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Abstract
In the present work attempts have been made to highlight different computational

problems related to common clustering and dimensionality reduction techniques depending
on input data type and underlying model assumptions of the different statistical methods. As
clustering and dimensionality reduction techniques are widely used under machine learning
and big data analysis, it is very much necessary to highlight the limitations to the user
community (especially for the software industry). The effects of directional and missing
data have also been considered.
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1. Introduction

Cluster Analysis, also called data segmentation, has a variety of goals. All relate to
grouping or segmenting a collection of objects (also called observations,individuals, cases, or
data rows) into subsets or “clusters”, such that those within each cluster are more closely
related to one another than objects assigned to different clusters. Central to all of the goals of
cluster analysis is the notion of degree of similarity (or dissimilarity) between the individual
objects being clustered. There are two major methods of clustering - hierarchical clustering
and k-means clustering.

Statistical techniques for classification are essentially of two types. Members of the first
type are used to construct a sensible and informative classification of an initially unclassified
set of data; these are known as cluster analysis methods. The information on which the
derived classification is based is generally a set of variable values recorded for each object
or individual in the investigation, and clusters are constructed so that individuals within
clusters are similar with respect to their variable values and different from individuals in
other clusters. The second set of statistical techniques concerned with classification is known
as discriminant or assignment methods. Here the classification scheme is known a priori and
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the problem is how to devise rules for allocating unclassified individuals to one or other of
the known classes.

Different Statistical techniques are available for clustering and classification (Fraix
Burnet et al. (2015), De et al. (2013) and references there in). But depending on the nature
of the different types of data the following problems often arise and in some cases a proper
solution is still not available.

1. Sometimes the data set under consideration has a distributional form (usually
normal) and sometimes it is of non normal nature. Based on the above point, there is a
justification needed about which clustering or classification technique should be used so that
it reflects the proper nature of the data set provided. This problem is more relevant for
classification as most of the classification methods are model based. For clustering most of
the methods are non parametric in nature and as such the above problem is not very serious.
But here also basic assumption is that the nature of the variables under study are continuous
where as under practical situations these may be categorical like binary, nominal, ordinal
and even directional (particularly for environmental and Astronomical data). Under such
situations standard similarity/ dissimilarity measures will not work.

2. The clustering techniques which require an inherent model assumption are known
as Model Based Methods, whereas the clustering technique where no modelling assumption
or distributional form is needed may be termed as Non-Model based Methods. Hence based
on the nature of data set, one has to decide about proper application of the two types of
techniques.

3. Even if one decides about the proper methods for the data set at hand, there are
several techniques available under both the categories and no predefined criteria can be set
to judge which technique is the best for the situation under consideration.

4. The above point arises the need of a comparative study among various available
techniques and a computational analysis of all the methods.Once all the methods are imple-
mented, it requires a criterion to decide upon the best technique based on a post classifier.
So an appropriate post classification approach is also needed in this regard. For a post
classification approach, a pre-classifier or training sample is required. Since in this type of
techniques a prior knowledge of classification is provided, these are called Supervised Learn-
ing. All other techniques where no prior classification is provided are known as Unsupervised
Learning.

5. A comparative validity algorithm may be helpful for predicting the superiority of
different techniques.

6. At present big data issues related to data size is quite common. In statistical
terms this problems may be tackled in terms of both the number of observations and the
variables considered. Many standard clustering techniques fails to deal with such big data
sets. Thus some dimension reduction methods may be applied at first and then clustering
may be performed on the reduced data set. Some data mining techniques are very helpful
under such situations.
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9. The above criteria also needs to be validated depending on whether the data is Gaus-
sian or non-Gaussian. That means the dimension reduction techniques may vary according
as the data set has a distributional form or not.

10. Finally and most importantly after all these considerations, the similarity of group-
ing of objects obtained from different methods should be checked in terms of some physical
properties .

2. Hierarchical Clustering Technique

Central to all of the goals of cluster analysis is the notion of degree of similarity (or dis-
similarity) between the individual objects being clustered. There are two major methods of
clustering -hierarchical clustering and k-means clustering. In hierarchical clustering the data
are not partitioned into a particular cluster in a single step. Instead, a series of partitions
takes place, which may run from a single cluster containing all objects to n clusters each
containing a single object. Hierarchical Clustering is subdivided into agglomerative meth-
ods, which proceed by series of fusions of the n objects into groups, and divisive methods,
which separate n objects successively into finer groups. Agglomerative techniques are more
commonly used. Hierarchical clustering may be represented by a two dimensional diagram
known as dendrogram which illustrates the fusions or divisions made at each successive stage
of analysis.

2.1. Agglomerative method

An agglomerative hierarchical clustering procedure produces a series of partitions of
the data, Cn, Cn−1, . . . .., C1. The first Cn consists of n single object ‘clusters’, the last C1,
consists of single group containing all n cases.

At each particular stage the method joins together the two clusters which are closest
together (most similar). (At the first stage, of course, this amounts to joining together the
two objects that are closest together, since at the initial stage each cluster has one object.)
Differences between methods arise because of the different ways of defining distance (or
similarity) between clusters.

A key step in a hierarchical clustering is to select a distance measure. A simple measure
is Manhattan distance, equal to the sum of absolute distances for each variable. The name
comes from the fact that in a two-variable case, the variables can be plotted on a grid that
can be compared to city streets, and the distance between two points is the number of blocks
a person would walk.

A more common measure is Euclidean distance, computed by finding the square of
the distance between each variable, summing the squares, and finding the square root of
that sum. In the two-variable case, the distance is analogous to finding the length of the
hypotenuse in a triangle; that is, it is the distance as the crow flies. A review of cluster
analysis in health psychology research found that the most common distance measure in
published studies in that research area is the Euclidean distance or the squared Euclidean
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distance.

To calculate distance between two clusters it is required to define two representative
points from the two clusters. Different linkage measures like “single linkage”, “complete
linkage”, “average linkage” etc have been proposed for this purpose.

2.2. Similarity measure for mixed type data

The above mentioned dissimilarity/similarity measures are applicable to continuous
type data only. But generally we work with mixed type data sets which includes different
types like continuous, discrete, binary, nominal, ordinal etc. Gower (1971) has proposed a
general measure known as Gower’s coefficient of similarity. Two individuals i and j may be
compared on a character k and assigned a score sijk. There are many ways of calculating
sijk, some of which are described below.

Corresponding to n individuals and p variables, Gower’s similarity index Sij is defined as

Sij = Σp
k=1sijk/Σ

p
k=1δijk(i, j = 1, 2, . . . n)

where δijk = 1 when character k can be compared for
observations i and j

= 0 otherwise

For continuous (quantitative) variables with values x1k, x2k, . . . , xnk for the kth variable

sijk = 1− | xik − xjk | /Rk

where Rk is the range of the variable k and may be the total range in population or the
range in the sample.

For a categorical (qualitative) character with m categories (m = 2 for binary variable)

sijk = 0 if i and j are totally different
= q (positive fraction) if there is some degree of agreement
= 1 when i and j are same

2.3. Linkage measures

To calculate distance between two clusters it is required to define two representative
points from the two clusters. Different methods have been proposed for this purpose. Some
of them are listed below.

Single linkage: One of the simplest methods is single linkage, also known as the nearest
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neighbor technique. The defining feature of the method is that distance between clusters is
defined as the distance between the closest pair of objects, where only pairs consisting of one
object from each cluster are considered.

In the single linkage method, drs is computed as drs = Min dij, where object i is in
cluster r and object j is in cluster s and dij is the distance between the objects I and j.
Here the distance between every possible object pair (i, j) is computed, where object i is in
cluster r and object j is in cluster s. The minimum value of these distances is said to be
the distance between clusters r and s. In other words, the distance between two clusters is
given by the value of the shortest link between the clusters. At each stage of hierarchical
clustering, the clusters r and s, for which drs is minimum, are merged.

Complete linkage: The complete linkage, also called farthest neighbor, clustering method
is the opposite of single linkage. Distance between clusters is now defined as the distance
between the most distant pair of objects, one from each cluster. In the complete linkage
method, d − rs is computed as drs = Max dij, where object i is in cluster r and object j
is cluster s. Here the distance between every possible object pair (i, j) is computed, where
object i is in cluster r and object j is in cluster s and the maximum value of these distances
is said to be the distance between clusters r and s. In other words, the distance between two
clusters is given by the value of the largest distance between the clusters. At each stage of
hierarchical clustering, the clusters r and s, for which drs is minimum, are merged.

Average linkage: Here the distance between two clusters is defined as the average of
distances between all pairs of observations, where each pair is composed of one object from
each group. In the average linkage method, drs is computed as drs = Trs/(Nr×Ns) where
Trs is the sum of all pairwise distances between cluster r and cluster s. Nr and Ns are the
sizes of the clusters r and s respectively. At each stage of hierarchical clustering, the clusters
r and s, for which drs is the minimum, are merged.

Minimax Linkage: This was introduced by Bien and Tibshirani (2011). For any point x
and cluster G, define

dmax(x,G) = maxy∈G d(x, y)

as the distance to the farthest point in G from x. Define the minimax radius of the cluster
G as

r(G) = minx∈G dmax (x,G)

that is, find the point x ∈ G from which all points in G are as close as possible. This
minimizing point is called the prototype for G. It may be noted that a closed ball of radius
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r(G) centered at the prototype covers all of G. Finally we define the minimax linkage between
two clusters G and H as

d(G,H) = r(GUH)

that is, we measure the distance between clusters G and H by the minimax radius of the
resulting merged cluster.

It is very important to choose a proper linkage measure in a particular situation.
A liberal attitude always leads to single linkage whereas a conservative attitude leads to
complete linkage. Minimax is a good choice when one tries to avoid a wrong decision (loss is
more important than gain) and without any prior belief, average linkage may give the best
answer.

2.4. Optimum number of clusters

Usually the number of clusters are determined from the dendrogram and validated by
the physical properties. We specify a horizontal line for a particular similarity/dissimilarity
value and the clusters below this line are selected as optimum. But some mathematical rules
(thumb rules) are also available which are based on between cluster and within cluster sum
of squares values. If we denote by k, the number of clusters and define by W (k) the sum
of the within cluster sum of squares for k clusters then the values of W (k) will gradually
decrease with increase in k and that “k” may be taken as optimum where W (k) stabilizes. For
detailed discussion on may follow the link http://www.cc.gatech.edu/∼hpark/papers/cluster
JOGO.pdf (by Jung et al. (2002)).

3. Partitioning Clustering - k-means Method

The k-means algorithm (MacQueen, 1967) assigns each point to the cluster whose
center (also called centroid) is nearest. The center is the average of all the points in the
cluster that is, its coordinates are the arithmetic mean for each dimension separately over
all the points in the cluster. This method can be used for clustering of objects and not
variables.

This method starts with a value of k. We will discuss later the method of selection of
the value of k. Then we randomly generate k clusters and determine the cluster centers, or
directly generate k seed points as cluster centers. Assign each point to the nearest cluster
center in terms of Euclidean distance. Re-compute the new cluster centers. Repeat until
some convergence criterion is met i.e. there is no reassignment. The main advantages of
this algorithm are its simplicity and speed which allows it to run on large data sets. Its
disadvantage is that it is highly dependent on the initial choice of clusters. It does not yield
the same result with each run, since the resulting clusters depend on the initial random
assignments. It maximizes inter-cluster variance and minimizes intra-cluster variance.



2020] COMPUTATIONS IN COMMON CLUSTERING TECHNIQUES 255

The advantages of partitioning method are as follows:

(a) A partitioning method tries to select best clustering with k groups which is not the
goal of hierarchical method.

(b) A hierarchical method can never repair what was done in previous steps.

(c) Partitioning methods are designed to group items rather than variables into a collection
of k clusters.

(d) Since a matrix of distances (similarities) does not have to be determined and the basic
data do not have to be stored during the computer run partitioning methods can be
applied to much larger data sets.

For k-means algorithms (Hartigan, 1975) the optimum value of k can be obtained in
different ways. On the basis of the method proposed by Sugar and James (2003), by using
k-means algorithm first determine the structures of clusters for varying number of clusters
taking k = 2, 3, 4 etc. For each such cluster formation compute the values of a distance
measure

dK = (1/p) minxE[(xk − ck)′(xk − ck)]

which is defined as the distance of the xk vector (values of the parameters) from the center
ck (which is estimated as mean value), p is the order of the xk vector. Then the algorithm for
determining the optimum number of clusters is as follows. Let us denote by d′k the estimate
of dk at the kth point which is actually the sum of within cluster sum of squares over all
k clusters. Then d′k is the minimum achievable distortion associated with fitting k centers
to the data. A natural way of choosing the number of clusters is plot d′k versus k and look
for the resulting distortion curve. This curve is always monotonic decreasing. Initially one
would expect much smaller drops i.e. a levelling off for k greater than the true number of
clusters because past this point adding more centers simply partitions within groups rather
than between groups.

According to Sugar and James (2003) for a large number of item versus transformed
d′k. Then calculate the jumps in the transformed distortion as

Jk = (d′(−(p/2))
k − d′(−(p/2))

k−1 )

Another way of choosing the number of clusters is plot Jk versus k and look for the
resulting jump curve. The optimum number of clusters is the value of k at which the
distortion curve levels off as well as its value associated with the largest jump.

The k-means clustering technique depends on the choice of initial cluster centers (Chat-
topadhyay et al., 2012). But this effect can be minimized if one chooses the cluster centers
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through group average method (Milligan, 1980). As a result, the formation of the final
groups will not depend heavily on the initial choice and hence will remain almost the same
according to physical properties irrespective of initial centers. In MINITAB package, the
k-means method is almost free from the effect of initial choice of centers as they have used
the group average method.

3.1. Advantages and disadvantages of k-means algorithm

The main advantages of this algorithm is that it is very fast (in terms of computational
speed), robust, easy to understand and interpret. In fact the algorithm has been modified
by Hartigan and Wong (1979) which speeds up the algorithm and is used most commonly
in the community. The open-source statistical computing environment R (https://cran.r-
project.org/); the software which is used in this entire work; has the built-in function
kmeans() which implements the above discussed version of the k-means algorithm as its
default. The algorithm is very much well suited for the data which are distinct and well-
separated from each other. The clusters thus formed are tight and often tighter than the
Hierarchical Clustering method, especially when the clusters are globular. But the algorithm
suffers due to a number of reasons. k -means depends heavily on the initialization/ seeds.
The algorithm assumes the joint distribution of the features within each cluster to have
equal variance and to be independent of each other. This assumption is hard to satisfy more
than often. Correlation between the features breaks this assumption. k-means cannot find
non-convex clusters or the clusters with unusual shapes or overlapping clusters. Finally, this
algorithm requires a priori knowledge on the number of clusters/groups to be formed. This
is most commonly tackled by using the method proposed by Sugar and James (2003) which
has been discussed earlier. Jump-Statistic as a mean of determining the number of clusters
“k” is very popular and widely accepted measure. Other possibilities are the uses of gap
statistic or silhouette index.

3.2. Example using k-means algorithm

The Fisher’s Iris data set is a multivariate data set introduced by R.A. Fisher (Fisher
(1936)). It is also known as Anderson’s Iris data set because Edgar Anderson collected the
data to quantify the morphologic variation of Iris flowers of three related species. The data
set consists of 50 samples from each of three species of Iris (Iris setosa (type-3), Iris versicolor
(type-2) and Iris virginica (type-1)). Four features were measured from each sample: the
length and the width of the sepals and petals, in centimetres.

We have performed k-means clustering of the data on the basis of the four variables
viz. sepal length, sepal width, petal length and petal width. Choosing k = 3, we have
divided the 150 observations into three groups in order to verify whether we can identify
three groups corresponding to three species. From our analysis it is clear that k-means
method has correctly identified Iris setosa (type-3) species for all the 50 cases where as there
are some errors corresponding to types 1 and 2. For type 2 three cases and for type 1 fourteen
cases had wrongly identified. The summary result for k-means clustering is given below:



2020] COMPUTATIONS IN COMMON CLUSTERING TECHNIQUES 257

Number of clusters: 3

Number Within Average Maximum
of cluster distance distance

observations sum of from from
squares centroid centroid

Cluster1 39 25.414 0.732 1.552
Cluster2 61 38.291 0.731 1.647
Cluster3 50 15.151 0.482 1.248

4. Clustering of Variables

The hierarchical clustering method can also be used for clustering of variables on the
basis of the observations. Here instead of the distance matrix one may start with the cor-
relation matrix (higher correlation indicating similarity of variables). The linkage measures
as listed in the previous section will not be applicable for variable clustering. In order
to measure similarity/dissimilarity between two clusters of variables, one may either use
the correlation between first principal components corresponding to the two clusters or the
canonical correlations.

Dimensionality reduction techniques like Principal Component Analysis (PCA) or In-
dependent Component Analysis (ICA) could alternatively be used for variable clustering.
The variables with larger loading belonging to a particular component may be considered to
be in the same cluster.

4.1. Principal Component Analysis (PCA)

In this technique, given a data set of observations on correlated variables, an orthogonal
transformation is performed to convert it into a set of uncorrelated variables called the
principal components. The number of principal components is less than or equal to the
number of original variables. This transformation is defined in such a way that the first
principal component has the largest possible variance. One rule of thumb is to consider
those components whose variances are greater than one in the reduced space. Principal
components are guaranteed to be independent only if the variables are jointly normally
distributed.

4.2. Independent Component Analysis (ICA)

One of the most recent powerful statistical techniques for analyzing large data sets
is independent component analysis (ICA), see Comon (1994) for the original description of
ICA. Such data sets are generally multivariate in nature. The common problem is to find a
suitable representation of the multivariate data. For the sake of computational and concep-
tual simplicity such representation is sought as a linear transformation of the original data.
Principal component analysis, factor analysis, projection pursuit are some popular methods
for linear transformation. But ICA is different from other methods, because it looks for the
components in the representation that are both statistically independent and non-Gaussian.



258 ASIS KUMAR CHATTOPADHYAY [Vol. 18, No. 2

In essence, ICA separates statistically independent component data, which is the original
source data, from an observed set of data mixtures. All information in the multivariate data
sets are not equally important. We need to extract the most useful information. Independent
component analysis extracts and reveals useful hidden factors from the whole data sets. ICA
defines a generative model for the observed multivariate data, which is typically given as a
large database of samples. See Hyvarinen et al. (2001), Comon and Jutten (2010) and Lee
(1998) for book length discussions on ICA. ICA can be applied in various fields like neural
network (Fiori, 2003), studying EEG data (Bartlett et al., 1995), speech processing (Ku-
maran et al. 2005), brain imaging (McKeown et al., 1997), signal separation (Adali et al.,
2009), telecommunications (Hyvarinen et al., 2002), econometrics (Bonhomme and Robin,
2009), etc. Chattopadhyay et al. (2012) has applied ICA for astronomical data set.

4.3. Conversion of directional data to linear

Note that PCA or ICA has been developed for linear continuous data but if one variable,
is circular in nature then the method will not work.. But it is not immediate how to include
this type of data for clustering directly or through PCA or ICA. If a density plot of the data
show the circular variable has a bimodal distribution and the two modes are near 0o and 200o,
we may be motivated to consider two main directions, say east and west (approximately),
which correspond to 0o and 180o.

Chattopadhyay et al. (2015) proposed a method of conversion from circular to linear
where they considered standard cosine angular distance of an angle θ from a fixed angle φ,
defined by dφ = 1−cos(θ−φ), which is in the linear scale, and d ∈ [0, 2]. Thus, for a circular
variable θ , we may consider two distances d0 = 1− cos(θ− 0o) and d180 = 1− cos(θ− 180o),
both of which are linear. So, instead of taking θ in our analysis, we may consider the pair
(dmax, dsign), where dmax = max(d0, d180) and dsign = +1 if dmax = d0 and dsign = −1 if
dmax = d180. Alternately, if we want to ignore the sign we can work with θ∗ = 2× θ, which
is approximately unimodal with mode near 45o. We may work with d∗ = 1− cos(θ∗ − 45o).

5. Incomplete Data problems

Statistical analysis with missing data is an important problem as the problem of miss-
ing observation is very common in many situations. During the last two decades different
methods have been developed to tackle the situation.One possible way to handle missing
values is to remove either all features or all objects that contain missing values. Another
possibility is imputation where we fill in the missing values by inferring new values for them.
The imputation method may not be applicable to some astronomical data sets (Chattopad-
hyay, 2017) as the missing value may arise from physical process and imputing missing
values is misleading and can skew subsequent analysis of data. For example, the Lyman
break technique (Giavalisco, 2002) can identify high-redshift galaxies based on the absence
of detectable emissions in bands corresponding to the FUV rest frame of the objects. Such
high-redshift galaxies were previously unobservable.

Missing values occur for a variety of reasons, from recording problems to instrument
limitations to unfavorable observing conditions. In particular, when data are combined
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from multiple archives or instruments, it is virtually certain that some objects will not be
present in all of the contributing sources. Little and Rubin (1987) identified three models for
missing data. When values are Missing At Random (MAR, MCAR), imputation may be a
reasonable approach since the values may be predicted from the observed values. The third
type of missing values are Not Missing at Random (NMAR), when the value itself determines
whether it is missing. This is precisely the case when objects fall below a detector’s sensitivity
threshold. There is no way to impute these values reliably, because they are never observed.

Under the regression set-up with predictor X and response Y, missing value problems
often arise. To decide how to handle missing value problems, primarily we need to know
why these values are missing. We may explain the above three general missing mechanisms
in the following manner.

A variable value is missing completely at random (MCAR) if the probability of miss-
ingness is the same for all units. Under the regression set-up if the missing values are
independent of both response and predictor then these are called missing completely at ran-
dom. Most missingness is not completely at random. A more general assumption,missing
at random (MAR), is that the probability of a variable value is missing depends only on
variable information. Under the regression set up, if the missing value depends on predictor
but not on response then these are called missing at random.

Missingness is no longer at random if it depends on information that has not been
recorded and this information also predicts the missing values. In particular, a difficult
situation arises when the probability of missingness depends on the variable itself. Under the
regression set-up this type of situation arises when probability of response depends on both
response and predictor.For statistical inference with missing information, we usually assume
that the missingness pattern is MCAR or MAR. But in many situations these assumptions
are not valid.

In clustering algorithms, different packages use different types of imputation techniques
like mean imputation, hot deck imputation etc. In order to estimate the missing values prop-
erly one should take care of this fact. Use of EM algorithm is usually recommended.

6. Conclusion

From the above discussions it is very clear that although clustering and dimension re-
duction problems are widely used under different disciplines by scientists from several areas,
one should always take care of the nature of data in order to apply the methods successfully.
In the introduction we have listed several such problems and only a few are discussed in
latter sections. It is quite expected that one may identify many other computation based
problems which are not listed here.
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