study the effect of covariates present in
the data. The presence of competing risks, immune proportions and covariates altogether
enhance the complexity of data and burden of analysis. All of these prominent scenarios
are encountered by formulating competing risks cure rate regression models. Development
of such models needs special attention and less available in literature.

In cure rate models, parametric or semiparametric proportional hazards assumptions
can be made for lifetime distribution in latency. In recent times, some semiparametric models
are proposed for the analysis of competing risks data in the presence of cured proportions.
The interested readers can refer to Choi et al. (2018) and Rejani and Sankaran (2020). If a
particular probability distribution of survival data can be identified and validated, statistical
inference based on a parametric regression perceptive will be considered as more efficient and
precise than those derived from survival models in the absence of an explicit distributional
function (Collett, 2015). Yusuf et al. (2016) discussed Weibull distribution as a suitable
distribution for the analysis of data in the presence of cured proportion.

In this paper, we introduce a parametric cure rate regression model based on Weibull
distribution for the analysis of survival data in competing risks setting. The model and
methods focus on the estimation of regression parameters and the probability of cure in the
presence of competing risks. The innovative feature of the proposed model is the proficiency
to explain the impact of covariates on the survival time of a group of subjects in the presence
of immunes and at the same time, the influence of competing causes is also taken into account.

Heart transplantation is the gold standard for the treatment of end-stage heart failure.
Rejection and infection are the two major causes of mortality among patients undergoing
heart transplantation. Larson and Dince (1985) considered 65 transplant recipient data,
there were 29 (45%) rejection deaths, 12 (18%) deaths from other causes, and 24 (37%)
censored observations. They analyzed data by mixture model approach without considering
the chance of occurrence of cured proportion. A cure rate regression model separates short
and long-term survival of patients. It is useful to determine the proportion of cured patients
and to identify the associated factors on survival of patients under study. It helps the public
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health professionals in decision making. In this context, we use data on heart transplantation
in Section 5 for an illustration of our proposed model.

The rest of the paper is structured as follows. We introduce the parametric compet-
ing risks cure rate regression model in Section 2. The likelihood function formulation and
estimation procedures are explained in Section 3. In Section 4, we report the results of
simulation work to explain the bias of estimators on variations in samples size. Section 5
illustrates the application of the proposed model to real data set. Some concluding remarks
are given in Section 6.

2. The Model

Suppose that population consists of two groups of subjects say, susceptibles and im-
munes. Let T be the time to occurrence of the event. Define the indicator variable function
to define the status of cure

Y =
{

1, if the individual eventually experience the event of interest
0, otherwise.

Let p be the probability of occurrence of the event. The survival function of the uncured
population at time t is S(t|Y = 1) = P (T > t|Y = 1). Then survival function of cure rate
model is

S(t) = (1 − p) + pS(t|Y = 1) (1)

where t < ∞. Note that S(t) tends to (1 − p) as t → ∞. Let C = cause of death and the
probability of uncured subjects pj = Pr(Y = 1, C = j), j = 1, 2, . . . , k. Assume that the
time to occurrence of the event T is defined only when Y = 1 and C = j, j = 1, 2, . . . , k. Let
fj(t|Y = 1) be the probability density function and Sj(t|Y = 1) be the sub-survival function
(Carriere and Kochar (2000)),of the random variable t due to jth cause, j = 1, 2, . . . , k. For
a censored individual, Y is not observed.

In the presence of competing risks, the survival function of cure rate model is

S(t) = 1 −
k∑

j=1
pj +

k∑
j=1

pjSj(t|Y = 1) (2)

Let X be a p + 1 × 1 vector of covariates at incidence part and Z be a p × 1 covari-
ate vector at latency part of the model that is independent of X. In practical situations,
the covariates X and Z can be same or may share common elements between them. Let
bj = (b0j, b1j, . . . , bpj)′ be a vector of regression coefficients with b = (b1, b2, . . . , bk)′ for
j = 1, 2, . . . , k.

Then, in a competing risks Weibull regression model, the sub-survival function of t due
to jth cause of failure with probability density function

fj(t|Y = 1, θ, Z) = α exp (βjZ) tα−1 exp(−tα exp (βjZ)) (3)

is
Sj(t|Y = 1, θ, Z) = exp (−tα exp (βjZ)) (4)
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where α > 0 , βj = (βj0, βj1, ...βjp)′ is the vector of regression coefficients associated with
the covariate Z, θ = (α, βj) and β = (β1, β2, ...βk)′ for j = 1, 2, . . . , k.

Under logistic regression model assumption, the probability of occurrence of the event
due to jth cause is

pj(b) = Pr(Y = 1, X) =
exp(b′

jX)

1 +
k∑

j=1
exp(b′

jX)
(5)

for j = 1, 2, . . . , k

Let Fj(t) = Pr(T ≤ t, C = j) be the cumulative incidence function due to jth cause
which measures the probability of occurrence of the event before time t due to cause j,
j = 1, 2, . . . , k.

Now, the cumulative incidence function due to jth cause in the presence of covariates
X and Z and in the presence of Y = 1 is

Pr(T ≤ t, C = j|X,Z, Y = 1) = Pr(T ≤ t|Z, Y = 1, C = j) Pr(C = j, Y = 1|X)
= pj(b)(1 − Sj(t|Y = 1, θ, Z))

Now, the survival function of competing risks cure rate regression model is defined as

S(t,Θ) = p0(b) +
k∑

j=1
pj(b)Sj(t|Y = 1, θ, Z) (6)

where Θ = (b, θ) denotes the entire set of parameters and p0(b) = 1−
k∑

j=1
pj(b), the probability

of immunes in the model. Suppose that the model parameters are linked to a single covariate
Z. (ie., we use the assumption X = Z throughout the paper). We also assume that
an independent, non-informative, random censoring model and the censoring variable is
statistically independent of Y . Inference procedure of the proposed model is given in the
next Section .

3. Inference Procedures

Suppose we have data in the form (tij, δij, zi) for i = 1, 2, . . . , n, j = 1, 2, . . . , k and
i ̸= j where the notations

tij = the observed event or censoring time due to jth cause and the n distinct event
times be t1j < t2j < · · · < tnj.

δij =
{

1, tij is uncensored
0, otherwise.

and zi = a vector of covariates.
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The likelihood equation under multiple modes of failures is

L =
n∏

i=1

k∏
j=1

(fj(ti))δij (S(ti))1−δij (7)

Under the model assumptions made, likelihood function of the cure rate regression model is

L(Θ) =
n∏

i=1

k∏
j=1

(pj(b)fj(ti|Y = 1, θ, Z))δij

p0(b) +
k∑

j=1
pj(b)Sj(ti|Y = 1, θ, Z)

1−δij

(8)

Let the complete data be (tij, δij, zi, yij), i = 1, 2, . . . , n, j = 1, 2, . . . , k which includes
the observed data and the unobserved yij’s, where yij be the value taken by the random
variable Yi for jth cause. If δij = 1, yij = 1 and if δij = 0, yij is unobserved. Then the
complete - data full likelihood is

Lc(Θ) =
n∏

i=1

k∏
j=1

(pj(b)fj(ti|Y = 1, θ, Z))δijyij (p0(b))
(1−δij)(1−

k∑
j=1

yij)

(pj(b)Sj(ti|Y = 1, θ, Z))(1−δij)yij

(9)

By substituting the probability density function and the survival function given in
(3) and (4), the above likelihood equation can be expressed as a product of two likelihood
functions as

Lc(Θ) = L1(b)L2(β, θ) (10)

where

L1(b) =
n∏

i=1

k∏
j=1

(pj(b))yij (p0(b))
(1−δij)(1−

k∑
j=1

yij)

and

L2(β, θ) =
n∏

i=1

k∏
j=1

(
eβjziαti

α−1
)δijyij

e(−ti
α exp(βjzi)yij)

The likelihood function (10) contains missing observations since partial information of
random variable Y is missing. Hence we employ EM Algorithm (Dempster et al. (1977)) to
estimate the parameters of the model.
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3.1. EM algorithm

E-Step : The expectation step (E-step) in the EM algorithm compute the conditional
expectation of the complete data log-likelihood function l(Θ; y) with respect to yij’s, given
the observed data and current estimates of the parameters.

Let the observed data be {O = (Observed yij’s, tij, δij, zi); i = 1, ..., n}. Now we have
to compute π(m)

j = E(yij|Θ(m), O) where Θ(m) denotes the values of parameters Θ at the
mth iteration step. For uncensored i, E(yij|Θ(m), O) = yij = 1. Now for the i’th censored
observation, we compute

π
(m)
j = Pr(Yi = 1, |Tij > tij, δij = 0, zi; Θ(m))

=

 pj(b)Sj(ti|Y =1,θ,zi)

p0(b)+
k∑

j=1
pj(b)Sj(ti|Y =1,θ,zi)


|Θ(m)|

i.e., at the m th iteration, the E-step value of yij is

w
(m)
ij =

{
1, if the ith individual is uncensored
πij

(m), if censored
(11)

lc(Θ;w(m)) = l1(b;w(m)) + l2(θ;w(m)) (12)

denote the conditional expectation of the complete data log-likelihood function, where w(m)

denote the vector of w(m)
ij values.

M-Step : In M-Step, we maximise the conditional expectation of the complete data
log-likelihood function lc(Θ;w(m)) with respect to each parameter in Θ = (b, θ) given wij to
obtain an improved estimate Θ(m+1) at the (m+ 1)th iteration.

The procedures in E-step and M-step are then continued iteratively until we meet
the convergence criteria to obtain maximum likelihood estimators of each parameter in the
parameter set Θ = (b, θ).

3.2. Asymptotic property of estimators

Let Θ̂ = (b̂, θ̂) denote the maximum likelihood estimates of Θ = (b, θ), where b̂ = b̂j

and θ̂ = (α̂, β̂j), j = 1, 2, . . . , k. Now consider the following regularity conditions.

(a) The first and second order derivatives of the log-likelihood function l with respect
to Θ viz., ∂l

∂Θ and ∂2l
∂Θ2 exist and are continuous functions of Θ in a range R (including the

true value Θ0 of the parameter) for almost all t. For every Θ in R
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∣∣∣ ∂l
∂Θ

∣∣∣ < H1(t) and
∣∣∣ ∂2l

∂Θ2

∣∣∣ < H2(t) where H1(t) and H2(t) are integrable functions over
(−∞,∞).

(b) The third order derivative with respect to Θ, ∂3l
∂Θ3 exists such that

∣∣∣ ∂3l
∂Θ3

∣∣∣ < M(t)
where E[M(t)] < Q, a positive quantity.

(c) For every Θ in R,

E
(
− ∂2l

∂Θ2

)
=

∞́

−∞

(
− ∂2l

∂Θ2

)
Ldt = I(Θ)

is finite and non-zero.

(d) The range of integration is independent of Θ. This assumption is to make differ-
entiation under the integral sign valid.

Under the above mentioned regularity conditions, as n → ∞,
√
n(Θ−Θ̂) → N8(0, I−1(Θ)), where the Fisher information matrix I(Θ) can be replaced

by a consistent estimate I(Θ̂) =
(

−∂2l
∂Θi∂Θj

)
Θ=Θ̂

. The observed information matrix is obtained
by applying Louis (1982) method. The variance of the estimates can be determined from
diognal elements of I−1(Θ̂). The asymptotic normality property of maximum likelihood
estimates is useful to determine the (1 −α) × 100% confidence interval of each parameter in
the parametric set Θ = (b, θ). Let b̂j is the maximum likelihood estimator (MLE) of bj. Then
MLE of cured proportion 1 − pj is 1 − p̂j=g(b̂j) is also asymptotically normally distributed
by the invariance property of maximum likelihood estimators.

4. Simulation Studies

Simulation studies are conducted to evaluate the performance of the proposed model.
Let C be the cause of failure and we assumed that there are two causes of failure. We consider
a single covariate Z, which is generated from a uniform distribution over the interval (0,1).
The censoring variable K is generated from uniform distribution over the interval (0,k) where
k chosen in such a way that the lifetimes are mildly or heavily censored. The observations
are followed up to a maximum time τ = 10. The data for each observation be (t, δ, Z, C),
where t = min (T ,K,τ) and δ be the event indicator. The data generated from the model
with incidence probabilities

pj(b) = exp(b0j + b1jZ)

1 +
2∑

j=1
exp(b0j + b1jZ)

(13)

for jth cause of failure, j = 1, 2. The cause specific survival functions are generated at
random using the following sub distribution functions suggested by Dewan and Kulathinal
(2007). Let,

F1(t) = P (T ≤ t, C = 1) = ϕF a(t)
F2(t) = P (T ≤ t, C = 2) = F (t) − ϕF a(t) (14)
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where 1 ≤ a ≤ 2, 0 ≤ ϕ ≤ 0.5 and F (t) is the distribution function at time T . Note
that ϕ = P (C = 1) and for a = 1, T and C are independent. The variables T and C
are dependent for other choices of a. The nonnegative condition of cause specific density
function of T is maintained by imposing these restrictions on the parameters. We choose the
values ϕ = 0.25 and a = 1.5 for simulating data. We fix the initial values b0j = 2, b1j = −1,
β0j = 1.5, j = 1, 2, β1 = −0.3, β2 = 0.2 and α = 0.2 . The initial values of the estimates
are chosen using Kaplan-Meier estimate of cured proportion and log-likelihood equation of
proposed the model (Balakrishnan and Pal (2012)). We generated random samples of sizes
n = 50, 100 and 200 and maximum likelihood estimation of the parameters is carried out
for the proposed model. The effect of censoring was studied in two situations viz, mild
censoring (on an average, 20% of the observations are censored) and heavy censoring (40%
of the observations are censored at average level). For the described configuration, 1000
replications are made. The results of absolute bias and MSE of the estimates are reported.
The coverage probabilities (CP) of the 95% confidence intervals based on the asymptotic
normality of the estimators are also reported. Table 1 shows the average absolute bias
and MSE of estimates at different censoring levels. It seems that the proposed model and
method work well. The parameters of the model are estimated with lower bias and MSE.
There is a slight increase in bias and MSE as the censoring scheme changes from mild to
heavy. The coverage probabilities of the asymptotic confidence intervals are also close to the
pre-determined levels and it is found to be better for samples of increased size.

Table 1: Absolute Bias and MSE of estimators of parameters

20% Censored 40% Censored
Sample size Parameter True value Bias MSE CP Bias MSE CP

b01 2.0 0.05822 0.013144 95.27273 0.090346 0.016547 95.03546
b11 -1.0 0.04495 0.01547 95.43568 0.05786 0.003348 95.19231
b02 2.0 0.07299 0.010114 95.00000 0.07698 0.013841 94.35028

50 b12 -1.0 0.05181 0.013698 95.50562 0.05601 0.014436 95.00000
β01 1.5 0.09006 0.027625 95.23810 0.099391 0.028006 94.83568
β02 1.5 0.09772 0.211936 95.70896 0.12413 0.242311 95.06173
β1 -0.3 0.09006 0.027625 95.23810 0.099391 0.028006 94.83568
β2 0.2 0.09772 0.211936 95.70896 0.20013 0.242311 95.06173
α 0.2 0.00756 0.000681 95.84463 0.00979 0.001025 95.3125

b01 2.0 0.02504 0.00976 96.29630 0.05485 0.01495 95.29220
b11 -1.0 0.04387 0.00360 97.72727 0.04486 0.00360 96.96970
b02 2.0 0.03678 0.00850 95.13880 0.04312 0.00931 96.23552

100 b12 -1.0 0.04452 0.00476 95.74468 0.04532 0.008003 95.55556
β01 1.5 0.07145 0.027625 95.23810 0.08236 0.028006 94.83568
β02 -1.5 0.08320 0.211936 95.70896 0.09008 0.242311 95.06173
β1 -0.3 0.05586 0.02350 95.58854 0.07920 0.01083 95.45455
β2 0.2 0.07491 0.06091 96.31902 0.08921 0.08549 96.31512
α 0.2 0.00515 0.00049 95.94229 0.00594 0.00034 95.83333

b01 2.0 0.02044 0.00112 98.53000 0.02144 0.01180 97.59450
b11 -1.0 0.01842 0.00335 98.54369 0.02253 0.00356 97.80220
b02 2.0 0.02052 0.00277 96.90000 0.02385 0.00622 95.45455

200 b12 -1.0 0.02765 0.00308 96.50000 0.03839 0.00479 96.35036
β01 1.5 0.04431 0.027625 95.23810 0.05319 0.028006 94.83568
β02 1.5 0.04749 0.211936 95.70896 0.05283 0.242311 95.06173
β1 -0.3 0.04488 0.01006 97.16981 0.05049 0.01329 95.50000
β2 0.2 0.06634 0.03085 97.29730 0.07233 0.05392 96.22302
α 0.2 0.00254 0.00025 97.73960 0.00437 0.00023 96.51452
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5. Data Analysis

To illustrate the applicability of the proposed model, we consider the data set from the
Stanford Heart Transplant Program. The data contains the details of 103 patients selected
for cardiac transplantation. A detailed description of data is available in Crowley and Hu
(1977). We consider a subset of this data set with 63 patients who received the transplant
to explain the application of the model. Out of these 63 transplant recipients, there were 27
(43%) deaths that occurred that due to rejection, 12 (19%) deaths from other causes and, the
remaining 24 (38%) were censored observations. Survival time was measured in days from
the date of transplant surgery. There are nine covariates in the original data set. We select
only one covariate, the mismatch score, a key factor that influences survival of patients after
heart transplantation (Miller (1976), Opelz, G. and Wujciak, T. (1994), Osorio-Jaramillo et
al. (2020)) for the analysis of data. The mismatch score measures the degree of dissimilarity
between the donor and recipient tissue concerning HLA antigens, and it is therefore related
to the phenomenon of rejection of the donor heart by the recipient’s immune mechanisms.
If the mismatch score is less than one, it is a sign of good match, and if the score is high,
greater than one represents a poor match (Miller (1976)). Hence we transform the selected
continuous covariate mismatch score into a categorical variable of two categories with cut-off
value one as per aforesaid classification criteria of matching and considered for the analysis
of data. There are two causes of failure in the data. The cause of death attributable to
rejection of the donor heart is labeled as cause 1 and cause of death due to other reasons
such as surgical, kidney failure, hepatitis, etc, and not due to rejection of the new heart is
labeled as cause 2.

As an initial step of the analysis, Kaplan- Meier plot is drawn for the data and displayed
in Figure 1. The plateau in the given survival curve confirms the presence of immunes in
the data. Hence the selected data is suitable for the analysis of cure rate models.
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Figure 1: Kaplan-Meier survival curve of heart transplant data
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In the present work, we are interested to study the effect of the covariate mismatch
score on the survival of patients who have undergone heart transplantation in competing
risks setting. The maximum likelihood estimators of regression coefficients are found out
using (12) under the given model assumptions. The statistical significance of the regression
coefficients is tested by the likelihood ratio test procedure. The estimates of regression
coefficients with corresponding standard errors are reported in Table 2. The result shows
that the higher mismatch score has a significant effect on rejection-related mortality among
patients after heart transplant (p = 0.013) but may not affect the survival of patients (p =
0.137). The role of mismatch score is negligible on rejection related mortality of patients
who died of competing causes.

Figure 2 displays plots of the estimated cumulative incidence rates for mismatch cate-
gories. From the Figure, it is obvious that the difference between cause specific failure rates
is more in high score (> 1) category of mismatch score compared to low score (< 1) category.
This is due to the variations in the influence of mismatch score on mortality of patients due
to two causes of failure.
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Figure 2: Cumulative incidence curve of mismatch score categories high score
(left) and low score (right) .

The estimated cured proportion among low score category (17.99%) is greater than that
of high score category (12.41%). It bring out the influence of the selected covariate mismatch
score on the survival of study subjects. The estimates and 95% Confidence interval of the
probability of cure due to rejection and due to other causes obtained from the model are
0.47 (0.34, 0.61) and 0.65 (0.50, 0.81) respectively. The estimated values of cured proportion
reveals the presence of cured individuals in the data and confirm the importance of the
proposed model. The goodness of fit of latency part of the model is tested using Cox-Snell
residuals with the modifications suggested by Peng and Tailor (2017). We consider the
Cox-Snell residuals ri = − logSj(t|Y = 1, θ, Z) using (4). The residuals for each cause of
failure estimated with different weights as given in (11) for the censored and uncensored
observations. The Kolmogorov - Smirnov test is performed to assess the unit exponentiality
of the data and p values obtained as p = 0.25 for rejection and p = 0.12 for other cause of
failure. The values indicate that the model fits well for the given data to explain each cause
of failure.
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Table 2: Estimates of parameters and Standard Error (SE)

Rejection (j = 1) Other Causes (j = 2)
Estimates Est SE P value Est SE P value

b0j 0.861 2.53 × 10−3 - 0.784 2.59 × 10−3 -
b1j 0.585 5.14 × 10−3 0.013 0.251 5.46 × 10−3 0.654
β0j -4.135 3.93 × 10−3 - -3.950 3.87 × 10−3 -
β1j 0.730 2.11 × 10−3 0.137 0.555 2.48 × 10−3 0.002

6. Conclusion

In this paper, we proposed a regression model with Weibull distribution for the analysis
of competing risks data with long term survivors. Maximum likelihood inference via EM
algorithm was implemented to estimate the parameters of the model. The goodness of fit
of the latency model checked using modified Cox-Snell residuals. The model was illustrated
with a real lifetime data on Stanford Heart Transplant Program and distinguished the effect
of covariate on short and long term survival of patients after heart transplant in competing
risks scenario. This article aimed to evaluate the effect of covariates such as clinico-social
variables, different treatment regimens and other prognostic factors on survival of patients
suffering from diseases when there is a chance of cure in the presence of competing risks
and expected to be useful for investigators in the field of survival analysis. The regression
analysis of interval censored data with cured proportion is also challenging in the field of
survival analysis. The work in this direction is under progress and it will be communicated
in a future paper.
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Algorithm for maximum likelihood estimation of parameters of the model

1. Determine the parameter values bj, βj, and α for j = 1, 2; (Select the initial values of
the parameters and input these values in first stage).

2. For the ith subject, generate the covariate Xi from Uniform(0,1);

3. Find out the probability of incidence pj(b) for ∀ Xi and j = 1, 2 ;

4. Generate censoring variable Ki from Uniform(0,k), where k is set to control the pro-
portion of censored observations;

5. Generate a random variable ui from Uniform(0,1);

6. Take vi as the root of F (t) − ui = 0, where F (t) is the distribution function corre-
sponding to the model;

7. Find ti = min(vi, Ki, τ), τ=10 (assumed). If ti < Ki, set δi = 1, otherwise δi = 0;

8. Find out survival functions Sj(t) for j = 1, 2 and S(t);

9. Find out ψi = 1 −ϕa(1 − S(ti))a−1 for i = 1, 2, . . . , n.; (Dewan and Kulathinal (2007))

10. Generate gi from Uniform(0,1);

11. If gi < ψi, set cause = 1, otherwise cause = 2;

12. Now the data set for the ith subject is (yij, tij, δij, Xi), i = 1, 2, . . . , n , j = 1, 2;

13. Find out the expected value πj for δij = 0, j = 1, 2;

14. Assign yij =1, if δij = 1. Otherwise yij =πj according to cause j. (yij = wij);

15. Maximize the complete data log-likelihood function and estimate the parameters;

16. Repeat the procedure of Expectation-Maximization till the convergence criteria is met
to get improved estimate (say, λ − λ̂ < δ, a pre defined small quantity for parameter
λ)

17. Replicate the required number of data sets.


