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Abstract
A time-dependent solution of the two-dimensional state M/M/2 queueing system with

multiple vacation, feedback, catastrophes and balking is obtained in this study. Inter-arrival
and service times follow an exponential distribution with parameters λ and µ respectively.
Both the servers go on vacation with probability one when there are no units in the system.
All the units are ejected from the system when catastrophes occur and the system becomes
temporarily unavailable. The system reactivates when new units arrive. Occurrence of
catastrophes follow Poisson distribution with rate ξ. The units come and wait in the queue
for service; the served units either leave the system or rejoin immediately at the early end
of the queue to receive satisfactory service, known as feedback. Laplace transform approach
has been used to find the time-dependent solution. The efficiency of a queuing system has
been verified by evaluating some key measures along with “total expected cost” and “total
expected profit”. Numerical analyses have been done by using Maple software.

Key words: Time-dependent solution; Two-dimensional state model; Balking; Catastrophes;
Feedback; Multiple vacation.
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1. Introduction

In the present study, the two-dimensional state model has been used to simplify the
complicated transient analysis of some queueing problems. This model is used to study the
queueing system more categorically for arrivals and departures. The idea of two-dimensional
state for the M/M/1 queue was first given by Pegden and Rosenshine (1982). After that,
two-dimensional state model has received considerable attention by many researchers to
analyse various queuing systems.

Various studies have been conducted to evaluate different performance measures to
verify the robustness of the system in which a server takes a break for a random period of
time i.e. vacation. When the server returns from a vacation and finds the queue empty, it
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immediately goes on another vacation and if it finds at least one waiting unit, then it will
commence service according to the prevailing service policy, i.e. multiple vacation. Different
queueing systems with multiple vacation have been extensively investigated and effectively
used in several fields including industries, computer & communication systems, telecommu-
nication systems etc. Different types of vacation policies are available in literature such as
single vacation, multiple vacation and working vacations. Researches on vacation models
have grown tremendously in the last several years. Cooper (1970) was the first to study the
vacation model and determined the mean waiting time for a unit arrive at a queue served
in cyclic order. Doshi (1986) and Ke et al. (2010) have done outstanding researches on
queueing system with vacations and released some excellent surveys. Xu and Zhang (2006)
considered the Markovian multi-server queue with a single vacation (e, d)-policy. They also
formulated the system as a quasi-birth-and-death process and computed the various station-
ary performance measures. Altman and Yechiali (2006) studied the customer’s impatience
in queues with server vacations. Kalidass et al. (2014) obtained the time-dependent solution
of a single server queue with multiple vacations. Ammar (2015) analysed M/M/1 queue with
impatient units and multiple vacations. Sharma and Indra (2020) investigated the dynamic
aspects of a two-dimensional state single server Markovian queueing system with multiple
vacations and reneging.

Also, units may be served repeatedly for many reasons, e.g. when a unit is unsatisfied
with a service, the unit may try for a satisfactory service. For example, we visit to the online
shopping store and order a full-sleeve jacket but when we receive the order it turn out
to be half-sleeve jacket. Since we are unsatisfied with the service, so we go for a return
policy or exchange policy provided by the shopping store and to receive satisfactory service.
Many researchers have been attracted to the study of queues with feedback as large number
of applications have been found in many areas including production systems, post offices,
supermarkets, hospital management, financial sectors, ticket offices, grocery stores, ATMs
and so forth. Takacs (1963) determined the distribution of the queue size and the first
two moments of the distribution for a queue with feedback. D’Avignon and Disney (1976)
studied the non-Markovian queue with a state-dependent feedback mechanism. Disney et al.
(1980) investigated a number of random processes that occur in queues with instantaneous
Bernoulli feedback. Choudhury and Paul (2005) derived two phases of heterogeneous services
with Bernoulli feedback systems. Chowdhury and Indra (2020) analysed two-node tandem
queue with feedback.

Queueing systems with catastrophes are getting a lot of attention nowadays and may
be used to solve a wide range of real-world problems. Catastrophes may occur at any time,
resulting in the loss of all the units and the deactivation of the service centre, because they
are totally unpredictable in nature. Such types of queues with catastrophes play an im-
portant role in computer programs, telecommunication, ticket counter etc. For example,
virus or hacker attacking a computer system or program causing the system fail or become
idle. Chao (1995) obtained steady-state probability of the queue size and a product form
solution of a queueing network system with catastrophes. Krishna Kumar et al. (2007) ob-
tained time-dependent solution for M/M/1 queueing system with catastrophes. Kalidass
et al. (2012) derived explicit closed form analytical expressions for the time-dependent prob-
abilities of the system size. Dharmaraja and Kumar (2015) studied Markovian queueing
system with heterogeneous servers and catastrophes. Chakravarthy (2017) studied delayed
catastrophic model in steady state using the matrix analytic method. Suranga Sampath and
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Liu (2018) studied an M/M/1 queue with reneging, catastrophes, server failures and repairs
using modified Bessel function, Laplace transform and probability generating function ap-
proach. de Oliveira Souza and Rodriguez (2021) worked on fractional M/M/1 queue model
with catastrophes.

Queues with balking have a wide range of practical applications in everyday life.
Balking occurs if units avoid joining the queue, when they perceive the queue to be too long.
Long queues at cash counters, ticket booths, banks, barber shops, grocery stores, toll plaza
etc. Kumar et al. (1993) obtained time-dependent solution of an M/M/1 queue with balking.
Zhang et al. (2005) analysed the M/M/1/N queueing system with balking, reneging, and
server vacation. Sharma and Kumar (2012) used a single-server Markovian feedback queuing
system with balking.

With above concepts in mind, we analyse a two-dimensional state M/M/2 queueing
model with multiple vacation, feedback, catastrophes and balking.

Out of the many physical situations, one can be in the post office, where an unit
arrives to receive the service and is unsatisfied by the service, then it re-joins at the early
end of the queue to receive satisfactory service; may be considered as feedback unit. On
arrival, if the unit finds a long queue and decides not to join; may be considered as balking
unit and if the computer system fails due to virus or any other reason; may be considered
as occurrence of catastrophes. After service completion, the server may take a break, when
he finds an empty queue.

The paper has been structured as follows. In Section 2, the model assumptions,
notations and description are given. In Section 3 the differential-difference equations to find
out the time-dependent solution are given and Section 4 describes important performance
measures. Section 5 investigates the total expected cost function and total expected profit
function for the given queueing system. In Section 6, we present the numerical results in
the form of tables and graphs to illustrate the impact of various factors on performance
measures. The last Section contains discussion on the findings and suggestions for future
work.

2. Model assumptions, notations and description

• Arrivals follow Poisson distribution with parameter λ.

• There are two homogeneous servers and the service times at each server follow an
exponential distribution with parameter µ.

• The vacation time of the server follows an exponential distribution with parameter w.

• After completion of the service, the dissatisfied units rejoin at the early end of the
queue to receive service with probability q.

• On arrival a unit either decides to join the queue with probability β or not to join the
queue with probability 1-β.

• Occurrence of catastrophes follows Poisson distribution with parameter ξ.
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• Various stochastic processes involved in the system are statistically independent of
each other.

Initially, the system starts with zero units and the server is on vacation, i.e.

P0,0,V (0) = 1 , P0,0,B(0) = 0 (1)

δi,j =
{

1 ; for i = j

0 ; for i ̸= j
(2)

j∑
i

= 0 for j < i

The two-dimensional state model
Pi,j,V (t)=The probability that there are exactly i arrivals and j departures by time t and
the server is on vacation.
Pi,j,B(t)=The probability that there are exactly i arrivals and j departures by time t and
the server is busy in relation to the queue.
Pi,j(t)=The probability that there are exactly i arrivals and j departures by time t.

3. The differential-difference equations for the queueing model under study

d

dt
Pi,i,V (t) = −λβPi,i,V (t) + qµPi,i−1,B(t)(1 − δi,0) + ξ(1 − Pi,i,V (t)) i ≥ 0 (3)

d

dt
Pi+1,i,B(t) = −(λβ +qµ+ξ)Pi+1,i,B(t)+2qµPi+1,i−1,B(t)(1−δi,0)+wPi+1,i,V (t) i ≥ 0 (4)

d

dt
Pi,j,V (t) = −(λβ + w + ξ)Pi,j,V (t) + λβPi−1,j,V (t) i > j ≥ 0 (5)

d

dt
Pi,j,B(t) = −(λβ + 2qµ + ξ)Pi,j,B(t) + λβPi−1,j,B(1 − δi−1,j)(t) + 2qµPi,j−1,B(t)(1 − δj,0)

+wPi,j,V (t) i > j + 1 (6)
The preceding equations (3) to (6) are solved by taking the Laplace transforms together with
initial conditions:

P̄0,0,V (s) = ξ + s

s(s + λβ + ξ) (7)

P̄i,0,V (s) = (λβ)i(ξ + s)
s(s + λβ + ξ)(s + λβ + w + ξ)i

i > 0 (8)

P̄i,i,V (s) = qµ

s + λβ + ξ
Pj,j−1,B(s) i > 0 (9)

P̄i,0,B(s) = w(λβ)i(ξ + s)
s(s + λβ + ξ)(s + λβ + w + ξ)(s + λβ + qµ + ξ)(s + λβ + 2qµ + ξ)i−1 +
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+w(λβ)i ∑i−1
m=1

1
s(s + λβ + ξ)(s + λβ + w + ξ)m+1(s + λβ + qµ + ξ)(s + λβ + 2qµ + ξ)i−m

i ≥ 1

(10)
P̄i+1,i,B(s) = 2qµ

s + λβ + qµ + ξ
Pi+1,i−1,B(s)

+ qµwλβ

(s + λβ + ξ)(s + λβ + w + ξ)(s + λβ + qµ + ξ)Pi,i−1,B(s) i > 0 (11)

P̄i,j,V (s) = (qµ)
(s + λβ + w + ξ)

(λβ)i−j

(s + λβ + w + ξ)i−j
Pj,j−1,B(s) i > j ≥ 1 (12)

P̄i,j,B(s) = λβ

s + λβ + 2qµ + ξ
Pi−1,j,B(s) + 2qµ

s + λβ + 2qµ + ξ
Pi,j−1,B(s) + qµ

s + λβ + ξ

w

s + λβ + 2qµ + ξ

(λβ)i−j

(s + λβ + w + ξ)i−j
Pj,j−1,B(s) i > j + 1, j > 0 (13)

It is seen that
∞∑

i=0

i∑
j=0

[P̄i,j,V (s) + P̄i,j,B(s)(1 − δi,j)] = 1
s

(14)

and hence
∞∑

i=0

i∑
j=0

[P̄i,j,V (t) + P̄i,j,B(t)(1 − δi,j)] = 1 (15)

a verification.

4. Performance measures

(a) The Laplace transform of Pi.(t) the probability that exactly i units arrive by time
t; when initially there are no units in the system is given by

P̄i.(s) =
i∑

j=0
[P̄i,j,V (s) + P̄i,j,B(s)(1 − δi,j)] =

i∑
j=0

P̄i,j(s) = (λβ)i

(s + λβ)i+1 (16)

and its inverse Laplace transform is

Pi.(t) = e−λβt(λβt)i

i! (17)

The arrivals follow a Poisson distribution as the probability of the total number of arrivals
is not affected by vacation time of the server.
(b) P.j(t) is the probability that exactly j units have been served by time t. In terms of
Pi,j(t) we have

P.j(t) =
∞∑

i=j

Pi,j(t) (18)

(c)The probability of exactly n units in the system at time t, denoted by Pn(t), can be
expressed in terms Pij(t) as

Pn(t) =
∞∑

j=0
Pj+n,j(t) (19)
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(d) The Laplace transform of mean number of arrivals by time t is
∞∑

i=0
iP̄i.(s) = λβ

s2 (20)

and inverse of the mean number of arrivals by time t is
∞∑

i=0
i Pi.(t) = λt (21)

(e) The mean number of units in the queue is calculated as follows

QL(t) =
∞∑

n=0
nPV (t) +

∞∑
n=2

(n − 2)PB(t) (22)

where n = i − j.

5. Cost function and profit function

For the given queueing system, the following notations have been used to represent
various costs to find out the total expected cost and total expected profit per unit time
Let
CH : Cost per unit time for unit in the queue.
CB: Cost per unit time for a busy server.
Cµ: Cost per service per unit time.
CV : Cost per unit time when the server is on vacation.
Cµ−q: Cost per unit time when a unit rejoins at the early end of the queue as a feedback
unit.
If I is the total expected amount of income generated by delivering a service per unit time
then
a) Total expected cost per unit at time t is given by

TC(t) = CH ∗ QL(t) + CB ∗ PB(t) + CV ∗ PV (t) + µ ∗ (Cµ + Cµ−q) (23)

b) Total expected income per unit at time t is given by

TEI(t) = I ∗ µ ∗ (1 − PV (t)) = I ∗ µ ∗ PB(t) (24)

c) Total expected profit per unit at time t is given by

TEP (t) = TEI(t) − TC(t) (25)

6. Numerical results

6.1. Numerical validity check

1. For the state when the server is on vacation

PV (t) =
i∑

j=0
Pi,j,V (t) (26)
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2. For the state when the server is busy in relation to the queue

PB(t) =
i−1∑
j=0

Pi,j,B(t) (27)

3. The probability Pi.(t) that exactly i units arrive by time t is

Pi.(t) =
i∑

j=0
Pi,j(t) =

i∑
j=0

Pi,j,V (t) +
i−1∑
j=0

Pi,j,B(t) (28)

4. A numerical validity check of inversion of P̄i,j(s) is based on the relationship

Pr{i arrivals in (0, t)} = e−(λβt) ∗ (λβt)i

i! =
i∑

j=0
Pi,j(t) = Pi.(t) (29)

The probabilities of this model shown in last column of Table 1 given below are consistent
to the last column of “Pegden and Rosenshine (1982)”

Table 1: Numerical validity check of inversion P̄i,j(s)

λ µ t i w q ξ β e−(λt)∗(λt)i

i!
∑i

j=0 Pi,j,V (t) ∑i−1
j=0 Pi,j,B(t) ∑i

j=0 Pi,j(t)
1 2 3 1 1 1 0 1 0.149361 0.12688 0.02247 0.14936
1 2 3 3 1 1 0 1 0.224041 0.14971 0.07433 0.22404
1 2 3 5 1 1 0 1 0.100818 0.05262 0.04818 0.10081
2 2 3 1 1 1 0 1 0.014871 0.01263 0.00223 0.01487
2 2 3 3 1 1 0 1 0.089234 0.05962 0.02960 0.08923
2 2 3 5 1 1 0 1 0.160622 0.08384 0.07677 0.16062
1 2 4 1 1 1 0 1 0.073261 0.06443 0.00882 0.07326
1 2 4 3 1 1 0 1 0.195366 0.14187 0.05349 0.19536
1 2 4 5 1 1 0 1 0.156292 0.09401 0.06227 0.15629
2 2 4 1 1 1 0 1 0.002682 0.00236 0.00032 0.00268
2 2 4 3 1 1 0 1 0.028625 0.02078 0.00783 0.02862
2 2 4 5 1 1 0 1 0.091602 0.05510 0.03650 0.09160
2 4 4 5 1 1 0 1 0.091602 0.07219 0.01940 0.09160
1 2 4 4 1 1 0 1 0.195366 0.12931 0.06605 0.19536
1 2 3 6 1 1 0 1 0.050409 0.02299 0.02741 0.05040

Table 2: Probabilities of exactly n units in the system at time t

n t = 1 t = 2 t = 3 t=4 t = 5
0 0.3064059 0.2756176 0.2194939 0.1313295 0.0614414
1 0.3512870 0.3112144 0.2199253 0.1139011 0.0462964
2 0.1935174 0.1626266 0.0998428 0.0447517 0.0158779
3 0.0917319 0.0804006 0.0421561 0.0161968 0.0049851
4 0.0368324 0.0375051 0.0167183 0.0053778 0.0014074
5 0.0123808 0.0160725 0.0061926 0.0016003 0.0003411
6 0.0033284 0.0059066 0.0020629 0.0004081 0.0000646
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Table 3: Probabilities of exactly j departures by time t

j t = 1 t = 3 t = 5 t=7 t = 10
0 0.67968674 0.099509402 0.007046060 0.000420927 0.00016181
1 0.17711300 0.081454841 0.009095394 0.000581746 0.00005037
2 0.09298400 0.117972870 0.018124103 0.001391221 0.00005942
3 0.03598100 0.140843910 0.031453844 0.003012981 0.00008380
4 0.01081200 0.140978350 0.047484726 0.005811690 0.00014277
5 0.00259600 0.119261779 0.061887004 0.009825172 0.00026424
6 0.00050430 0.084578352 0.068296881 0.014198767 0.00046744

6.2. Sensitivity analysis

This part focuses on the impact of the arrival rate (λ), service rate (µ), vacation
rate (w), catastrophes rate (ξ), feedback probability (q) and balking probability (1-β) on
the probability when the server is on vacation (PV (t)), probability when the server is busy
(PB(t)), expected queue length (QL(t)), total expected cost (TC(t)), total expected income
(TEI(t)) and total expected profit (TEP (t)) at time t. To calculate the numerical results
for the sensitivity of the queueing system one parameter varied while keeping all the other
parameters fixed.

Impact of arrival rate: We examine the behaviour of the queueing system using mea-
sures of effectiveness along with cost and profit analysis by varying λ with time t, while
keeping all other parameters fixed; µ=5, w=2, β=0.5, ξ=0.0001, q=0.7, CH=10, CB=8,
CV =5, Cµ=4, Cµ−q=2, I=100 and N=8. In Table 4, we observe that as the value of λ in-
creases with time t, PB(t), QL(t), TC(t), TEI(t) and TEP (t) increases but PV (t) decreases.

Table 4: Measures of effectiveness versus λ

t λ PV (t) PB(t) QL(t) TC(t) TEI(t) TEP (t)
1 1.00 0.905411 0.094588 0.2173509 37.457268 47.2940 9.8367320
2 0.880912 0.119086 0.2429674 37.786922 59.5430 21.756078
3 0.878559 0.121412 0.2454781 37.818872 60.7060 22.887128
4 0.878264 0.121497 0.2455127 37.818423 60.7485 22.930077
5 0.877657 0.121202 0.2447627 37.805528 60.6010 22.795472
1 1.25 0.884191 0.115808 0.2722840 38.070259 57.9040 19.833741
2 0.855421 0.144572 0.3036798 38.470479 72.2860 33.815521
3 0.852827 0.147024 0.3064271 38.504598 73.5120 35.007402
4 0.852077 0.146782 0.3056222 38.490863 73.3910 34.900137
5 0.849575 0.145499 0.3023700 38.435567 72.7495 34.313933
1 1.50 0.863798 0.136201 0.3275511 38.684109 68.1005 29.416391
2 0.831169 0.168802 0.3646441 39.152702 84.4010 45.248298
3 0.828243 0.171206 0.3671780 39.182643 85.6030 46.420357
4 0.826167 0.170030 0.3638632 39.129707 85.0150 45.885293
5 0.818924 0.166270 0.3543160 38.967940 83.1350 44.167060

Impact of service rate: The behaviour of the queueing system using measures of
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Figure 1: Shows the variation of cost, income and profit at an arrival rate λ=1.00
with time t while keeping the other parameters fixed (µ=5, w=2, ξ=0.0001,
q=0.7, β=0.5)
Figure 2: Shows the variation of QL(t) with time t by varying arrival rate λ(=1.00,
1.25, 1.50) while keeping the other parameters fixed (µ=5, w=2, ξ=0.0001, q=0.7,
β=0.5)

effectiveness along with cost and profit analysis by varying µ with time t, while keeping all
other parameters fixed; λ=1, w=2, β=0.5, ξ=0.0001, q=0.7, CH=10, CB=8, CV =5, Cµ=4,
Cµ−q=2, I=100 and N=8. In Table 5, we observe that as the value of µ increases with time
t, PB(t), QL(t), TC(t), TEI(t) and TEP (t) increases but PV (t) decreases.

Table 5: Measures of effectiveness versus µ

t µ PV (t) PB(t) QL(t) TC(t) TEI(t) TEP (t)
1 3.75 0.885251 0.114748 0.220270 30.046939 43.03050 12.983561
2 0.845732 0.154266 0.247027 30.433058 57.84975 27.416692
3 0.840988 0.158983 0.248985 30.466654 59.61862 29.151971
4 0.840598 0.159163 0.248765 30.463944 59.68612 29.222181
5 0.840100 0.158760 0.247921 30.433790 58.78500 28.351210
1 4.25 0.894093 0.105906 0.218863 33.006343 45.01005 12.003707
2 0.861897 0.138101 0.244849 33.362783 58.69292 25.330142
3 0.858481 0.141490 0.247023 33.394555 60.13325 26.738695
4 0.858160 0.141601 0.246935 33.392958 60.18042 26.787467
5 0.857609 0.141250 0.246144 33.371485 59.60625 26.234765
1 4.75 0.901872 0.098127 0.217789 35.972266 46.61032 10.638059
2 0.875156 0.124842 0.243461 36.309126 59.29995 22.990824
3 0.872529 0.127443 0.245866 36.340849 60.53542 24.194576
4 0.872229 0.127532 0.245867 36.340071 60.57770 24.237629
5 0.871638 0.127221 0.245106 36.319018 59.95497 23.635957

Impact of vacation rate: We observe that the behaviour of the queueing system
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Figure 3: Shows the variation of cost, income and profit at a service rate µ=3.75
with time t while keeping the other parameters fixed (λ=1, w=2, ξ=0.0001,
q=0.7, β=0.5)
Figure 4: Shows the variation of QL(t) with time t by varying service rate µ(=3.75,
4.25, 4.75) while keeping the other parameters fixed (λ=1, w=2, ξ=0.0001, q=0.7,
β=0.5)

using measures of effectiveness along with cost and profit analysis by varying w with time
t, while keeping all other parameters fixed; λ=1, µ=5, q=0.7, β=0.5, ξ=0.0001, CH=10,
CB=8, CV =5, Cµ=4, Cµ−q=2, I=100 and N=8. In Table 6 , we observe that as the value
of w increases with time t, PB(t), QL(t), TC(t), TEI(t) and TEP (t) increases but PV (t)
decreases.
Impact of catastrophes rate: We see that the behaviour of the queueing system using
measures of effectiveness, along with cost and profit analysis by varying ξ with time t, while
keeping all other parameters fixed; λ=1, µ=5, w=2, q=0.7, β=0.5, CH=10, CB=8, CV =5
and Cµ=4, Cµ−q=2, I=100, N=8. In Table 7, we observe that as the value of ξ increases
with time t, PB(t), QL(t), TC(t), TEI(t) and TEP (t) increases but PV (t) decreases.

Impact of feedback probability: We observe that the behaviour of the queueing
system using measures of effectiveness along with cost and profit analysis by varying q with
time t, while keeping all other parameters fixed; λ=1, µ=5, w=2, β=0.5, ξ=0.0001, CH=10,
CB=8, CV =5, Cµ=4, Cµ−q=2, I=100 and N=8. In Table 8, we observe that as the value
of q increases with time t, PB(t), QL(t), TC(t), TEI(t) and TEP (t) increases but PV (t)
decreases.

Impact of joining probability: We observe that the behaviour of the queueing
system using measures of effectiveness along with cost and profit analysis by varying β with
time t, while keeping all other parameters fixed; λ=1, µ=5, w=2, q=0.7, ξ=0.0001, CH=10,
CB=8, CV =5, Cµ=4, Cµ−q=2, I=100 and N=8. In Table 9, we observe that as the value
of β increases with time t, PB(t), QL(t), TC(t), TEI(t) and TEP (t) increases but PV (t)
decreases.



2024] TRANSIENT ANALYSIS OF TWO-DIMENSIONAL STATE M/M/2 QUEUING MODEL 313

Table 6: Measures of effectiveness versus w

t w PV (t) PB(t) QL(t) TC(t) TEI(t) TEP (t)
1 2.00 0.905411 0.094588 0.217350 37.457259 47.2940 9.8367410
2 0.880912 0.119086 0.242967 37.786918 59.5430 21.756082
3 0.878559 0.121412 0.245478 37.818871 60.7060 22.887129
4 0.878264 0.121497 0.245512 37.818416 60.7485 22.930084
5 0.877657 0.120202 0.244762 37.797521 60.1010 22.303479
1 2.25 0.900868 0.099131 0.200253 37.299918 49.5655 12.265582
2 0.878961 0.121037 0.218097 37.544071 60.5185 22.974429
3 0.877366 0.122605 0.219252 37.560190 61.3025 23.742310
4 0.877175 0.122587 0.219121 37.557781 61.2935 23.735719
5 0.876583 0.121276 0.218425 37.537373 60.6380 23.100627
1 2.50 0.897077 0.102922 0.185305 37.161811 51.4610 14.299189
2 0.877506 0.122492 0.197743 37.344896 61.2460 23.901104
3 0.876420 0.123552 0.198212 37.352636 61.7760 24.423364
4 0.876276 0.123486 0.198033 37.349598 61.7430 24.393402
5 0.875691 0.122168 0.197394 37.329739 61.0840 23.754261

Figure 5: Shows the variation of cost, income and profit at a vacation rate w=2.00
with time t while keeping the other parameters fixed (λ=1, µ=5, ξ=0.0001, q=0.7,
β=0.5)
Figure 6: Shows the variation of QL(t) with time t by varying vacation rate
w(=2.00, 2.25, 2.50) while keeping the other parameters fixed (λ=1, µ=5,
ξ=0.0001, q=0.7, β=0.5)

7. Discussion

Figure 1 shows the variation of cost, income and profit with time t by keeping λ
constant (=1.00). The value of cost, income and profit increases with increase in t upto
t(=3.00, 4.00, 4.00) respectively then decreases slightly. The variation in queue length with
time t is represented in figure 2 by varying the arrival rate λ(=1.00, 1.25, 1.50). Queue
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Table 7: Measures of effectiveness versus ξ

t ξ PV (t) PB(t) QL(t) TC(t) TEI(t) TEP (t)
1 0.0001 0.905411 0.094588 0.217350 37.457259 47.2940 9.8367410
2 0.880912 0.119086 0.242967 37.786918 59.5430 21.756082
3 0.878559 0.121412 0.245478 37.818871 60.7060 22.887129
4 0.878264 0.121497 0.245512 37.818416 60.7485 22.930084
5 0.877657 0.121202 0.244762 37.797521 60.1010 22.303479
1 0.0002 0.905415 0.094584 0.217343 37.457177 47.2920 9.8348230
2 0.880920 0.119078 0.242956 37.786784 59.5390 21.752216
3 0.878567 0.121404 0.245466 37.818727 60.7020 22.883273
4 0.878273 0.121489 0.245501 37.818287 60.7445 22.926213
5 0.877666 0.120194 0.244751 37.797392 60.0970 22.299608
1 0.0003 0.905420 0.094579 0.217336 37.457092 47.2895 9.8324080
2 0.880928 0.119070 0.242945 37.786650 59.5350 21.748350
3 0.878576 0.121395 0.245455 37.818590 60.6975 22.878910
4 0.878282 0.121480 0.245489 37.818140 60.7400 22.921860
5 0.877675 0.120185 0.244740 37.797255 60.0925 22.295245

Figure 7: Shows the variation of cost, income and profit at a catastrophes rate
ξ=0.0001 with time t while keeping the other parameters fixed (λ=1, µ=5, w=2,
q=0.7, β=0.5)
Figure 8: Shows the variation of QL(t) with time t by varying catastrophes rate
ξ(=0.0001, 0.0002, 0.0003) while keeping the other parameters fixed (λ=1, µ=5,
w=2, q=0.7, β=0.5)

length values increases with increase in time up to t(=4.00, 3.00, 3.00) also then decreases
slightly. Hence we get the optimal value of t=1 when λ=1.00 and t=3 when λ=1.50 for
minimum cost and maximum profit respectively.

Figure 3 shows the variation of cost, income and profit with time t by keeping µ
constant (=3.75). The value of cost, income and profit increases with increase in t upto
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Table 8: Measures of effectiveness versus q

t q PV (t) PB(t) QL(t) TC(t) TEI(t) TEP (t)
1 0.55 0.888542 0.111457 0.2197238 37.531604 55.7285 18.196896
2 0.851890 0.148108 0.2461336 37.905650 74.0540 36.148350
3 0.847705 0.152266 0.2481621 37.938274 76.1330 38.194726
4 0.847350 0.152412 0.2479947 37.935993 76.2060 38.270007
5 0.846830 0.151029 0.2471729 37.914111 75.5145 37.600389
1 0.65 0.900287 0.099712 0.2179962 37.479093 49.8560 12.376907
2 0.872523 0.127475 0.2437086 37.819501 63.7375 25.917999
3 0.869757 0.130214 0.2460660 37.851157 65.1070 27.255843
4 0.869455 0.130306 0.2460511 37.850234 65.1530 27.302766
5 0.868872 0.128987 0.2452851 37.829107 64.4935 26.664393
1 0.75 0.910104 0.089895 0.2168165 37.437845 44.9475 7.5096550
2 0.888300 0.111698 0.2424285 37.759369 55.8490 18.089631
3 0.886247 0.113724 0.2450750 37.791777 56.8620 19.070223
4 0.885957 0.113804 0.2451474 37.791691 56.9020 19.110309
5 0.885330 0.112529 0.2444091 37.770973 56.2645 18.493527

Figure 9: Shows the variation of cost, income and profit at a feedback probability
q=0.55 with time t while keeping the other parameters fixed (λ=1, µ=5, w=2,
ξ=0.0001, β=0.5)
Figure 10: Shows the variation of QL(t) with time t by varying feedback proba-
bility q(=0.55, 0.65, 0.75) while keeping the other parameters fixed (λ=1, µ=5,
w=2, ξ=0.0001, β=0.5)

t(=3.00, 4.00, 4.00) then decreases slightly. The variation in queue length with time t is
represented in figure 4 by varying the service rate µ(=3.75, 4.25, 4.75). Queue length values
increases with increase in time up to t(=3.00, 3.00, 4.00) also then decreases slightly. Hence
we get the optimal value of t=1 when µ=3.75 and t=4 when µ=3.75 for minimum cost and
maximum profit respectively.
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Table 9: Measures of effectiveness versus β

t β PV (t) PB(t) QL(t) TC(t) TEI(t) TEP (t)
1 0.50 0.905411 0.094588 0.2173509 37.457268 47.2940 9.8367320
2 0.880912 0.119086 0.2429674 37.786922 59.5430 21.756078
3 0.878559 0.121412 0.2454781 37.818872 60.7060 22.887128
4 0.878264 0.121497 0.2455127 37.818423 60.7485 22.930077
5 0.877657 0.121202 0.2447627 37.805528 60.6010 22.795472
1 0.60 0.888367 0.111632 0.2612720 37.947611 55.8160 17.868389
2 0.860414 0.139580 0.2915200 38.333910 69.7900 31.456090
3 0.857871 0.142019 0.2942445 38.367952 71.0095 32.641548
4 0.857261 0.141876 0.2937015 38.358328 70.9380 32.579672
5 0.855314 0.140883 0.2911838 38.315472 70.4415 32.126028
1 0.70 0.871860 0.128139 0.3054014 38.438426 64.0695 25.631074
2 0.840733 0.159250 0.3402231 38.879896 79.6250 40.745104
3 0.837961 0.161701 0.3429228 38.912641 80.8505 41.937859
4 0.836564 0.161003 0.3408982 38.879826 80.5015 41.621674
5 0.831663 0.158467 0.3344632 38.770683 79.2335 40.462817

Figure 11: Shows the variation of cost, income and profit at a joining probability
β=0.50 with time t while keeping the other parameters fixed (λ=1, µ=5, w=2,
ξ=0.0001, q=0.7)
Figure 12: Shows the variation of QL(t) with time t by varying joining probability
β(=0.50, 0.60, 0.70) while keeping the other parameters fixed (λ=1, µ=5, w=2,
ξ=0.0001, q=0.7)

Figure 5 shows the variation of cost, income and profit with time t by keeping w
constant (=2.00). The value of cost, income and profit increases with increase in t upto
t(=3.00, 4.00, 4.00) then decreases slightly. The variation in queue length with time t is
represented in figure 6 by varying the vacation rate w(=2.00, 2.25, 2.50). Queue length
values increases with increase in time up to t(=4.00, 3.00, 3.00) also then decreases slightly.
Hence we get the optimal value of t=1 when w=2.50 and t=3 when w=2.50 for minimum
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cost and maximum profit respectively.

Figure 7 shows the variation of cost, income and profit with time t by keeping ξ
constant (=0.0001). The value of cost, income and profit increases with increase in t upto
t(=3.00, 4.00, 4.00) then decreases slightly. The variation in queue length with time t is
represented in figure 8 by varying the catastrophes rate ξ(=0.0001, 0.0002, 0.0003). Queue
length values increases with increase in time up to t(=4.00) then decreases slightly. Hence
we get the optimal value of t=1 when ξ=0.0003 and t=4 when ξ=0.0001 for minimum cost
and maximum profit respectively. Finally, the variation in rate of catastrophes shows the
minor effect on cost and profit.

Figure 9 shows the variation of cost, income and profit with time t by keeping q
constant (=0.55). The value of cost, income and profit increases with increase in t upto
t(=3.00, 4.00, 4.00) then decreases slightly. The variation in queue length with time t is
represented in figure 10 by varying the feedback probability q(=0.55, 0.65, 0.75). Queue
length values increases with increase in time up to t(=3.00, 4.00, 4.00) also then decreases
slightly. Hence we get the optimal value of t=1 when q=0.75 and t=4 when q=0.55 for
minimum cost and maximum profit respectively.

Figure 11 shows the variation of cost, income and profit with time t by keeping β
constant (=0.50). The value of cost, income and profit increases with increase in t upto
t(=3.00, 4.00, 4.00) then decreases slightly. The variation in queue length with time t is
represented in figure 12 by varying the joining probability β(=0.50, 0.60, 0.70). Queue
length values increases with increase in time up to t(=4.00, 3.00, 3.00) also then decreases
slightly. Hence we get the optimal value of t=1 when β=0.50 and t=3 when β=0.70 for
minimum cost and maximum profit respectively.

8. Conclusions and future work

The time-dependent solution for the M/M/2 queueing system with multiple vacation,
feedback, catastrophes and balking has been obtained using a two-dimensional state model.
Based on various performance measures, total expected cost and total expected profit, the
best optimal value is at t=1 when service rate=3.75 and t=3 when arrival rate=1.50 for
minimum cost and maximum profit respectively. Some key measures give a greater under-
standing of system model behaviour. This model finds its application in post office, computer
networks, supermarkets, hospital administrations, financial sector and many others.
As part of future study, this model may be examined further for Non-Markovian queues,
bulk queues, tandem queues etc.
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