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Abstract
Nonparametric estimators for extropy-related measures using length-biased data are

proposed in this paper. The proposed estimators exhibit desirable properties, including con-
sistency and asymptotic normality, which have been established. Furthermore, the precision
of these estimators is assessed through the utilization of both simulated and real data sets,
thereby validating their effectiveness in practical scenarios.
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1. Introduction

Length-biased sampling is a widely used technique for collecting lifetime data, pri-
marily due to its cost-effectiveness and convenience. Unlike random sampling, length-biased
sampling selects observations from the population of interest with probability proportional
to their length. This approach finds significant applications in survival analysis, particularly
when the onset time of diseases is unknown. In such scenarios, individuals who survive
longer are more likely to be included in the sample, resulting in length-biased survival data.
The phenomenon of length-bias was first noticed by Wicksell (1925) while investigating cell
samples under a microscope. In his research, he noticed that only the cells that were larger
than a particular size were visible in the microscope, leading to the study of a length-biased
sample of cells. However, there are many other applications of length-biased data that make
it crucial to understand the properties of this type of data. For instance, length-biased
data arise in the study of diverse phenomena, such as ageing, epidemiology, and genetics.
Therefore, exploring various aspects of length-biased data is essential for researchers and
practitioners in fields such as medical research, public health, and social sciences.

Consider a random variable X with a probability density function (pdf), distribution
function, and survival function denoted by f , F , and F̄ , respectively. Suppose a sample of
size n is drawn from this population using a length-biased sampling technique, where the
probability of including an observation in the sample is proportional to its size, volume,
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length, or survival time. In other words, observations that are larger, longer, or have a
longer survival time have a higher probability of being sampled. The resulting sample is
length-biased, and the observed sample can be regarded as drawn from a distribution with
pdf g given by

g(y) = y f(y)
µ

, y ≥ 0 and µ is the mean of the population. (1)

One crucial problem is the nonparametric estimation of functionals of the distribution func-
tion F or pdf f based on a length-biased sample Yi, 1 ≤ i ≤ n. This paper aims to propose
nonparametric estimators for extropy-related measures of a population, using a length-biased
sample drawn from it. Furthermore, the properties of these estimators are thoroughly in-
vestigated. The proposed estimators are useful in various fields, such as information theory,
economics, and statistical physics, where the analysis of length-biased data is required. The
study of these estimators’ properties can aid in better understanding and utilizing length-
biased data in practical applications.

Shannon’s entropy, introduced by Shannon (1948), is one of the most widely used
measures for assessing the uncertainty associated with a random variable. For a discrete
random variable X taking values {x1, x2, x3, ..., xN} with probability mass function (pmf)
p = (p1, p2, p3, ..., pN) , such that N > 1 is finite, Shannon’s entropy is defined as

H(X) = −
N∑

i=1
pi log pi. (2)

Because equation (2) can be rewritten as H(p) = E(−log p), the discrete entropy
H(p) can be thought of as quantifying the average information content of X. That is, the
entropy of a probability distribution is just the expected value of the information in the dis-
tribution. The entropy measure has far-reaching applications in many areas such as financial
analysis, data compression, statistics and information theory. Lad et al. (2012) observed
that the entropy measure on its own do not provide complete summary of the information
in a distribution. This observation was substantiated in the context of its application in
the logarithmic scoring rule, widely considered to be an eminent proper scoring rule used
extensively for assessing and comparing sequential forecast distributions. The expected log-
arithmic score of a pmf p is in fact −H(X), called negentropy. Lad pointed out that the
logarithmic scoring function provides an incomplete assessment as it is a function only of
the actual observation value of a quantity, ignoring other possible but unobserved values.
To address this issue, a complementary scoring rule needs to be monitored concomitantly
with the log score and this led to the expanded version of the logarithmic score, termed as
the total log score. As a pair, the two complementary scores constitute the total logarithmic
score and both components of the total log score are relevant to the assessment of forecasting
distribution. Moreover, the expectation of the total log score equals the negentropy plus the
negextropy of the distribution, where negextropy is the negative of a measure of a probability
distribution suggested to be called as the extropy of the distribution by Lad et al. (2015)
and is defined as follows.

For a discrete random variable X, the complementary dual of entropy, called extropy
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is defined as
J(X) = −

N∑
i=1

(1 − pi) log (1 − pi).

The complementary of H and J arises from the fact that

J(p) = (N − 1) [H(q) − log(N − 1)] .

That is, the extropy of a pmf p = (p1, p2, p3, ..., pN) equals a location and scale
transform of the entropy of another pmf q =

(
1−p1
N−1 , 1−p2

N−1 , 1−p3
N−1 , ..., 1−pN

N−1

)
. The duality of

entropy/extropy is a formal mathematical property of the pair of functions. For more details,
one may refer Lad et al. (2015) and Lad et al. (2018).

As in entropy, extropy is interpreted as a measure of the amount of uncertainty
represented by the distribution for X. Both entropy and extropy share many properties.
They are invariant with respect to permutations of their mass functions and with respect
to monotonic transformations. Moreover, the maximum extropy distribution is the uniform
distribution and extropy satisfies Shannon’s first and second axioms. As to differences in
the two measures, the scale of the maximum entropy measure is unbounded as N increases
while the scale of the maximum extropy is bounded by 1. It is evident that when N = 2,
the entropy and extropy are identical. However, when N > 2, the measure bifurcates
to yield distinct paired measurements (H(X), J(X)). As companions, these two measures
relate as do the positive and negative images of a photographic film and they contribute
together to characterizing the information in a distribution in much the same way. When
the entropy is calculated for any assemblage such as the heat distribution for a galaxy of
stars, a companion calculation of the extropy would allow us to complete our understanding
of the variation inherent in its empirical distribution. An axiomatic characterization and
several intriguing properties of this new measure was considered by Lad et al. (2015) and
the results provided links to other notable information functions whose relation to entropy
have not been recognized.

In the continuous context, a natural analog of discrete Shannon entropy for a proba-
bility density function f is called differential entropy and is defined as

H(X) = −
∞�

0

f(x) log f(x) dx.

The definition of differential entropy appears to be a natural extension of the Shannon
entropy for discrete variables, defined in equation (2), to continuous variables. However,
Shannon’s differential entropy measure for a continuous density is actually derived from the
limit of a linear translation of the discrete entropy measure. In order to define extropy for a
continuous density, Lad et al. (2015) used the same procedure as the one followed by Shannon
in defining differential entropy. Lad et al. (2015) noted that when the range of possibilities
for X increases (as a result of larger N), the extropy measure −

N∑
i=1

(1 − pi) log (1 − pi) can

be closely approximated by 1 − 1
2

N∑
i=1

p2
i , which led to the definition of differential extropy.
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Extropy of a non-negative absolutely continuous random variable X with pdf f(x) is defined
as

J(X) = −1
2

∞�

0

f 2(x) dx = −1
2E(f(X)). (3)

Here E denotes the expected value operator.

Differential entropy and extropy are obtained as the limit of a linear transformation
of their corresponding discrete measures. The dual complementarity of extropy with entropy
for continuous densities is derived in the context of relative entropy, also known as Kullback-
Leibler divergence.

Through various illustrations Lad et al. (2012) showed that the extropies of the distri-
butions do appear to provide interpretable complementary understandings of the character
of distributions, already well-known to be summarised in a different dimension by their en-
tropies.The total log score for densities is also better identified with the bivariate measure
(negentropy, negextropy). Extropy can also be used to compare the uncertainties of two
random variables. If the extropy of X is less than that of another random variable Y , that
is, J(X) ≤ J(Y ), then X is said to have more uncertainty than Y . By simultaneously
considering entropy and extropy measures, researchers and practitioners can gain a more
comprehensive understanding of the information and uncertainty within a given distribu-
tion. This broader perspective enables better-informed decision-making and more efficient
utilization of statistical models in a range of applications. For further studies on extropy,
one may also refer Noughabi and Jarrahiferiz (2019), Tahmasebi and Toomaj (2020), Buono
et al. (2023) and Sathar and Nair (2024).

Additionally, to capture the uncertainty of a random variable which has already
survived for some time, Qiu and Jia (2018) suggested the measure residual extropy. The
residual extropy, denoted as J(X; t), is defined as

J(X; t) = − 1
2 (1 − F (t))2

� ∞

t

f 2(x)dx (4)

Furthermore, Krishnan et al. (2020) introduced a measure called past extropy, which
computes the uncertainty associated with the past lifetime of a component that failed before
a specific time. Past extropy of a random life time X is of course the extropy of the random
variable [X|X ≤ t] and is given by

J̄(X; t) = − 1
2 F (t)2

� t

0
f 2(x)dx. (5)

For a non-negative rv X having a survival function F̄ , an alternative measure of
extropy based on the survival function of a rv called survival extropy (SE) has been proposed
by Sathar and Nair (2021) which is defined as

Js(X) = −1
2

� ∞

0
F̄ 2(x) dx.
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The survival extropy of the random variable [X − t|X ≥ t] called dynamic survival
extropy (DSE), was also considered by Sathar and Nair (2021) and is defined as

Js(X; t) = −1
2

� ∞

t

F̄ 2(x)
F̄ 2(t)

dx = −1
2

� ∞

t

(1 − F (x))2

(1 − F (t))2 dx. (6)

It is worth noting that the SE and DSE have a close relationship with well-known
economic measures such as the Gini index and statistical quantities including L-moments.
These connections have been extensively studied by Nair and Sathar (2022) and Nair and
Sathar (2023). These insights further contribute to the interpretation and application of
the SE and DSE measures, offering valuable connections to economic analysis and statistical
modeling.

These alternative measures of extropy, namely residual extropy, past extropy, and
survival extropy, complement Shannon’s entropy and offer additional perspectives on the
uncertainty and information content of a random variable. These measures find applica-
tions in various fields, including reliability analysis, survival modeling, risk assessment, eco-
nomics, finance, and actuarial science, where the analysis of time-dependent uncertainty is
of paramount importance. By utilizing these measures, researchers and practitioners can
gain deeper insights into the temporal aspects and survival behavior of random variables in
practical scenarios. In this study, we introduce nonparametric estimators for extropy related
measures of the population based on a length-biased data drawn from it. Length-biased sam-
pling has proven to be valuable in various fields, and in Section 2, we present our proposed
estimator for dynamic survival extropy (DSE). We also examine the asymptotic properties
of the proposed estimator to ensure its reliability. Furthermore, in Section 3, we discuss
the nonparametric estimation of residual and past extropy, and analyze their asymptotic
properties. Finally, in Section 4, a simulated study and real-data analysis have been carried
out to illustrate the precision of the estimators. By employing these empirical investigations,
we showcase the accuracy and effectiveness of the estimators in practical settings. This em-
pirical validation adds credibility to the proposed methodology and confirms its utility in
real-world scenarios.

2. Nonparametric estimation of DSE using length-biased sample

This section proposes a nonparametric estimator for the DSE of a random variable
X using a length-biased sample of size n drawn from X. Due to the use of a probability
proportional to size (PPS) sampling scheme, the observed sample Y1, Y2, Y3, ..., Yn cannot
be treated as independent and identically distributed (iid) samples from X. Consequently,
existing estimators of extropy measures based on a random sample from the population
cannot be applied. Instead, a different estimator suitable for length-biased data needs to
be considered. To this end, it is worth noting that the observed length-biased sample can
be regarded as iid observations from the distribution of a random variable Y with a pdf
g(y) given by equation (1). Building upon this insight, Cox (1969) proposed an empirical
estimator for the distribution function F (x) in the length-biased setup. The estimator is
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given by

Fn(x) =

n∑
i=1

Y −1
i I(Yi ≤ x)

n∑
i=1

Y −1
i

, (7)

where I(.) is the indicator random variable of the event specified in parentheses. It has
been demonstrated by Chaubey et al. (2010) that as n → ∞, the empirical estimator Fn(x)
converges almost surely to the true distribution function F (x), as shown in equation (8).
Furthermore, the estimator converges in distribution to a normal distribution, as expressed
in equation (9).

sup
x∈R+

|Fn(x) − F (x)| a.s→ 0, as n → ∞. (8)

and √
n (Fn(x) − F (x)) D→ N(0, δ2(x)), (9)

where δ2(x) = µ {
� x

0 t−1f(t)dt − 2F (x)
� x

0 t−1f(t)dt + F 2(x)
� ∞

0 t−1f(t)dt}.

Also, as n → ∞,

E(Fn(x)) = F (x) and V ar(Fn(x)) = δ2(x)
n

. (10)

Therefore, we can obtain a nonparametric estimator of DSE of X by substituting the
estimator given in equation (7) into equation (6). The resulting estimator for DSE is given
by

Ĵs(X; t) = −1
2

� ∞

t

(1 − Fn(x))2

(1 − Fn(t))2 dx. (11)

Now let’s examine the asymptotic properties of the proposed estimator. For simpli-
fying the notation, we define the following terms:

an(t) =
� ∞

t

F̄ 2
n(x) dx, mn(t) = F̄ 2

n(t), a(t) =
� ∞

t

F̄ 2(x) dx and m(t) = F̄ 2(t).

Thus, the estimator Ĵs(X; t) can be expressed as

Ĵs(X; t) = − 1
2

an(t)
mn(t) , while the true DSE Js(X; t) is given by Js(X; t) = − 1

2
a(t)
m(t) .

Result 1:
lim

n→∞
|Ĵs(X; t) − Js(X; t)| = 0 a.s.

Moreover, mean square error (MSE) of Ĵs(X; t) tends to 0 as n → ∞.

Proof: Using Taylor series expansion,

F̄ 2
n(t) = F̄ 2(t) +

(
F̄n(t) − F̄ (t)

)
2F̄ (t) + o

(
F̄n(t) − F̄ (t)

)2
.
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It follows that

mn(t) − m(t) =
(
F̄n(t) − F̄ (t)

)
2F̄ (t) + o

(
F̄n(t) − F̄ (t)

)2
.

Similarly, we obtain

an(t) − a(t) ≃ 2
� ∞

t

F̄ (x)
(
F̄n(x) − F̄ (x)

)
dx.

Now,
an(t)
mn(t) − a(t)

m(t) ≃ m(t) [an(t) − a(t)] − a(t) [mn(t) − m(t)]
m2(t) .

Hence,
Ĵs(X; t) − Js(X; t)

≃ − 1
m(t)

� ∞

t

F̄ (x)
(
F̄n(x) − F̄ (x)

)
dx + a(t)

m2(t)
(
F̄n(t) − F̄ (t)

)
F̄ (t). (12)

By using the almost sure convergence of Fn(x) given in equation (8), we obtain

lim
n→∞

|Ĵs(X; t) − Js(X; t)| = 0 a.s.

Additionally, from equations (12) and (10), it can be easily seen that the bias and
variance of Ĵs(X; t) tends to 0 as n → ∞. Hence, as n → ∞, MSE of Ĵs(X; t) → 0.

Next, we discuss the asymptotic normality of our estimator.

Result 2: Ĵs(X; t) − Js(X; t) is asymptotically normal with mean 0 and variance

1
n F̄ 4(t)

[� ∞

t

F̄ 2(x) δ2(x)dx + a2(t)δ2(t)
F̄ 2(t)

]
.

Proof: Using equation (10), as n → ∞,

E(F̄n(x) − F̄ (x)) = 0 and V ar(F̄n(x)) = δ2(x)
n

.

Hence, from equation (12), we obtain the following.

As n → ∞, E(Ĵs(X; t) − Js(X; t)) = 0 and

V ar(Ĵs(X; t) − Js(X; t)) = 1
n F̄ 4(t)

[� ∞
t

F̄ 2(x) δ2(x)dx + a2(t)δ2(t)
F̄ 2(t)

]
.
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Again, using equation (9), we have,
√

n (F̄n(x) − F̄ (x)) D→ N(0, δ2(x))

Hence from equation (12), it follows that Ĵs(X; t) − Js(X; t) is asymptotically normal. This
completes the proof.

In a similar manner, a nonparametric estimator for dynamic failure extropy (DFE)
proposed by Nair and Sathar (2020) can be obtained.
The DFE of X is defined as

Jf (X; t) = −1
2

� t

0

F 2(x)
F 2(t) dx.

By plugging in the estimator given by equation (7) into the above equation, we can
obtain the nonparametric estimator of DFE under length-biased setup, which is as follows.

Ĵf (X; t) = −1
2

� t

0

F 2
n(x)

F 2
n(t) dx. (13)

Consistency and asymptotic normality of this estimator can be proved by proceeding
in a similar manner as in Result 1 and 2.

3. Nonparametric estimation of residual and past extropies for
length-biased sample

In this section, we focus on the nonparametric estimation of residual and past ex-
tropies defined by equations (4) and (5), respectively. To obtain the estimators of residual
and past extropies using length-biased data, we utilize equation (7) and the kernel density
estimator proposed by Jones (1991). By smoothing the estimator given in equation (7),
Jones (1991) derived a new kernel density estimator given by

f̂(x) =

n∑
i=1

1
Yi h

k
(

x−Yi

h

)
n∑

i=1
Yi

−1
, (14)

where k is the kernel function and h = hn is the band-width. The bias, variance and
asymptotic properties of this estimator was obtained by Guillamon et al. (1998) as follows.

Bias(f̂(x)) = 1
2 h2 µ2(k) f ′′(x) +o(h2) and V ar(f̂(x)) = 1

n h
µ x−1 f(x) Ck +o

( 1
nh

)
, (15)

where µ2(k) =
� ∞

−∞ u2k(u) du, Ck =
� ∞

−∞ k2(u) du and f ′′(x) is the 2nd derivative of f with
respect to x.
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Also, √
n h (f̂(x) − f(x)) D→ N(0, µ x−1 f(x) Ck). (16)

Now, we propose a nonparametric estimator of residual extropy under length-biased set up.

Definition 1: A nonparametric kernel estimator for J(X; t) shall be defined as

Ĵ(X; t) = −1
2

 � ∞
t

f̂ 2(x)dx

(1 − Fn(t))2

 . (17)

In order to simplify the notations, define

pn(t) =
� ∞

t

f̂ 2(x)dx, p(t) =
� ∞

t

f 2(x)dx,

so that equation (17) can be written as Ĵ(X; t) = −1
2

[
pn(t)
mn(t)

]
.

By using Taylor’s series expansion, we get

pn(t) − p(t) = 2
∞�

t

f(x)
(
f̂(x) − f(x)

)
dx + o

(
f̂ (x) − f(x)

)2
.

Proceeding in a similar manner as in Section 2, we obtain

Ĵ(X; t) − J(X; t)

≃ − 1
m(t)

∞�
t

f(x)
(
f̂(x) − f(x)

)
dx + p(t)

m2(t)
(
F̄n(t) − F̄ (t)

)
F̄ (t).

The asymptotic normality of Ĵ(X; t) can now be easily obtained on using equations
(16) and (9). Furthermore, using equation (15), we observe that the MSE of Ĵ(X; t) tends
to 0 as n → ∞, and thus the estimator Ĵ(X; t) is strongly consistent.
Similarly, a consistent and asymptotically normal nonparametric estimator for J̄(X; t) under
length-biased set up shall be defined as

ˆ̄J(X; t) = − 1
2 F 2

n(t)

� t

0
f̂ 2(x)dx.

4. Data analysis

To demonstrate the accuracy of the presented nonparametric estimators, we first
apply the proposed methods to the simulated data sets. We generate length-biased samples
from beta distribution of first kind with parameters α = 2 and γ = 4. The bias and MSE
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of the suggested estimators of DSE and DFE given by equations (11) and (13) respectively,
are computed for certain values of t, and the results obtained are presented in Tables 1
and 2. It can be observed from the tables that the bias and MSE are negligible. This
indicates that the estimators perform well in accurately capturing the extropy measures.
Figures 1 and 2 display plots of the actual and estimated values of DSE and DFE of the
population for simulated data. Both graphs clearly show that the estimated values closely
align with the actual values. Notably, even with a sample size of n = 30, the estimated values
for DFE are very close to the actual values, highlighting the effectiveness of the proposed
estimators. Furthermore, we computed the theoretical and estimated values of residual and
past extropies using the Gaussian kernel function. These values, along with the bias and
MSE, are presented in Tables 3 and 4. The results from these tables indicate that the
estimators of residual and past extropies also perform well, further validating the reliability
of the proposed nonparametric estimators. Overall, the results obtained from the simulations
demonstrate the precision and accuracy of the nonparametric estimators proposed in this
study.

Table 1: Bias and MSE of the estimator of DSE for simulated data

n = 50 n = 100
t Bias MSE Bias MSE

0.4 0.00147 0.00009 -0.00180 0.00004
0.5 -0.00269 0.00007 0.00029 0.00002
0.6 0.00009 0.00005 -0.00363 0.00003
0.7 -0.00961 0.00031 -0.00626 0.00018

Table 2: Bias and MSE of the estimator of DFE for simulated data

n = 50 n = 100
t Bias MSE Bias MSE

0.4 -0.00501 0.00038 -0.00029 0.00004
0.5 0.00239 0.00021 -0.00113 0.00005
0.6 0.00388 0.00011 -0.00173 0.00011
0.7 0.00044 0.00047 -0.00379 0.00014

Table 3: Theoretical and estimated values of residual extropy together with its
bias and MSE for simulated data

n = 50 n = 100
t Theory Estimate Bias MSE Estimate Bias MSE

0.4 -1.62017 -1.71256 -0.09239 0.08763 -1.69013 -0.06996 0.01232
0.5 -2.02822 -2.11318 -0.08496 0.09544 -2.16395 -0.13573 0.00642
0.6 -2.62262 -2.72248 -0.09986 0.05238 -2.68369 -0.06107 0.01003
0.7 -3.59451 -3.65942 -0.06491 0.03416 -3.63571 -0.04120 0.00237

Next, we consider the empirical estimator of DSE and DFE, which were proposed by
Sathar and Nair (2021) and Nair and Sathar (2020), respectively. These empirical estimators
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Figure 1: Plots of actual and esti-
mated values of DSE using a simu-
lated sample of size n = 100
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Figure 2: Plots of actual and esti-
mated values of DFE using a simu-
lated sample of size n = 30

Table 4: Theoretical and estimated values of past extropy together with its bias
and MSE for simulated data

n = 50 n = 100
t Theory Estimate Bias MSE Estimate Bias MSE

0.4 -1.38686 -1.35128 0.03558 0.00483 -1.38890 -0.00204 0.00311
0.5 -1.09420 -1.15662 -0.06242 0.00468 -1.10053 -0.00633 0.00265
0.6 -0.92836 -0.98423 -0.05587 0.00957 -0.94362 -0.01526 0.00403
0.7 -0.84123 -0.88562 -0.04439 0.00348 -0.84563 -0.00439 0.00114

are based on an iid sample from the population. The empirical dynamic survival extropy
and dynamic failure extropy estimators are respectively as follows.

Js( ˆ̄Fn; t) = −1
2

∞�
t

 ˆ̄Fn(x)
ˆ̄Fn(t)

2

dx (18)

and

Jf (F̂n; t) = −1
2

t�

0

[
F̂n(x)
F̂n(t)

]2

dx, (19)

where ˆ̄Fn(x) = 1
n

n∑
i=1

I(Xi > x), F̂n(x) = 1
n

n∑
i=1

I(Xi ≤ x), with I being the indicator function.

To investigate the performance of the empirical estimators defined by equations (18)
and (19) when applied to a length-biased sample, we compare the actual values of DSE
and DFE of the population with the estimated values obtained using these estimators. The
results are displayed in Figures 3 and 4. Analyzing Figures 1 to 4, we observe that the de-
viation between actual and estimated values is more when the empirical estimators are used
instead of the proposed estimators. This suggests that the estimators defined by equations
(18) and (19) are suitable when an iid sample is available from the population whereas for the
length-biased sample, the estimators defined by equations (11) and (13) should be employed.
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In summary, the comparison of the estimators highlights the importance of choosing the ap-
propriate estimator based on the characteristics of the sample. The proposed nonparametric
estimators are specifically tailored for length-biased data and demonstrate superior accuracy
in estimating extropy measures when applied to length-biased samples, as evidenced by the
smaller deviations between the actual and estimated values.
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Figure 3: Plots of actual and esti-
mated values of DSE using the empir-
ical estimator for a simulated sample
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Figure 4: Plots of actual and esti-
mated values of DFE using the empir-
ical estimator for a simulated sample

To further assess the performance of the proposed estimators defined by equations
(11) and (13), we apply them to a real-world scenario using a data that was previously
investigated by Helu et al. (2020). The data set consists of 70 failure times of aircraft wind-
shields, from which a sample of size 50 is drawn with probability proportional to size. The
best-fitted distribution to the original data set is the Gamma distribution with parameters
α = 7.75 and β = 0.285. We plot the theoretical and estimated values of DSE and DFE for
the real data in Figures 5 and 6, respectively. Upon analysis of the plots, we observe that the
estimated values are remarkably close to the actual values. This indicates that the proposed
estimators perform well in real-world circumstances. The accuracy of the estimators in esti-
mating the extropy measures for the length-biased sample demonstrates their reliability and
applicability in practical scenarios.
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Figure 5: Plots of actual and esti-
mated values of DSE for real data
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Figure 6: Plots of actual and esti-
mated values of DFE for real data
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5. Conclusions

This work proposes nonparametric estimators for extropy-related measures under
length-biased sampling. The consistency and asymptotic normality of the proposed esti-
mators are established, demonstrating their reliability in estimating these measures. The
performance of the estimators is evaluated using both simulated and real data sets. The
simulation results provide strong evidence of the accuracy and precision of the proposed
estimators. The negligible bias and mean squared error observed in the estimators confirm
their ability to closely approximate the true values of the extropy-related measures. Further-
more, the analysis of a real data set reinforces the practical utility of the proposed estimators.
By evaluating the extropy-related measures using the real data, it is evident that the esti-
mators perform well in real-life scenarios. This highlights the applicability of the estimators
in various domains, such as reliability analysis, survival analysis, and engineering, where
accurate estimation of extropy-related measures is crucial for making informed decisions and
understanding complex systems.

In summary, this work contributes valuable nonparametric estimators for extropy-
related measures under length-biased sampling. The established properties of consistency
and asymptotic normality, coupled with the demonstrated accuracy in both simulated and
real data settings, make these estimators highly reliable tools for researchers and practition-
ers. The availability of such estimators facilitates the estimation of extropy-related measures,
enabling deeper insights into the dynamics of failure and survival processes in diverse fields
of study.
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