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Abstract

The National Forest Inventory (NFI) focuses on gathering and analyzing data re-
garding forest resources, including tree species, sizes, age, density, and distribution, to assess
forest conditions and inform management decisions. While traditional forest inventories offer
detailed statistics at larger scales, they often fail to provide precise estimates for smaller ar-
eas such as forest divisions and ecologically sensitive regions. Small Area Estimation (SAE)
techniques bridge this gap by employing statistical methods to enhance estimates for sub-
populations with limited sample sizes. These methods incorporate auxiliary data, such as
remote sensing, to enhance the precision of estimates. SAE techniques, including regression
models and Bayesian methods, have proven effective in forestry and other sectors, providing
robust estimates crucial for localized forest management and policy-making. Substantial
theoretical work has been carried out in these techniques; however, in comparison, less work
is seen in the application aspect. It is seen that SAE is being used in biomass estimation,
carbon sequestration estimation, biodiversity assessment, and various other domains of re-
search. This review highlights the application of SAE in forestry, emphasizing its potential to
deliver accurate estimates for small areas and supporting informed forest management prac-
tices. Different auxiliary variables required for getting higher precision are also discussed in
detail.

Key words: Auxiliary information; Domain; Forestry parameters; National Forest Inventory;
Small Area Estimation.

1. Introduction

Forest inventory is the process which involves gathering and analyzing data about
forests and their resources, such as tree types, growth sizes, age, density, distribution, etc.
(Vidal et al. (2016); Knoke et al. (2021)). Forest inventory includes field surveys, followed by
validating through remote sensing and other concomitant techniques, and thereafter statisti-
cal analysis to ensure accurate and detailed information about forested areas (Wulder et al.
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(2008); Pandey et al. (2019)). It is done systematically to evaluate forest conditions, for-
est increment, volume estimation, forest dynamics, and guide forest management decisions
(Tomppo et al. (2008a); Corona et al. (2011)). These assessments help in understanding
the forest ecosystems, biodiversity change, carbon storage from all five carbon pools (above
ground, below ground, litter, deadwood and soil), timber availability and economic evalua-
tion (Heym et al. (2021). Forest inventory provides details about the forestry statistics up
to the major geographical scale, such as country, state or district level. It does not provide
results at regional or small area levels such as forest division, range, compartment, section,
ecological sensitive areas, etc. Importantly, these small areas are crucial segments of forest
management, because they are the preliminary site where the management practices start.
To solve this issue, researchers are utilizing different estimation techniques based on inven-
tory and other auxiliary data of the concerned area (Breidenbach and Astrup (2012). One
such method, popularly known as the Small Area Estimation (SAE) technique, which has
been recently used in various sectors including forestry. In almost all the studies, it has been
proven that SAE methods provide statistically precise estimates of the variables in small
domains.

SAE technique refers to statistical methods used to estimate parameters for small
sub-populations or geographic areas where traditional survey methods may not provide ac-
curate or reliable estimates due to limited or even zero sample sizes (Rao (2003); Rao and
Molina (2015); ADB (2020); Sugasawa and Kubokawa (2020)). However, Guldin (2021)
mentioned and described Small Domain Estimation (SDE), which is a relatively similar con-
ceptual term as SAE and further, it was suggested that SAE should be more appropriate
to use over SDE due to its spatial domain. These techniques are crucial to obtain robust
estimates for localized regions or domains within a larger population (Rao (2003)). In this
context, SAE methodologies might find utility not only in scenarios characterized by a small
geographic or temporal scope of the domain of interest with consequently limited sample
sizes but also in circumstances necessitating enhanced precision in estimates across any such
domain (Coulston et al. (2021)). In the realm of SAE, the specific level being assessed,
whether it be stands, districts, or municipalities, and for which the estimation is desired, is
termed a small area or domain (Breidenbach et al. (2018)). Small area models leverage infor-
mation from both within and outside the domain of interest, as well as other supporting data,
to augment the precision of parameter estimates (Lehtonen et al. (2003)). There are two
distinct categories of SAE models exist: unit-level and area-level. Unit-level models pertain
to estimators formulated at the level of sample units (such as field inventory plots in NFI),
where auxiliary information is directly linked to these sample units (Rao and Molina (2015);
Coulston et al. (2021)). Whereas, Area-level models generate estimates at aggregated geo-
graphic levels, such as administrative regions, forest range/beat/compartments etc., where
auxiliary information is linked to entire areas rather than individual sample units, making
them suitable when unit-level data are limited or unavailable (Rao and Molina (2015)). More
precisely, SAE methods typically involve combining information from both survey data and
auxiliary information, such as census data or remote sensing data, to improve the precision
of estimates for smaller areas (Jeong and Son (2009); Marchetti et al. (2015); Jiang and
Rao (2020)). Recent focus on remote sensing-assisted forest inventories has shifted towards
unit-level estimators for population parameter inference and associated uncertainty assess-
ment. Numerous studies (McRoberts et al. (2014); Saarela et al. (2016); Chen et al. (2016);
Mauro et al. (2016)) highlight this trend, while area-level estimators are also gaining atten-
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tion (Goerndt et al. (2011); Magnussen et al. (2017)). However, only a few research reports
are available for comparative analysis between unit- and area-level estimators.

SAE includes model-based estimation methods like regression models and Bayesian
methods, as well as design-based methods like stratified random sampling and cluster sam-
pling (Noble et al. (2002); Rao and Molina (2015)). The application of SAE, for providing
reliable estimates for policy-making and decision support, has been widely seen in almost
all the important sectors like public health, economics, forestry and environmental studies,
demography analysis, social research, hydrological research, agricultural sector, economic
analysis etc. (Jiang and Rao (2020); Chandra and Chandra (2015)). Within forest statis-
tics, SAE studies focus on particular environmental data within limited geographic regions.
Although national forest inventories (NFIs) provide precise assessments at larger scales,
local forest officials encounter difficulties amid evolving market dynamics and financial limi-
tations. SAE investigations act as a conduit between forest biometricians and policymakers,
furnishing enhanced estimations tailored to smaller areas, thereby facilitating informed man-
agement choices (Guldin (2021)). The review serves as a crucial resource by synthesizing
existing knowledge on Small Area Estimation techniques, highlighting their transformative
potential in forestry research and management. By bridging the gap between traditional
forest inventory methods and localized data requirements, this paper provides a roadmap
for enhancing precision in small-area estimates, thereby supporting more informed policy-
making, sustainable forest management, and biodiversity conservation. It also suggests the
forestry researchers to utilize the SAE for generation of results based on SAE models.

This review paper is structured to provide a comprehensive exploration of SAE tech-
niques and their significance in the forestry sector. It begins by presenting an overview of
SAE methods, their classifications, and statistical approaches. It also includes detailed dis-
cussion on the diverse applications of SAE in forestry, such as biomass estimation, carbon
sequestration, biodiversity assessment, and water resource management. A separate section
delves into the integration of SAE techniques into national forest inventories, highlighting key
methodologies, advancements, and regional case studies. Additionally, the paper examines
the use of auxiliary data sources, including satellite imagery and LiDAR (Light Detection
and Ranging), to enhance the precision of SAE estimates and discusses the challenges and
limitations associated with these approaches. The review concludes by offering insights into
future research opportunities and recommendations for the broader application of SAE in
forestry and allied fields.

2. Search stratagem and data extraction

The information quoted in this review on ”Forest Resource Assessment and Use of
SAE Technique in Forestry Sectors” was searched and obtained using databases such as
online databases subscribed, Access e- Resources like PubMed, Science Direct, Scopus, Re-
search Gate and Google Scholar. All these resources were searched with the keyword “SAE”
along with “techniques”, “models”, “auxiliary variables”, “in forestry sectors”, “in national
forest inventories”, “in NFI”, “forest resource assessment”, “Indian context” and “uses”. No
language restrictions were imposed. Research papers were assessed for the information about
the reviews, methodologies and results and discussions on SAE and its application in forestry,
of that particular study. To enhance search sensitivity, specific search techniques such as the
use of quotation marks, parentheses, and asterisks were employed to identify exact terms or
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expressions, as well as to capture related search terms and variations. Additionally, a manual
screening of reference lists from selected studies and previous reviews was conducted to iden-
tify additional relevant publications. All the searched literature was studied thoroughly. The
information from the full-text research papers and review articles of appropriate studies were
extracted. Among the vast suggestions, published articles listed in the reference section were
found in the databases that contain SAE techniques and their application in forestry sectors
in general and the national forest inventory (NFI) in particular. The observed information
in the included literature have been summarized in the present review.

3. Overview of SAE methods

SAE is an important technique for estimating the resources for smaller areas to re-
duce the standard error and coefficient of variations of the estimators under interest. The
direct estimation of a small area yields large standard error and this eventually decreases
the quality and accuracy of the estimates (Ghosh and Rao (1994)). The important factor
and basis for the SAE technique is auxiliary variables. Breidenbach and Astrup (2012) men-
tioned that SAE techniques offer the solution to the statistical problem (low precision in
estimation) if the correlated auxiliary variables are available. SAE methodologies, as delin-
eated by Rao (2003), are typically classified into three categories: direct domain estimation,
indirect domain estimation, and small area model-based domain estimation (Figure 1). Di-
rect domain estimation focuses solely on sample data within a small area, particularly for
estimating variance or mean squared error (MSE). Whereas, the indirect domain estima-
tion objective is to enhance MSE by utilizing the estimates of the external domain through
statistical modelling (Breidenbach et al. (2018)). Moreover, small area model-based domain
estimation incorporates random effects to address unexplained variation between small areas,
distinguishing between area-level and unit-level models. Area-level models, where auxiliary
information pertains only to the small area level, can be advantageous in forest inventory
contexts, particularly when sample plot locations are not geographically recorded (Goerndt
et al. (2011); Breidenbach and Astrup (2012)). Auxiliary variables are the backbone of SAE
and improve its precision and accuracy. In forestry, auxiliary variables can be either satellite
(remote sensing) data, LiDAR (Airborne Laser Scanning) or other forestry parameters. Re-
searchers have identified various auxiliary variables and have utilized them in estimating the
characteristics of small domains. Like, Coulston et al. (2021) for their forest inventory and
analysis program, used country-level timber products output and tree cover loss data along
with SAE. Tree cover loss data was collected from global forest watch and Landsat imagery.
Such timber product output summaries could be used for country and survey unit-level for-
est health and stand-level forest health models, aiding in understanding forest dynamics and
management. Earlier, Breidenbach and Astrup (2012) and Breidenbach et al. (2018) in their
experiment, considered the canopy height from photogrammetric models as an important
auxiliary variable, revealing a strong linear correlation with forest biomass. The use of re-
mote sensing data as an auxiliary variable is also mentioned by Goerndt et al. (2013) who
compared different SAE models using 16 LANDSAT variables along with field data (tree
density, basal area, cubic volume, quadratic mean diameter, and the average height of the
top 100 trees/ha), land cover classification, tree cover, and elevation as the supportive vari-
ables. Thereafter, Breidenbach et al. (2018) used digital remote sensing data as an auxiliary
variable in the area-level and unit-level estimate models under heteroscedasticity conditions.
Airborne laser scanning is also proven auxiliary information, which enhances the quality and
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eventually leads to achieving greater precision in SAE. For instance, Green et al. (2020) have
identified and mentioned the use of LiDAR (Light Detection and Ranging) height percentile
and stand thinning status as auxiliary variables in SAE of Loblolly Pine-dominated areas in
the Southern US. They informed that Area-level SAE models that incorporated both LiDAR
height percentiles and stand-thinning status demonstrated substantial improvements in pre-
cision, outperforming models that relied solely on LiDAR data. Conclusively, Georgakis
(2019) have also mentioned the importance and utilization of auxiliary variables in SAE.
Thus, it is identified that the LiDAR canopy height model and Landsat imagery are the two
most used auxiliary variables in SAE for national forest inventories.

3.1. Direct estimation methods

Direct estimate utilizes summary statistics derived from a domain or small area, to
predict a particular attribute of interest associated with that area. It also includes sample
means, sample proportions, variance, MSEs, and the products of sample means and the size
of the domain’s population, assuming the population size is known (Jiang and Rao (2020)).
Direct estimates do not incorporate information from other domains or external sources
when making predictions for a specific area using model-based or design-based estimation
(Figure 1). According to Breidenbach et al. (2018), direct estimate (population mean of
timber volume) is derived from the sample unit of each domain of a small population unit.
Considering simple random sampling within each domain, the estimator was calculated using
the Horvitz-Thompson estimation method (survey sampling method). In this method, the
weights are assigned to sampled units based on their inclusion probabilities to estimate
population parameters, say population total (Berger (1998)). These weights ensure that
each unit’s contribution to the estimate reflects its representation in the population, useful
for complex sampling designs.

3.2. Indirect estimation methods

The indirect estimation approach is divided into indirect domain estimation and SAE
Models (Figure 1). In the indirect domain estimation approach, the researcher (knowingly or
unknowingly) uses the survey data to generate estimates using design-based or model-based
estimations without keeping checks on optimum sample size. Thus, the generated estimates
are not precise enough because of small or zero sample sizes. Therefore, to improve the
precision of estimates, researcher may use additional information from related domains or
external auxiliary data sources which is possible through Small Area Estimation (SAE)
models. SAE models, under the indirect estimation, are applied when there is insufficient or
no direct data for a specific domain, such as a small geographic area or demographic group.
It integrates domain-specific data with auxiliary sources or utilizes information from similar
domains to enhance accuracy. Common methods include synthetic estimation, SAE model-
based approaches, and composite estimation techniques. For, example, in estimating health
statistics for a district one may merge local survey data with broader regional or national
trends.
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3.2.1. SAE model-based estimation methods

As already discussed, Rao and Molina (2015) and Coulston et al. (2021) have men-
tioned that there are two types of SAE models, Unit-level and Area level (Figure 1). However,
according to Jiang and Lahiri (2006) and and Jiang and Rao (2020), SAE models could be of
three different types: area level model (Fay III and Herriot (1979)), unit level model (Battese
et al. (1988)), and mixed logistic model (Jiang and Lahiri (2001)). The difference in clas-
sification arises due to variations in methodological perspectives and specific applications.
The mixed logistic model, as mentioned by Jiang and Lahiri (2006)), is often considered a
specialized extension of unit-level models, particularly for categorical data and binary re-
sponse variables. In contrast, studies that classify SAE models into only two types typically
focus on continuous variable estimation, where unit-level and area-level models sufficiently
cover most applications. Thus, the distinction is not contradictory but rather a reflection
of different contexts and modeling approaches used in SAE research. In the SAE model,
mathematical equations are used to predict values for different small areas having survey
data. These predictions are based on some factors that can influence the outcome. The
model also includes random factors that account for differences that can’t be explained with
predictors. Sometimes, predictions contain errors which are independent of random factors.
Although exact values for all errors are not available, they can be estimated accurately.
These estimations help to improve the reliability and precision of the prediction (Jiang and
Rao (2020)). The assumptions of these models are considered robust as they completely val-
idate the data distribution. This enables inference methods like maximum likelihood (ML)
or restricted maximum likelihood (REML) (Jiang and Nguyen (2021)). However, when these
assumptions are violated, REML may not be reliable. Alternatives to ML or REML, such
as consistent estimators of variance components (Prasad and Rao (1990)), can be used for
computing the empirical best linear unbiased predictor (EBLUP). Nonetheless, Jiang and
Rao (2020) mentioned that measures of uncertainty are more affected by distributional as-
sumptions. Breidenbach and Astrup (2012) presented theoretical and empirical evidence
supporting the superiority of the EBLUP estimator over simple random and generalized
regression models. They mentioned that the EBLUP estimator adjusts the bias correction
factor based on model variance and the number of observations within the domain, enhancing
its accuracy compared to the generalized regression estimator. Also, the EBLUP estimator
consistently exhibits smaller mean square errors than both the simple random sampling and
generalized regression estimators, especially in domains with few sample plots. However, the
validity of the EBLUP estimator more rely on the robust mixed-effects model.

Various researchers in forestry have worked on SAE and predicted the different pa-
rameters. They utilized different models supported with the required auxiliary variables
and forest inventory data. For example, in Mexico, Reich and Aguirre-Bravo (2009) esti-
mated the reliability and accuracy of synthetic and regression estimators by SAE estimation
of forest stand. For their experiment, the modelling process involved using multiple linear
regressions to capture large-scale spatial variation, while a tree-based stratified design was
adopted to address small-scale variability linked to site-specific differences in forest stand
structure. Various independent variables, including Landsat-7 ETM+ bands, and climatic,
and topographic data, were considered for the models. Later, the use of model-based ap-
proaches along with NFI by different countries rises following 2016 for smaller spatial esti-
mates (provinces, forest compartments and cities) of forestry parameters (Guldin (2021)).
As depicted by Breidenbach et al. (2018), the nested-error linking model was used for unit-
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level estimation and the mixed-effects model for area-level estimation. In their study, for
unit-level modelling, the mixed effects model focusing timber volume per hectare calculated
on sample plots. The model included the mean height observed on a sample plot and its
square as explanatory variables, resulting in three different parameters. Also, REML was
employed for parameter estimations, to depict the variations. The selection of the constant
was optimized using Akaike’s information criterion and Breusch-Pagan tests (Breusch and
Pagan (1979)). For the area-level model, the response variable was the direct mean timber
volume estimate of sample plots, while the sole explanatory variable was the stand-level
mean of aerial photogrammetry mean height observed on all grid cells having parameter
estimation using REML (Breidenbach et al. (2018)). They found that both the estimators
(unit level and area level EBLUP) were indicating similar estimates with some differences in
their standard errors.

Area-level and unit-level SAE models using relative error ratios were compared by
Green et al. (2020) to enhance the accuracy of forest characteristic assessments in pine plan-
tations. They discovered that area-level models incorporated with LiDAR height percentiles
and stand thinning status were showing significant precision gains, especially when both
types of auxiliary information were used. Whereas, unit-level models offer higher precision
but have few limitations due to the complexity and the lack of insufficiency of precise spa-
tial data. Furthermore, Guldin (2021) observed that in Switzerland’s NFI, the design-based
model-assisted approach is being employed for SAE, relying on probability samples for valid-
ity. Usually, a model-assisted method involves implementing a model to support estimation
following after probability sampling. This approach ensures unbiased estimators of popu-
lation parameters. Apart from the model-assisted approach, researchers compared different
inferences in SAE. In particular, Brewer (2013) has compared design-based inference with
randomization-based inference, contrasting it with model-based inference, which was asso-
ciated with prediction-based inference. Gregoire et al. (2016) exemplified this with a forest
inventory scenario, demonstrating how statistical regression can link airborne LiDAR height
measurements to estimates of forest biomass. However, Pulkkinen and Zell (2019) mentioned
that the Swiss NFI prefer the design-based and model-assisted approach as a method in SAE.
Subsequently, Coulston et al. (2021) in their experiment, they examined different variables in
forest health and stand-level forest health models, to estimate removal volumes categorized
by total, species group, and merchantability class. The models integrated relevant connec-
tions between auxiliary data and the parameters under the experiment. Their experiment
revealed that simpler models encountered fewer convergence challenges, with certain models
relying on either a single explanatory variable or a combination of two variables and their
interaction. It was also reported that their methodologies resulted in the development of 168
unique model parameterizations spanning diverse variables, methodologies, time frames, and
spatial scopes in SAE. Conclusively it was advised that SAE techniques can meaningfully
increase the temporal and spatial resolution of removal estimates, benefiting broad-scale
inventory programs.

In model-based approaches, the regression models are the most used comprised of
linear, generalized linear models, etc. Many researchers have contributed to developing re-
gression models to be utilized in forestry. Figure 1 depicts different approaches of small
area estimation and various tools and models for forestry application. Some other models
are also paved their utilization is SAE such as the logistic mixed model which can be useful
to improve the accuracy of small area proportion estimation. Authors like, Jeong and Son
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(2009) introduced and described the logistics mixed model for the estimation of the small
area. They considered the best linear unbiased predictor (BLUP) for the experiment. Para-
metric bootstrap and linear approximation were equated using the Monte Carlo approach to
study the random variation across small areas. They found that linear approximation over-
estimated the Mean Squared Error (MSE) in comparison to bootstrap. Additionally, Reich
and Aguirre-Bravo (2009) assessed the use of synthetic and regression methods in small-area
analyses for estimating forest stand characteristics by taking forest inventory as auxiliary
data in Jalisco, Mexico. Also, it was reported that the regression method, leveraging spatial
models, showed better performance, with the accuracy of estimates heavily dependent on
the spatial resolution and correlation of the models with the variable of interest. Moreover,
Breidenbach and Astrup (2012) employed SAE in the forestry sector (NFI) in Norway by
utilizing the photogrammetric model as an important auxiliary variable. They utilized the
generalized regression estimation model for SAE and compared the outcome with simple
random sampling and EBLUP estimator models. Also, the goodness-of-fit for the models
was assessed through the root mean squared deviation.

Many researchers like Guldin (2021) provided a detailed description of the application
of different models in the forestry sector of different countries and found that where there
was not enough information from field surveys, countries relied on imputation models which
combined various spatial datasets with the available field data, to create maps and calculate
local estimates. It was also reported that few countries use a variety of techniques for
these predictions. Some used supervised methods like maximum likelihood, discriminant
analysis, and various types of regression. Others used nonparametric methods like k-NN
and unsupervised approaches such as neural networks or clustering methods.

Researchers have also provided different models for SAE estimation due to its depen-
dence on probability samples and statistical models for unbiased estimation. For example,
the sampling in the Switzerland forest inventory program, had two phases: randomly select-
ing sample points and collecting auxiliary information, then using a simple random sample
from these points to locate field plots for data collection. Further, the Swiss NFI follows this
design-based Monte Carlo approach for sampling, with the fifth cycle continuing system-
atic measurements across the country (Pulkkinen and Zell (2019)). Similarly, Guldin (2021)
hinted at new design-based SAE model-assisted estimators developed by incorporating non-
exhaustive auxiliary data and different linear models. Thus, these estimators can compute
the averages of model predictions using auxiliary data points and residuals from field plots
within the area. In Norway, most of the research on SAE has been done with a special focus
on national forest inventory e.g. Breidenbach and Astrup (2012) employed simple random
sampling for SAE of sub-population in NFI of Norway. Conclusively, design-based models
are important for the SAE point of view because simple random sampling is a type of direct
estimator and utilizes the data of sample plots falling within the area of interest. Despite,
various researchers having carried out growing stock estimation using remote sensing and
GIS, still application of SAE in forestry research is found limited. The efforts are made
to identify and provide a detailed review of various research on applications of the SAE
technique in the forestry sector in general and NFI in particular.
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Figure 1: Small area estimation approaches and their utilization in forestry
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4. Utilization of SAE techniques

Following section provides detail on application of small area estimation approaches in
various sector including forestry, natural resource estimation (biomass, carbon sequestration,
biodiversity assessment, water resource assessment), national forest inventories and others.

4.1. Forestry sector

SAE techniques in forestry utilize a combination of data sources, including satel-
lite imagery, remote sensing data, and ground-based surveys, to produce detailed estimates
of forest attributes such as tree density, biomass, and carbon sequestration rates at finer
spatial resolutions (McRoberts (2012); Chandra and Chandra (2015)). These data sources
are applied in the unit-level or area-level SAE models as auxiliary variables or additional
information to generate precise estimates (Figure 1).

SAE is being used in various domains but in forestry, it has great importance as it
reduces the cost and time. Guldin (2021) discussed that despite, forest inventories provid-
ing credible estimates at the national level; their spatial sampling often lacks the precision
required for smaller scales or in areas with sparse or unevenly distributed forest resources
(Chandra and Chandra (2015)). Worldwide, forest officials resort to auxiliary datasets like
digital aerial photography to enhance inventory data accuracy through imputation models.
These models employ parametric and non-parametric approaches and assign values to pixels
corresponding to forest attributes. Subsequently, these imputed values are aggregated within
defined small areas, employing algorithms to generate SAE estimates with acceptable accu-
racy (Goerndt et al. (2011); Breidenbach et al. (2018)). This bridging of statistical methods
with practical forestry aims to facilitate sustainable forest management practices, support
biodiversity conservation efforts, and assess the impacts of climate change on forest ecosys-
tems. Additionally, SAE enables policymakers and stakeholders to make evidence-based
decisions by providing accurate information on forest resources and their spatial distribution
(Guldin (2021)).

Researchers started utilizing SAE in the estimation of forestry parameters. The
majority of applications have concentrated on unit-level models (Coulston et al. (2021)).
For instance, McRoberts (2012) employed unit-level methodologies to refine the precision of
volume per acre estimates, leveraging Landsat Thematic Mapper imagery as auxiliary data.
On a similar pattern, Mauro et al. (2017) incorporated LiDAR-based auxiliary information in
their SAE approach, where LiDAR-derived metrics such as mean canopy height and biomass
density were aggregated at the regional level. These variables served as key auxiliary data
in area-level models, aligning with the classification in Figure (1), which places ”LiDAR
Data Models” under area-level SAE approaches. Similarly, Goerndt et al. (2013) utilized
Landsat-derived spatial variables, such as land cover and tree cover, which, when aggregated
over predefined areas, enhance area-level SAE predictions.

Likewise, Breidenbach and Astrup (2012) investigated the utilization of photogram-
metric canopy heights within a unit-level approach to enhance the precision level of mean
canopy height estimations. Their study compared unit-level and area-level SAE approaches,
proposing methodologies to handle the inherent heteroscedasticity in forest parameters using
photogrammetric methods.
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On a similar trend, Reich and Aguirre-Bravo (2009) explored the efficacy of synthetic
and regression methods for estimating forest stand characteristics in small geographic regions
within Jalisco, Mexico. They interpret that despite, the synthetic method being user-friendly,
its accuracy is contingent on meeting specific model assumptions. Whereas, the regression
method employs spatial models, and offers improved accuracy and precision, though reliant
on model quality and spatial resolution. They highlighted the importance of valid and
precise data for informed decision-making in ecosystem sustainability. They concluded that
the regression-based approach demonstrates notable improvements over synthetic methods,
offering consistent estimates across spatial scales and aiding decision-making processes for
resource management. Moreover, Goerndt et al. (2013) compared several SAE estimators in
12 counties of the northern Oregon Coast range. Multiple linear regression (MLR), gradient
nearest neighbor imputation (GNN), most similar neighbor imputation (MSN), and five
composite estimators combining MLR, MSN, and GNN with county-level direct estimates
were tested and compared. The supportive data related to forest inventory such as tree
density, basal area, cubic volume, quadratic mean diameter, and the average height of the top
one hundred trees per hectare belonging to about 680 forest inventory plots were considered
for testing with the SAE model. Besides, the tree characteristics, 16 Landsat variables, land
cover classification, tree cover, and elevation were also utilized as auxiliary variables. They
found that the composite estimators were better than any other method, by offering a high
level of precision and minimum bias.

Thumaty et al. (2016) estimated Above Ground Biomass (AGB) for central Indian
deciduous forests in Madhya Pradesh, India using 2010 ALOS-PALSAR L-band data and
field-based AGB estimates through empirical models. Data from a survey of 415 sampling
plots (0.1 ha each) collected in 2009-10 were used as auxiliary variables. They found that
plot-level AGB estimates were modelled with PALSAR backscatter data, showing the HV
backscatter relation (R2 = 0.51) with field-based AGB estimates. Their study estimated
the total AGB (AGB) for Madhya Pradesh forests to be substantial, with validation results
showing a low root mean square error (RMSE), indicating robust model accuracy. Though,
their experiment did not fully satisfy the SAE approach they have a similar model which
is equally important. Aardt et al. (2006) worked on SAE for predicting timber volume
under heteroscedasticity conditions using satellite imagery. Reich and Aguirre-Bravo (2009)
investigated the reliability and accuracy of synthetic and regression estimators in small-area
analyses, using forestry data from Jalisco’s state of Western Mexico. Chandra and Chandra
(2020) estimated total basal cover of trees, herbs and shrubs using SAE methods.

4.2. SAE in natural resource estimation

Effective management and planning of natural resources often necessitate precise
estimates for small geographic regions. SAE methods have become increasingly important
for delivering reliable estimates in these contexts, especially when direct survey estimates
are inadequate due to limited sample sizes. SAE techniques have been effectively utilized in
multiple areas of natural resource estimation such as:

4.2.1. Biomass estimation

Biomass is an integral part of any natural system including forests, oceans etc. Re-
searchers have tried to estimate the biomass in forestry using SAE and successfully assessed
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the precise and accurate biomass. The choice of SAE model depends on whether auxiliary
information is available at the unit level (e.g., individual sample plots) or the area level
(e.g., forest compartments, districts). Unit-Level Model (Nested-Error Regression Model or
EBLUP) or Area-Level Model (Fay III and Herriot (1979)) may be utilized for biomass esti-
mation (Figure 1). For illustration, Breidenbach et al. (2018) estimated the forest biomass
of different areas in Norway. For this, they considered the average height of the tree canopy
(acquired from the canopy height model) as an auxiliary variable. Further, the same was
compared with three different SAE techniques, viz. simple random sample mean, general-
ized regression and unit level EBLUP. They concluded that the SAE estimation of biomass
through the SAE technique by unit-level EBLUP estimator was significantly more precise
than the other three estimators. Similarly, Green et al. (2020) estimated the biomass of
Loblolly pine in USA using the SAE model at both area level and unit level and found
that auxiliary variable LiDAR and stand thinning status can generate precise estimates of
the forest biomass and volume. In the USA, Gaines III and Affleck (2021) suggested the
SAE model for postfire forest regeneration. However, the MSE estimates exhibited frequent
negativity and variability, which suggests the limited operational utility of this model.

4.2.2. Carbon sequestration estimation

Utilization of SAE in carbon sequestration was reported by Guldin (2021) who re-
viewed and informed that SAE application in forestry at the global level has increased since
2010. Carbon sequestration can also be expressed in terms of AGB (Above Ground Biomass).
It was reported that the estimation of AGB volume has gained significant attention in SAEs,
surpassing the earlier focus on timber volume estimations. This rise in SAE application in
carbon assessment can be attributed to recent global policies like greenhouse gas reporting
and REDD+ (Reducing Emission from Deforestation and Degradation+), which emphasize
the importance of monitoring forest carbon stocks and fluxes (Bhattarai et al. (2015)). Ad-
ditionally, there is growing interest from both public and governmental sectors in evaluating
the capacity of forests to sequester carbon at both national and regional scales. In SAE
models, information such as soil samples, land use data, and environmental variables are
incorporated to estimate the soil carbon content for small areas of interest (Prisley et al.
(2021) Stanke et al. (2022)). As described in Figure (1) both unit-level and area-level model
may be employed for carbon sequestration estimation through LiDAR models or auxiliary
models (Battese et al. (1988)).

4.2.3. Biodiversity assessment

Biodiversity includes the variety of life forms within the ecosystems, which is very
essential for sustainable ecosystem functioning and resilience. SAE methods overcome the
limitation of a small area by integrating information from various origins and accounting
for spatial variability, thus allowing for more accurate biodiversity estimates at smaller res-
olutions. Researchers such as Packalén and Maltamo (2007) mentioned the use of different
canopy height models for the identification of different forest species through satellite im-
agery; Breidenbach et al. (2018) highlighted that these imageries can be utilized in biodiver-
sity assessment in small areas of a survey unit. Prisley et al. (2021) highlighted that SAE
techniques such as machine learning, spatial interpolation and hierarchical Bayesian models
are useful in various fields of biodiversity such as species distributional modelling, commu-
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nity composition estimations, rare species and endemic assessments. Both Fay-Herriot Model
(unit-level) and Nested-error regression model (area-level) may be utilized for biodiversity
assessment if species richness, abundance, frequencies and other variables are available as
auxiliary variable (Figure 1).

4.2.4. Water resource assessment

SAE can also be utilized in estimating groundwater levels and surface water availabil-
ity by integrating survey data with hydrological models and remote sensing data (Ferreira
et al. (2022)). By leveraging the Fay-Herriot model, their study provided district-specific
estimates for indicators such as household hunger, access to medical supplies, and piped
water availability. Earlier, Opsomer et al. (2003) had applied small area estimation (SAE)
techniques to evaluate soil erosion within the Rathbun Lake Watershed in Iowa, USA. They
utilized survey data with auxiliary information to enhance the precision of erosion estimates
at the sub-watershed level. The methodology involved integrating direct survey estimates
with model-based predictions, accounting for spatial correlations and measurement errors.
This approach yielded more reliable and detailed erosion assessments, facilitating targeted
soil conservation efforts and informed watershed management decisions.

Later, Nguyen (2023) reported the use of SAE in water hygiene and sanitation cov-
erage in Vietnam. Study integrates survey data with auxiliary information to produce dis-
aggregated estimates of water, sanitation, and hygiene (WASH) coverage at provincial and
district levels in Vietnam. This approach involved combining data from national household
surveys with additional sources, such as census data and administrative records through
regression, to enhance the precision of estimates in smaller geographic areas. By apply-
ing small area estimation techniques, the study was able to construct detailed geographic
maps of WASH coverage, revealing significant disparities, particularly in poorer provinces
and districts, which exhibited notably lower access to safely managed sanitation and water
services.

4.3. SAE in national forest inventories

National Forest Inventory (NFI) is the systematic program designed to collect, an-
alyze, and report data on forest resources within a whole area of any specific region, state
or country to meet international reporting requirements for agreements such as the Kyoto
Protocol and the United Nation’s Food and Agriculture Organization. NFIs also fulfil in-
tergovernmental mandates, as seen in initiatives like the Montreal Process, the Ministerial
Conference on the Protection of Forests in Europe, and COST Action E43 (Tomppo et al.
(2008b); McRoberts (2010); Georgakis (2019)). This structure ensures that NFIs offer crit-
ical data for domestic management and international compliance, aiding sustainable forest
management and adherence to global environmental commitments. As NFI is large-scale
work in which different forestry parameters such as the composition of tree species, their
size and age distribution, density, volume, biomass, carbon sequestration and biodiversity
are measured and calculated to monitor the health and changes in forest conditions and
to evaluate forest dynamics, there is greater cost and time involved in it. So, to overcome
this, SAE, become a helpful technique which is an economical and time-saving method and
also provides greater accuracy and precision in NFI estimates for small domains. For NFI
estimates, Unit-level combined auxiliary model (if data is available at individual plots) or
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composite models (if sample size is very low) or area level model (if field data is at the area
level like range/compartment/beat/others) can be employed (Figure 1). Various researchers
belonging to the forest services and universities worldwide have developed precise estimates
for NFI of the concerned regional forests area using SAE methodology.

In Norway, Breidenbach and Astrup (2012) estimated the mean above-ground for-
est biomass of the sub-population using SAE techniques by employing auxiliary variables,
specifically canopy height from a photogrammetric model, correlated with other variables
of interest. They recommended that the unit-level EBLUP yielded the most stable and
accurate estimates.

Likewise, Næsset (2014) highlighted that operational forest management inventories
now often use individual tree crown approaches and area-based approaches because both
the variable of interest and the explanatory variables are accessible at the level of individual
population units, such as geographically located trees or field sample plots. On the other
hand, domain-level approaches have predominantly found application in research investi-
gations, as demonstrated by studies conducted by Aardt et al. (2006) and Goerndt et al.
(2011). Chandra and Chandra (2015) obtained the small area estimates for the three forestry
parameters frequency, density, and total basal cover of trees, shrubs, and herbs for the state
of Maharashtra in India. The auxiliary data, the percentage of forest cover at the small
area level, was used for the purpose. They showed that the forest type-wise estimates of
all three parameters are reliable as compared to direct estimates. Moreover, Mauro et al.
(2017) conducted a comparison in an airborne laser scanning supported forest inventory.
These findings underscore the importance of incorporating diverse auxiliary data sources in
forest inventories to enhance the reliability of estimates.

Similarly, Barrett et al. (2016) provided an overview of the practical application
of remotely sensed data in NFIs, drawing on insights from experts representing 45 coun-
tries, which collectively cover 65 percent of global forest areas. Their analysis revealed the
extensive use of remotely sensed data from various sensors to refine the estimates across
numerous forestry parameters in smaller areas. However, they highlighted the need for es-
timation through more effective integration of remotely sensed data with field inventories
dataset. This comprehensive approach ensures that forest inventories remain accurate and
reflective of current forest conditions. Various researchers in Spain have experimented with
combining NFI and LiDAR data, yielding significant results. Condés and McRoberts (2017)
focused on updating NFI-based estimates by using models to predict annual plot-level vol-
ume change and assess uncertainties. Novo-Fernández et al. (2019) researched to generate
a fine-resolution database of forest yield variables. They described estimation methods that
combined Spanish NFI data with Airborne Laser Scanning (ALS) data to predict the volume
of growing stock for three main commercial tree species found in northwestern Spain. Addi-
tionally, Durante et al. (2019) studied the vast expanse of approx. 2.8 million acres in south-
western Spain. They integrated field plot data from the Spanish NFI, high-precision ALS,
and bio-geophysical spectral variables sourced from MODIS. They explored a two-stage up-
scaling approach for biomass estimation, leveraging ALS data calibrated with NFI field plots
to create regional biomass maps. Esteban et al. (2019) described a model-assisted inference
approach using random forests, comparing different bootstrap estimators and constructing
change maps. In a similar experimental format during 2012, Breidenbach and Astrup (2012)
continued working on NFI and reported that Norway employs permanent sample plots for



2025] SAE IN FORESTRY 305

the estimation of forestry parameters, yet precise estimates for small sub-populations could
not be achieved due to very limited data. In their study, they evaluated simple random
sampling, generalized regression, and unit-level EBLUP for estimating above-ground forest
biomass across various locations. They discovered that EBLUP produced more stable es-
timates in areas with numerous sample plots. Ultimately, they emphasized that increasing
the sample size enhances estimation precision.

Similarly, Breidenbach et al. (2018) carried out a forest survey in parts of Vestfold
county in southeastern Norway, utilizing complete digital aerial photogrammetry data. The
survey, based on Norway’s NFI methodology, aimed to estimate the mean timber volume per
hectare for stands sampled using fixed-area plots. Trees were recorded, and volume was pre-
dicted from diameter and height using standard models. Stand samples were collected from
areas with available forest management inventories in Norway, with explanatory variables
including aerial photogrammetry heights calculated for sample plots and grid cells.

Germany is also not lagging in developing their NFI using SAE techniques. Like,
Hill et al. (2018) mentioned a double-sampling extension for the German NFI to create
design-based SAEs at the forest district level. It was suggested to utilize airborne laser
scan (LiDAR) based derived canopy height models and tree species classification maps as
auxiliary data with regression models to predict timber volumes (Mandallaz et al. (2013)).
In addition to this, Wagner et al. (2017) conducted a study in Germany aimed at developing
cost-efficient SAE methods to address the limitations of traditional forest inventories in a
dense forest which require forest management information at various administrative levels.
They investigated and tested different design-based regression estimators, considering laser
data of varying temporal resolution. Subsequently, they found a reduction in the significant
error of estimate at the district level and suggested more research is required for sub-district-
level estimations. Further, the SAE method expanded to other German states for their NFI
data estimates.

In Nordic countries, Kangas et al. (2018) reviewed the scientific advancements in
NFI, focusing on the integration of remotely sensed data to boost the accuracy of NFI and
Forest Management Inventory (FMI) datasets and to minimize uncertainties in parameter
estimations at both national and small area levels. These FMIs are important sources to
enhance the estimate precision thus, various other researchers started to utilize FMIs in their
experiments. For example, Jiang and Rao (2020) explored the utilization of remotely sensed
data to complement NFI and FMI datasets, aiming to improve the precision of parameter
estimates at a small area level.

Furthermore, Georgakis (2019) provided a detailed review of SAE in forestry and
explained that SAE methods, including synthetic estimation and the Fay-Herriot model,
addressed the scarcity of terrestrial sample data and improved accuracy in the NFI. His
review highlighted how these statistical techniques are crucial for enhancing the reliability
of forest resource estimates, especially in regions where terrestrial data is limited.

In their study of the application of SAE in the NFI of Switzerland, Pulkkinen and
Zell (2019) explored how the Swiss forest inventory utilizes a design-based Monte Carlo ap-
proach for sampling. This method involves sampling an infinite population of points within
a designated region of interest to estimate spatial means of tree population totals. Field data
collection employed a simple random technique. Estimation was carried out using a specific
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model incorporating auxiliary data and a linear model based on probability sampling, ensur-
ing an unbiased nature in the estimation process. Whereas, Breidenbach et al. (2021) utilized
Sentinel-2 mosaics in conjunction with NFI data to develop models and cartographic repre-
sentations of various Norwegian conifer types. These models were then leveraged to generate
species-specific distribution maps tailored to smaller geographic areas, such as municipalities.
Further, Astrup et al. (2019) detailed the integration of photogrammetric point cloud data
with NFI point cloud data to produce a raster map featuring selected modelled attributes
applicable to forest management inventories. The pair of studies by Haakana et al. (2020)
investigated post-stratification as an alternative method for utilizing auxiliary information
to estimate parameters for municipalities based on Finland’s NFI data.

In India, Chandra and Chandra (2020) experimented with the SAE approach to
generate estimates of total basal cover (m2/ha) for trees, shrubs, and herbs in small areas
of Maharashtra, India. Seven different forest types were considered as small areas for the
study. Survey data (nested quadrate of 10 m × 10 m, 3 m × 3 m, and 1 m × 1 m for
tree, shrub, and herb layers, respectively) of the year 2011-12 were utilized as one of the
important variables for the estimation. India’s State of Forest Report (ISFR) depicting
NFI and remote sensing-based forest cover and forest change data were utilized as auxiliary
information. Their results indicated that estimates of total basal cover for trees, shrubs,
and herbs, generated using the SAE approach, were reliable and precise compared to direct
survey estimates.

In the Southeastern US, Coulston et al. (2021) in their experiment, utilized SAE
methods in the NFI, considering Landsat-based tree cover change information and mill survey
data as auxiliary variables. In their study, more than 35,000 permanent sample plots across
forest and non-forest areas were assessed. The result suggested that improvements in the
precision of estimates can be achieved when NFI data is measured at considerably fine spatial
and temporal scales. They observed that the precision of estimates in tree species groups and
size classes improves when SAE methods are used compared to design-based assessments.
They utilized the Forest Inventory and Analysis (FIA) program’s rotating panel design for
data collection and followed the recommendation of Bechtold and Patterson (2005), where
removal estimates were calculated based on midpoint assumptions within the re-measurement
period. Parameters of interest included total removals, hardwood and softwood removals,
and removals based on tree size categories.

Str̂ımbu et al. (2021) addressed inconsistency in aggregating parameter estimates for
SAEs in Norway. They proposed a method to align model-based and model-assisted es-
timators, ensuring consistency in AGB estimates. The evaluation was conducted through
simulated sampling in a 50 km2 forest area, adjusting estimates within confidence intervals
using heuristic optimization. Artificial forest populations were generated from airborne laser
scanning data. Comparing adjusted AGB estimators with unadjusted ones showed mini-
mal bias introduction, with decreased RMSE for stand-level and property-level estimators,
showcasing the potential for consistency in complex estimator systems.

For NFI estimates in France, Vega et al. (2021) experimented with and introduced a
distinct estimation algorithm aiming to balance the estimate precision in the Oak-dominated
areas. The algorithm relies on NFI field data along with auxiliary information such as forest
cover maps and canopy height models to achieve the desired precision in forest characteristics
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estimates. However, Guldin (2021) mentioned that NFI in France is based upon a two-phase
sampling strategy: Photo-interpretation of the plot for land use and land cover identification
followed by drawing of a sample based on land cover. Previously, Fortin (2020) investigated
the challenge of annual sampling of NFI plots and its impact on variance over the period.
To address this, older plot measurements were updated by a forest growth model. However,
that introduced uncertainty from both sample design and growth model and suggested to use
of a forest growth model to improve the estimate precision in NFI. Likewise, Irulappa-Pillai-
Vijayakumar et al. (2019) utilized 3D variables from photogrammetric estimated canopy
height models and auxiliary attributes (forest type maps, variables related to vegetation and
characteristics, satellite maps, etc.) to enhance French NFI data precision in the forested
region. Their experiment demonstrated a significant reduction in errors, specifically in vol-
ume estimates, suggesting potential for improved forest attribute estimation in smaller areas
using SAE. Dettmann et al. (2022) and and Wilson et al. (2023) reviewed the extensive use
of SAE in forest inventory and management, including the terminology, methods, concerns,
data sources, research findings, challenges, and future opportunities. They also informed
about the various methodologies such as direct, indirect, and composite estimation within
design-based and model-based frameworks of SAE and are supplemented with remote sens-
ing and geospatial data, to enhance precision in small domains, avoiding instability from
small sample sizes.

All these research studies constantly show improved precision compared to direct
estimates based solely on field data, highlighting the potential of SAE in national forest
inventory for future research and development.

5. Data sources and challenges-remote sensing data

In SAE, the supported data and auxiliary data are important factors which determine
the precision and accuracy of the model. In the case of NFI estimation, these data can be
satellite imagery, airborne laser scanning (LiDAR) data or any other data. The description
of these are as follows:

5.1. Satellite imagery

Satellite-borne sensor data such as LANDSAT (Land Satellite) is an important ap-
proach for integration with SAE for utilization in the small domain forestry estimation.
Various other spatial data like DEM (Digital Elevation Model), soil maps, NDVI (Normal-
ized difference Vegetation Index), watershed maps, forestry maps, geology maps, species
maps, forest boundary maps, etc. are being considered in forestry research including SAE.
These spatial data are used as auxiliary variable in SAE models to generate estimates for
various theme such as biodiversity, carbon, forest volume/growing stock etc. (Figure 1).
Pioneer work is done by Tomppo and Katila (1991) by combining satellite data with NFI
data. Furthermore, Reich and Aguirre-Bravo (2009) for their experiment in Mexico’s NFI
utilized Landsat-7 imagery having ETM+ along with climatic and topographical informa-
tion. Different bands of satellite data were identified for specific uses viz. Goerndt et al.
(2013) utilized Landsat 5 TM (Thematic Mapper) data focusing on six bands (B1-B5, B7)
of 30x30 m spatial resolution. Normalized Difference Vegetation Index (NDVI), calculated
from bands 3 and 4, and various band ratios (B4/B3, B5/B4, B7/B5) were used to describe
forest characteristics. After identification, the imagery was processed for geometric recti-
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fication, radiometric correction and several transformations, including tasselled-cap (TC)
transformation, optimizing brightness, greenness, and wetness. These transformations aid
in visualizing the forest structure and health in a better way. However, researchers like
Hill et al. (2018) had taken tree species maps as auxiliary variables for their estimation in
Germany’s NFI. Other satellite imagery like Moderate Resolution Imaging Spectroradiome-
ter (MODIS) is also commonly used imagery in NFI. In particular, Durante et al. (2019)
reported the use of MODIS data for bio-geophysical spectral attributes. Likewise, Astrup
et al. (2019) utilized photogrammetric point cloud data along with NFI data to generate
raster maps depicting forestry parameters/attributes. High-resolution satellite data was also
suggested to be utilized by Breidenbach et al. (2021)). hey employed Sentinel-2 mosaics in
conjunction with NFI for modelling conifers in Norway. The use of satellite data in forestry
estimation was also suggested by Guldin (2021)). They mentioned the worldwide practice
of utilising satellite data or aerial photography as an auxiliary variable for the estimation of
timber volume, tree cover and land use change identification and classification.

5.2. LiDAR (Light Detection and Ranging) data

Earlier, Airborne Laser Scanning (ALS) data such as LiDAR was found to be strongly
useful in forestry but due to higher cost and availability of free satellite data, it is less
commonly used nowadays. Various LiDAR models can be utilized for SAE based estimation
along with other auxiliary variable (Figure 1). In the review, Guldin (2021) informed that
Switzerland is working on SAE in the forestry sector for their country and utilizing the
LiDAR-based terrain model. They are utilizing the vegetation height and other forestry
parameters as auxiliary variables. This system estimates various parameters for cantons,
forest districts, and municipalities in Switzerland. Also, Gregoire et al. (2016) defined the
process of regression modelling using the point cloud data of airborne LiDAR-based height
measurements to estimate forest biomass. Various researchers have supported the argument
that the airborne laser scans integrated with NFI data are more useful and economical when
compared with the traditional inventory (Haakana et al. (2020); Rahlf et al. (2021); Str̂ımbu
et al. (2021)). Other important researchers include Mandallaz (2013) who tested the SAE
approach based on the NFI and auxiliary data such as LiDAR and floral information. Also,
Wagner et al. (2017) applied SAE methods along with laser data for estimating the timber in
Germany’s selective forest. Similar to this, Hill et al. (2018) utilized airborne laser scan data-
based canopy height for SAE modelling. Furthermore, Durante et al. (2019) constructed an
experiment to measure biomass through the Laser data and created a model based on it.
Additionally, Novo-Fernández et al. (2019) estimated the yield of the plantation forest using
laser data in Spain. Alongside, Breidenbach et al. (2018) highlighted the SAE status in
Norway and focused on LiDAR-based SAE estimation. Apart from this, Green et al. (2020)
mentioned that LiDAR data are very important as an auxiliary variable despite their age and
utilized 4-5-year-old LiDAR data and projected this with current year forest inventory data.
However, if the LiDAR data are of the same year of forest inventory then the result would
be more precise as the chances of variation decrease significantly. Additionally, Geogarkis
informed that SAE using LiDAR data shows superior results compared to those based on
photogrammetry. For extensive areas like whole counties, remote sensing data from sources
like Landsat, which are freely available, can provide comprehensive coverage. However, due
to the high costs and sometimes limited availability of LiDAR data, its use is often restricted
to smaller areas of interest, such as forest districts, where its higher accuracy can be better
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justified (Goerndt (2010)). This highlights the trade-off between cost and precision when
choosing appropriate data sources for SAE in different spatial contexts.

6. Some work in other sectors and future recommendations

SAE is already being considered in various sectors including agriculture, fisheries,
medical, big-data analytics and others. According to Chandra and Chandra (2015), early
developments in SAE for crop yield began in the late 1960s with Panse et al. (1966) who
used a double sampling approach at the Block level. Later, Srivastava et al. (1999) and
Sisodia and Chandra (2012) applied a synthetic method for Block-level crop estimation, uti-
lizing extensive auxiliary information from crop-cutting experiments. Singh and Goel (2000)
further refined crop yield estimation using remote sensing data. In the context of India’s
National Agricultural Insurance Scheme, alternative approaches for scaling down estimates
to the Gram Panchayat level were explored by Sharma et al. (2004) and Sud et al. (2001)).
In contrast, Sud et al. (2011) also applied a random effect model to account for small area
dissimilarities. Beyond forestry, Srivastava et al. (2007) applied SAE techniques to estimate
district-level economic parameters, such as loan amounts and poverty measures, in Uttar
Pradesh using survey data. These studies demonstrate the precision and representativeness
of SAE in various agricultural and socio-economic contexts. Additionally, Marchetti et al.
(2015) mentioned the SAE-based estimator using big data sources. This is also validated
by Kordos (2016) who advocated the utilization of big data which provides opportunities
to understand complex socioeconomic phenomena such as poverty and resource distribu-
tion. When combined with SAE methods, big data offers faster access to auxiliary variables
compared to traditional data sources. Despite advantages, challenges arise in ensuring data
quality and representativeness, especially concerning privacy and self-selection biases.

Methodological advancements are necessary to integrate this with survey data effec-
tively, revolutionizing scientific research and policymaking by providing precise, continuous
insights into societal well-being (Rao and Molina (2015)). Using SAE, Pramanik et al. (2015)
predicted 2011 vaccination coverage rates for 26 states not covered by the 2010-11 Annual
Health Survey (AHS) in India. The model-based estimates provided almost similar results
as to AHS results which ensures the reliability of the SAE method. Similarly, Jiang and
Rao (2020) discussed the SAE models being utilized in the field of medical science. SAE
is also being utilized in the happiness index through social media. For example, Aziz and
Ubaidillah (2021) studied SAE models, EBLUP Fay-Herriot and Error Measurement, utiliz-
ing auxiliary variables from Twitter data. Conclusively, the SAE technique is an important
statistical method which helps in estimating precise and accurate information for small areas
and eventually reduces time and cost and increases reliability. Various models can be utilized
for SAE depending upon the need and budgets. Auxiliary variables are also very important
for generating precise estimates. SAE has shown enormous uses in the fields of forestry,
medical science, and agriculture and its application is still under use in various other fields.

7. Conclusion

To conclude, Small Area Estimation (SAE) techniques offer significant potential to
transform forestry practices by overcoming the challenges associated with traditional forest
inventories. SAE provides accurate and dependable estimates at finer spatial scales, such
as forest divisions or ecologically sensitive regions, which are essential for informed decision-
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making in forest management and conservation. Its flexibility is evident through diverse
applications, ranging from estimating biomass and carbon storage to assessing biodiversity
and water resources. By incorporating advanced tools like satellite imagery, LiDAR, and
remote sensing, SAE not only improves the precision of forest assessments but also offers
a practical, cost-effective solution. This review brings together key developments, method-
ologies, and examples, shedding light on how SAE can advance sustainable forestry. By
connecting theoretical advancements with real-world applications, the paper emphasizes the
value of SAE as a vital tool for enhancing forest management strategies on a global scale.
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Orueta, A., and Oyonarte, C. (2019). Improving aboveground forest biomass maps:
from high-resolution to national scale. Remote Sensing, 11, 1–20.



312 K. PANDEY, S. CHANDRA, G. CHANDRA AND S. KHAN [Vol. 23, No. 2

Esteban, J., McRoberts, R. E., Fernández-Landa, A., Tomé, J. L., and Næsset, E. (2019).
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