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Abstract

(µ1, µ2, . . . µt)-resolvable solutions of some BIB and regular group divisible designs are
obtained by decomposing the v(= mn)×b incidence matrix into smaller circulant submatrices
of orders m × t.
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1. Introduction

Let the incidence matrix N of a block design D(v, r, k, b) may be decomposed into
submatrices as N = (N1|N2| . . . |Nt) such that each row sum of Ni (1 ≤ i ≤ t) is µi.
Then the design is (µ1, µ2, . . . , µt)-resolvable [see Kageyama (1976), Saurabh (2024b)]. If
µ1 = µ2 = · · · = µt = µ then the design is µ-resolvable. Such designs are also denoted as A-
resolvable in combinatorial design theory [see Ge and Miao (2007)]. A practical application
of such designs may be found in Kageyama (1976). The resolvable solutions obtained here
are not earlier reported in the Tables of Clatworthy (1973) and Saurabh et al. (2021) [see
Table 1].

Let v = mn elements be arranged in an m×n array. A regular group divisible (RGD)
design is an arrangement of the v = mn elements in b blocks each of size k such that:

1. Every element occurs at most once in a block;
2. Every element occurs in r blocks;
3. Every pair of elements, which are in the same row of the m × n array, occur together

in λ1 blocks whereas every other pair of elements occur together in λ2 blocks;
4. r − λ1 > 0 and rk − vλ2 > 0.

Further let N be the incidence matrix of a GD design then the structure of NN⊤ is
given as [see Saurabh and Sinha (2023) for GD association schemes]:
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(i) NN⊤ = (r − λ1)(Im ⊗ In) + (λ1 − λ2)(Im ⊗ Jn) + λ2(Jm ⊗ Jn); or
(ii) NN⊤ = (r − λ2)(In ⊗ Im) + λ2(Jn ⊗ Jm) + (λ1 − λ2){(Jn − In) ⊗ Im},

where Jn is an n × n matrix all of whose entries are 1.

Notations: In is the identity matrix of order n, A ⊗ B is the Kronecker product of two
matrices A and B, 0m×n is a null matrix of order m×n and N⊤ is transpose of the matrix N .
In Section 2, N represents incidence matrix of the design whereas RX and RXa numbers
are from Clatworthy (1973) and Freeman (1976) respectively.

2. Resolvable solutions

2.1. (µ1, µ2, . . . , µt )-resolvable GD designs

Here α = circ(010 . . . 0) is a permutation circulant matrix of order m such that αm = Im.

Table 1: (µ1, µ2, . . . , µt)-resolvable RGD designs

No. Design v r k b λ1 λ2 m n Present Status
1 R89a 18 10 3 60 4 1 9 2 (1,3,3,3)-resolvable
2 R109a 12 7 4 21 1 2 6 2 (2,2,3)-resolvable
3 R113a 14 10 4 35 6 2 7 2 (2,2,2,4)-resolvable
4 R123a 18 10 4 45 0 2 6 3 (2,4,4)-resolvable
5 R124a 22 8 4 44 4 1 11 2 (2,2,4)-resolvable
6 R126a 24 9 4 54 5 1 12 2 (1,2,2,4)-resolvable
7 R128a 26 10 4 65 6 1 13 2 (2,2,2,4)-resolvable
8 R152a 22 10 5 44 11 2 0 2 5-resolvable
9 R163 45 10 5 90 0 1 9 5 5-resolvable
10 R167a 12 9 6 18 5 4 6 2 (3,6)-resolvable

1. R89a: v = 18, r = 10, k = 3, b = 60, λ1 = 4, λ2 = 1, m = 9, n = 2.
Consider a block matrix

N = (N1|N2|N3|N4) =(
P 09×3 α + α2 α α + α8 α4 α + α6 α

09×3 P α α + α2 α α + α8 α4 α + α6

)
,

where P =

1
1
1

⊗ circ(010). Then NN⊤ = 9(I2 ⊗ I9) + (J2 ⊗ J9) + 3{(J2 − I2) ⊗ I9}.

Hence N represents the incidence matrix of R89a. Further since each row sum of N1,
N2, N3 and N4 is 1, 3, 3 and 3 respectively, the design is (1, 3, 3, 3)-resolvable.

2. R109a: v = 12, r = 7, k = 4, b = 21, λ1 = 1, λ2 = 2, m = 6, n = 2.

N = (N1|N2|N3) =
(

α + α3 α + α4 α + α2 + α3 06×3
α + I6 α2 + I6 α4 P

)
,

where P =
(

1
1

)
⊗ circ(011). Since each row sum of N1, N2 and N3 is 2, 2 and 3

respectively, the design is (2, 2, 3)-resolvable.
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3. R113a: v = 14, r = 10, k = 4, b = 35, λ1 = 6, λ2 = 2, m = 7, n = 2.

N = (N1|N2|N3|N4) =
(

α + α2 α + α3 α + α4 α + α2 + α4 I7
α + α2 α + α3 α + α4 I7 α + α2 + α4

)
.

Since each row sum of N1, N2, N3 and N4 is 2, 2, 2 and 4 respectively, the design is
(2, 2, 2, 4)-resolvable.

4. R123a: v = 18, r = 10, k = 4, b = 45, λ1 = 0, λ2 = 2, m = 6, n = 3.

N = (N1|N2|N3) = P6×9 06 α4 α + α2 + α3 α + α3 α4 α5

Q6×9 α + α2 + α3 06 α4 α5 α + α3 α4

R6×9 α4 α + α2 + α3 06 α4 α5 α + α3

 ,

where P6×9 =
(

I3 03 β2

I3 03 β2

)
, Q6×9 =

(
β2 I3 03
β2 I3 03

)
, R6×9 =

(
03 β2 I3
03 β2 I3

)
and

β = circ(010).
Since each row sum of N1, N2 and N3 is 2, 4 and 4 respectively, the design is (2, 4, 4)-
resolvable.

5. R124a: v = 22, r = 8, k = 4, b = 44, λ1 = 4, λ2 = 1, m = 11, n = 2.

N = (N1|N2|N3) =
(

α + α7 α + α8 α + α3 + α4 α
α + α8 α + α7 α α + α3 + α4

)
.

Since each row sum of N1, N2 and N3 is 2, 2 and 4 respectively, the design is (2, 2, 4)-
resolvable.

6. R126a: v = 24, r = 9, k = 4, b = 54, λ1 = 5, λ2 = 1, m = 12, n = 2.

N = (N1|N2|N3|N4) =
(

P α + α4 α + α11 α + α2 + α9 α
P α + α11 α + α4 α α + α2 + α9

)
,

where P =
(

circ(010000)
I6

)
. Since each row sum of N1, N2, N3 and N4 is 1, 2, 2 and 4

respectively, the design is (1, 2, 2, 4)-resolvable.
7. R128a: v = 26, r = 10, k = 4, b = 65, λ1 = 6, λ2 = 1, m = 13, n = 2.

N = (N1|N2|N3|N4) =
(

α + α2 α + α4 α + α5 α + α6 + α8 α
α + α4 α + α2 α + α5 α α + α6 + α8

)
.

Since each row sum of N1, N2, N3 and N4 is 2, 2, 2 and 4 respectively, the design is
(2, 2, 2, 4)-resolvable.

8. R152a: v = 22, r = 10, k = 5, b = 44, λ1 = 0, λ2 = 2, m = 11, n = 2.

N = (N1|N2) =
(

α + α2 + α3 + α6 α9 α + α3 + α8 α2 + α10

α9 α + α2 + α3 + α6 α2 + α10 α + α3 + α8

)
.

Since each row sum of N1 and N2 is 5, the design is 5– resolvable [see Saurabh (2024a)].
9. R163: v = 45, r = 10, k = 5, b = 90, λ1 = 0, λ2 = 1, m = 9, n = 5.

A 5-resolvable solution of the design is presented in Table 2:
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Table 2: Resolution classes of R163

Resolution class I
(2, 3, 10, 22, 25) (15, 17, 19, 32, 36) (4, 7, 29, 30, 37) (1, 14, 18, 42, 44) (23, 25, 30, 40, 44)
(1, 3, 11, 23, 26) (13, 18, 20, 33, 34) (5, 8, 28, 30, 38) (2, 15, 16, 40, 45) (20, 27, 31, 39, 44)
(1, 2, 12, 24, 27) (14, 16, 21, 31, 35) (6, 9, 28, 29, 39) (3, 13, 17, 41, 43) (21, 25, 32, 37, 45)
(5, 6, 13, 19, 25) (11, 18, 22, 30, 35) (1, 7, 32, 33, 40) (4, 12, 17, 38, 45) (19, 26, 33, 38, 43)
(4, 6, 14, 20, 26) (12, 16, 23, 28, 36) (2, 8, 31, 33, 41) (5, 10, 18, 39, 43) (21, 23, 34, 38, 42)
(4, 5, 15, 21, 27) (10, 17, 24, 29, 34) (3, 9, 31, 32, 42) (6, 11, 16, 37, 44) (19, 24, 35, 39, 40)
(8, 9, 16, 19, 22) (12, 14, 25, 29, 33) (1, 4, 35, 36, 43) (7, 11, 15, 39, 41) (20, 22, 36, 37, 41)
(7, 9, 17, 20, 23) (10, 15, 26, 30, 31) (2, 5, 34, 36, 44) (8, 12, 13, 37, 42) (24, 26, 28, 41, 45)
(7, 8, 18, 21, 24) (11, 13, 27, 28, 32) (3, 6, 34, 35, 45) (9, 10, 14, 38, 40) (22, 27, 29, 42, 43)

Resolution class II
(11, 12, 19, 31, 34) (6, 8, 10, 23, 27) (5, 9, 33, 35, 37) (5, 11, 17, 40, 42) (20, 21, 28, 40, 43)
(10, 12, 20, 32, 35) (4, 9, 11, 24, 25) (6, 7, 31, 36, 38) (6, 12, 18, 40, 41) (19, 21, 29, 41, 44)
(10, 11, 21, 33, 36) (5, 7, 12, 22, 26) (4, 8, 32, 34, 39) (7, 10, 13, 44, 45) (19, 20, 30, 42, 45)
(14, 15, 22, 28, 34) (2, 9, 13, 21, 26) (3, 8, 29, 36, 40) (8, 11, 14, 43, 45) (23, 24, 31, 37, 43)
(13, 15, 23, 29, 35) (3, 7, 14, 19, 27) (1, 9, 30, 34, 41) (9, 12, 15, 43, 44) (22, 24, 32, 38, 44)
(13, 14, 24, 30, 36) (1, 8, 15, 20, 25) (2, 7, 28, 35, 42) (1, 13, 16, 38, 39) (22, 23, 33, 39, 45)
(17, 18, 25, 28, 31) (3, 5, 16, 20, 24) (2, 6, 30, 32, 43) (2, 14, 17, 37, 39) (26, 27, 34, 37, 40)
(16, 18, 26, 29, 32) (1, 6, 17, 21, 22) (3, 4, 28, 33, 44) (3, 15, 18, 37, 38) (25, 27, 35, 38, 41)
(16, 17, 27, 30, 33) (2, 4, 18, 19, 23) (1, 5, 29, 31, 45) (4, 10, 16, 41, 42) (25, 26, 36, 39, 42)

Remark 1: Juxtaposing the resolution classes I and II of R163 with the resolution class III
given below, we obtain a (1,5,5)-resolvable solution of BIB design with parameters: v = 45,
r = 11, k = 5, b = 99, λ = 1. The blocks of resolution class III are rows of the GD scheme.
This BIB design is listed as T98 in the Table of Takeuchi (1962).

Resolution class III: (1, 10, 19, 28, 37); (6, 15, 24, 33, 42); (2, 11, 20, 29,38); (7, 16, 25,
34, 43); (3, 12, 21, 30, 39); (8, 17, 26, 35, 44); (4, 13, 22, 31, 40); (9, 18, 27, 36, 45); (5, 14,
23, 32, 41).

10. R167a: v = 12, r = 9, k = 6, b = 18, λ1 = 5, λ2 = 4, m = 6, n = 2.

N = (N1|N2) =
(

α + α2 + α4 I6 + α + α2 + α4 α2 + α3

α + α2 + α4 α2 + α3 I6 + α + α2 + α4

)
.

Since each row sum of N1 and N2 is 3 and 6 respectively, the design is (3, 6)-resolvable.

2.2. A(2,2,2,2,6)-resolvable BIB design

The following solution of BIB design T49 : v = 22, r = 14, k = 4, b = 77, λ = 2 using the
method of differences may be found in Takeuchi (1962):
[(00, 10, 30, 101), (01, 11, 31, 100), (00, 10, 50, 81), (01, 31, 51, 80), (00, 40, 50, 61), (01, 41, 51, 60),
(00, 40, 01, 41)] mod 11.

The incidence matrix N of the design may be decomposed into block submatrices as
follows:

N = (N1|N2|N3|N4|N5) =



2025] RESOLVABILITY OF SOME BIBD AND RGDD 321

(
I11 + α2 I11 + α3 I11 + α4 I11 + α5 I11 + α3 + α9 + α10 I11 I11
α5 + α8 α4 + α7 α3 + α9 α2 + α6 011 I11 + α2 + α7 I11 + α9 + α10

)
,

where α = circ(010 . . . 0) is a permutation circulant matrix of order 11. Since each row sum
of N1, N2, N3, N4 and N5 is 2, 2, 2, 2 and 6 respectively, the design is (2, 2, 2, 2, 6)-resolvable.

Further repeating the above solution three times, we obtain a 6-resolvable solution
of the BIB design with parameters: v = 22, r = 42, k = 4, b = 231, λ = 6. The 6-resolvable
solution is not reported in the Tables of Kageyama and Mohan (1983) and Subramani (1990).
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