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Abstract
Probability distributions for count data have potential applications in medical, epi-

demiological, and actuarial studies. Conway-Maxwell Poisson (CMP) distribution is a two-
parameter Poisson distribution that can handle over- and under-dispersed data. In this
paper, some new results on the distributional properties of CMP distribution are presented.
Also, minimum variance unbiased (MVU) estimator of the location parameter is derived
using the complete sufficient statistic. The primary advantage of the MVU estimator is that
it has a closed-form expression, unlike other existing estimators. An approximate expres-
sion for the variance of the MVU estimator is obtained, and the performance of the MVU
estimator is compared with that of the ML estimator in terms of relative efficiency through
simulated and real-life datasets.
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1. Introduction

Poisson distribution is often a natural choice among researchers to model count data.
However, its applicability is restricted to situations where there is equi-dispersion of data, i.e.,
the mean is equal to the variance. Often, in reality, count data are over- or under-dispersed.
For example, data on the word lengths in a dictionary or the number of infected spots in
the leaves of a plant is under-dispersed. Alternative distributions to Poisson are available
in the literature to model over- or under-dispersed data. These include mixtures of Poisson,
weighted Poisson and generalized Poisson distributions. However, these distributions have
more parameters and involve mathematical intricacies which limit their usage. For exam-
ple, the generalized Poisson distribution does not model under-dispersion effectively due to
parameter constraints. Hence, probability models having fewer parameters that can address
the problem of over- or under-dispersion are of interest to study both from a theoretical and
application perspective.

A two-parameter Poisson distribution capable of handling over- and under-dispersion
is Conway-Maxwell Poisson (CMP) distribution introduced by Conway and Maxwell (1961).
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The probability mass function (pmf) of CMP distribution is

P (X = x) = λx

(x!)ν

1
Z(λ, ν) , x = 0, 1, 2, . . . , λ > 0, ν ≥ 0 (1)

where

Z(λ, ν) =
∞∑

j=0

λj

(j!)ν

is the normalizing constant. Here, λ denotes the location parameter and ν denotes the
dispersion parameter that captures the degree of over- or under-dispersion. The CMP distri-
bution is over-dispersed for ν < 1, under-dispersed for ν > 1, and equi-dispersed for ν = 1.
The pmf is not defined for ν = 0 and λ ≥ 1.

Shmueli et al. (2005) have revisited this distribution to study its properties. A review
of CMP distribution, its characterizations and applications can be found in Sellers et al.
(2012). There has been an increased interest in research about extensions and generalizations
of CMP distribution in the recent past. Cordeiro et al. (2012) introduced exponential-CMP
distribution as a lifetime distribution by compounding an exponential distribution with a
CMP distribution and explored its properties. Chakraborty and Imoto (2016) proposed a
flexible four-parameter extension of CMP distribution, which encompasses Conway-Maxwell
negative binomial and generalized CMP distributions, and also derived its properties. Roy et
al. (2020) developed Conway-Maxwell negative hypergeometric distribution as a modification
to negative hypergeometric distribution along with its characterizations.

Although some extensions and characterizations of CMP distribution are available,
properties in terms of differential equation involving recurrent probabilities have not yet been
addressed. Such properties are available for popular discrete distributions, see, for example,
Boswell and Patil (1973), and the same is discussed for CMP distribution in this paper.
Also, a new representation of the CMP distribution in terms of generalized hypergeometric
series is given.

From an inferential point of view, existing estimators of the parameters do not have
closed-form expressions and have to be computed using iterative methods. Since the CMP
distribution belongs to the exponential family of distributions, in the present work, minimum
variance unbiased (MVU) estimation of the location parameter is carried out using the
distribution of the complete sufficient statistic. Also, an approximate expression for the
variance of the estimator is obtained. The merit of using the proposed MVU estimator is
highlighted through numerical illustration.

The paper is organized as follows. In Section 2, some properties of CMP distribution
are listed, and two new results involving recurrent probabilities and probability generating
function (pgf) are presented. The methodology to obtain MVU estimator of the location
parameter is explained in Section 3. Numerical illustration to compare the performance
of the MVU estimation with likelihood estimation in terms of mean absolute bias (MAB)
and relative efficiency (RE) is provided in Section 4 through simulated and real-life data.
Concluding remarks are given in Section 5.
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2. Distributional properties

As mentioned in Section 1, CMP distribution can model both over- and under-dispersed
data. CMP distribution encapsulates well-known distributions, including Poisson distribu-
tion (ν = 1), geometric distribution (ν = 0, λ < 1), and Bernoulli distribution (ν → ∞).
From equation (1), based on n independent and identically distributed (iid) samples on X,
it can be seen that CMP distribution belongs to the exponential family of distributions.
Also, CMP distribution is a member of the two-parameter power series family of distributions
with pgf of the form

PX(z) = Z (λz, ν)
Z(λ, ν) (2)

The pgf of CMP distribution can be expressed in terms of generalized hypergeometric series
as (See Nadarajah, 2009)

PX(z) = 0Fν−1(; 1, . . . , 1; λz)
0Fν−1(; 1, . . . , 1; λ) (3)

Comparing equations (2) and (3), we get

Z(λ, ν) = 0Fν−1(; 1, . . . , 1; λ) (4)

Using the pgf, the expected value and variance of X can be obtained as

E(X) = λ
∂

∂λ
log(Z(λ, ν)) (5)

and
V (X) = λ

∂

∂λ

[
λ

∂

∂λ
log(Z(λ, ν))

]

For further properties and characterizations of CMP distribution, one may refer to Nadarajah
(2009), Daly and Gaunt (2016) and Li et al. (2019). In the sequel, two new results on CMP
distribution are presented.

2.1. Recurrence relationship of probabilities

Boswell and Patil (1973) have shown that any discrete distribution can be characterized
in terms of differential equations involving its parameters. For example, Poisson distribution
with mean λ satisfy the following recurrence relationship, namely,

dpx

dλ
= px−1 − px

where px is the pmf of the Poisson distribution. A similar recurrence relationship for CMP
distribution is obtained below.

Result 1: Let px denote the pmf of CMP distribution. Then

∂px

∂λ
= 1

xν−1 px−1 − E(X)
λ

px
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Proof: Partially differentiating the pmf in equation (1) with respect to λ, we get,

∂px

∂λ
=

xλx−1Z(λ, ν) − λx ∂

∂λ
Z(λ, ν)

(x!)νZ2(λ, ν)

Note that ∂

∂λ
log(Z(λ, ν)) = 1

Z(λ, ν)
∂

∂λ
Z(λ, ν). Thus

∂px

∂λ
= xλx−1

(x!)νZ(λ, ν) −
λx ∂

∂λ
log(Z(λ, ν))

(x!)νZ(λ, ν)

= 1
xν−1

λx−1

((x − 1)!)νZ(λ, ν) − λx

(x!)νZ(λ, ν)
∂

∂λ
log(Z(λ, ν)) (6)

Using equations (1) and (5) in equation (6), we get,
∂px

∂λ
= 1

xν−1 px−1 − E(X)
λ

px

An illustration of the computation of the probabilities using the recurrence relation for
the parameter choice (λ, ν) = (1.2, 0.5) is shown below. To carry out the recursive process,
the values of P (X = 0) and E(X) need to be computed. P (X = 0) is computed by sub-
stituting x = 0 in equation (1) and E(X) is computed from equation (5) using com.mean()
function available in compoisson package in R. The values are found to be 0.2096 and
1.992285, respectively. The successive probabilities are computed using the recurrence rela-
tion

px = λ

E(X)

[
1

xν−1 px−1 − ∂px

∂λ

]
, x = 1, 2, . . .

and are tabulated below for x = 1, 2, 3, 4.

Table 1: Recurrence probabilities for (λ, ν) = (1.2, 0.5)

x ∂px

∂λ
px

0 - 0.2096
1 0.0962 0.2511
2 0.0020 0.2127
3 0.1246 0.1468
4 0.1487 0.0872

2.2. CMP as Generalized Hypergeometric distribution

A discrete random variable X with pmf

P (X = k) = C
λk

k! γk[(a); (c)], k = 0, 1, 2, . . . (7)
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is said to belong to generalized hypergeometric family of distributions, provided its pgf can
be expressed in terms of generalized hypergeometric series as (See Dacey, 1972)

PX(z) = CpFq[(a); (c); λz] (8)

Here C denotes the normalizing constant and

γk[(a); (c)] = Γ[(a + k); (c + k)]
Γ[(a); (c)]

with
Γ[(a); (c)] = Γ(a1)Γ(a2) . . . Γ(ap)

Γ(c1)Γ(c2) . . . Γ(cq)

Result 2: CMP distribution belongs to the generalized hypergeometric family of distribu-
tions.

Proof: Let pFq[(a); (c); t] denote the generalized hypergeometric series where a = (a1, a2, . . . , ap)
and c = (c1, c2, . . . , cq). The pgf of CMP distribution given in equation (3) is obtained by
taking p = 0, q = ν − 1 and c = (1, 1, . . . , 1). Comparing equation (3) with equation (8), we
get,

P (X = k) = 1
0Fν−1(; 1, . . . , 1; λ)

λk

k! γk[; (1, . . . , 1)]

= 1
Z(λ, ν)

λk

k!
Γ[; (1 + k)]

Γ[; (1)] (using equation (4))

= 1
Z(λ, ν)

λk

k!

 1
Γ(1 + k) . . . Γ(1 + k)︸ ︷︷ ︸

(ν − 1) terms


 1

Γ(1) . . . Γ(1)︸ ︷︷ ︸
(ν − 1) terms


−1

= 1
Z(λ, ν)

λk

k!
1

(k!)ν−1

= 1
Z(λ, ν)

λk

(k!)ν

which is the pmf of the CMP distribution. Hence the result.

3. Minimum variance unbiased estimation

In this section, we propose a minimum variance unbiased estimator for the location
parameter λ of the CMP distribution when ν is known. For fixed ν, CMP distribution
belongs to the one-parameter power series family of distributions.
From Roy and Mitra (1957), the pmf of the complete sufficient statistic T of one-parameter
power series family of distributions with parameter θ is given by

P (T = t) = A(t, n)θt

[c(θ)]n (9)
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Accordingly, the MVU estimator of θr, r = 1, 2, . . ., denoted by δ(t, r) is

δ(t, r) =


0, if t < r
A(t − r, n)

A(t, n) , if t ≥ r
(10)

Since CMP distribution belongs to the exponential family of distributions, for fixed ν,∑n
i=1 Xi is a complete sufficient statistic for λ. The pmf of T = ∑n

i=1 Xi is given by (Sellers
et al., 2017)

P (T = t) = P (t) = λt

(t!)ν [Z(λ, ν)]n
∑

x1,x2,...,xn
x1+x2+...+xn=t

(
t

x1 . . . xn

)ν

, t = 0, 1, . . . (11)

Comparing equation (11) with equation (9), it can be seen that

A(t, n) = 1
(t!)ν

∑
x1,x2,...,xn

x1+x2+...+xn=t

(
t

x1 . . . xn

)ν

(12)

Using equation (12) in equation (10) with r = 1, the MVU estimator of λ, namely, δ(t, 1) =
δ(t) (say) is obtained as

δ(t) =



0, if t < 1

∑
x1,x2,...,xn

x1+x2+...+xn=t−1

(
t−1

x1...xn

)ν

∑
x1,x2,...,xn

x1+x2+...+xn=t

(
t

x1...xn

)ν tν , if t ≥ 1.

(13)

To verify that δ(t) is indeed an unbiased estimator of λ, we proceed as follows.

Consider the ratio of consecutive probabilities of T, namely,

P (t − 1)
P (t) = tν

λ

∑
x1,x2,...,xn

x1+x2+...+xn=t−1

(
t−1

x1...xn

)ν

∑
x1,x2,...,xn

x1+x2+...+xn=t

(
t

x1...xn

)ν (14)

Using equation (14) in equation (13) and taking expectation, we get,

E[δ(t)] = E

[
P (t − 1)

P (t) λ

]

= λ
∞∑

t=1

P (t − 1)
P (t) P (t)

= λ
∞∑

t=1
P (t − 1)

= λ
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Thus, δ(t) is an unbiased estimator of λ.

An alternate expression for δ(t) can be obtained by using the approximation for the
sums of powers of multinomial coefficients given below.

∑
x1,x2,...,xn

x1+x2+...+xn=t

(
t

x1 . . . xn

)ν

≃ nνt

√
Knν

(πt)(n−1)(ν−1) , (15)

where
Knν = nn(ν−1)

ν(n−1)2(n−1)(ν−1) .

From equation (13), an approximate expression for δ(t) is

δ(t) ≃ tν

nν

√(
t

t − 1

)(ν−1)(n−1)
, t > 1. (16)

An approximate expression for the variance of δ(t) in equation (16) is obtained as follows.
Consider

V [δ(t)] = E[δ2(t)] − (E[δ(t)])2

≃ E

[
t2ν

n2ν

(
t

t − 1

)(ν−1)(n−1)]
− λ2

=
[ ∞∑

t=2

t2ν

n2ν

(
t

t − 1

)(ν−1)(n−1)
P (t)

]
− λ2

=

 ∞∑
t=2

t2ν

n2ν

(
t

t − 1

)(ν−1)(n−1) λt

(t!)ν(Z(λ, ν))n

∑
x1,x2,...,xn

x1+x2+...+xn=t

(
t

x1 . . . xn

)ν
− λ2

= 1
n2ν(Z(λ, ν))n

∞∑
t=2

t2ν
(

t

t − 1

)(ν−1)(n−1) λt

(t!)ν

nνt

(
nn(ν−1)

(2πt)(n−1)(ν−1)νn−1

)1/2− λ2

(using equation (15))

= 1
n2ν(Z(λ, ν))n

(
nn(ν−1)

2π(n−1)(ν−1)νn−1

)1/2 ∞∑
t=2

nνtλtt2ν

(t!)ν

( 1
t − 1

)(n−1)(ν−1)
− λ2.

4. Comparison of MVU and likelihood estimation

In this section, the performance of the MVU estimator of λ is compared with that of
the maximum likelihood (ML) estimator through MAB and RE using simulated and real-life
datasets. The likelihood function based on n iid observations, namely, x⃗ = (x1, x2, . . . , xn)
on X having CMP distribution is given by

L(λ; ν, x⃗) = λ
∑n

i=1 xi

n∏
i=1

(xi!)−ν [Z(λ, ν)]−n

Since Z(λ, ν) involve an infinite sum, a closed form expression for the likelihood estimator
of λ, namely, λ̂ML cannot be obtained. However, an estimate of λ̂ML, can be obtained using
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Newton-Raphson method. COMPoissonReg package in R contains functions to compute the
ML estimates. The RE of δ(t) with respect to λ̂ML is defined as

RE(δ(t), λ̂ML) = V [λ̂ML]
V [δ(t)]

A value of RE more than one imply that V [δ(t)] is less than V [λ̂ML], suggesting that δ(t)
is efficient than λ̂ML. However, V [λ̂ML] does not have a closed-form expression. Therefore,
we make use of bootstrap approach to compute the RE values. The method to compute RE
using bootstrap samples is given in the following steps.

1. Generate a random sample n∗ of size n from CMP distribution for fixed λ and ν.

2. Draw B bootstrap samples each of size n with replacement from n∗.

3. For each bootstrap sample, compute δ(t) and λ̂ML. Denote these values as δ[b](t), λ̂
[b]
ML,

b = 1, 2, . . . , B.

4. Using the B bootstrap estimates of δ(t) and λ̂ML, calculate v(δ(t)) and v(λ̂ML) defined
respectively as

v(δ(t)) = 1
B − 1

B∑
b=1

(
δ[b](t) − δ∗(t)

)2

where

δ∗(t) = 1
B

B∑
b=1

δ[b](t)

and

v(λ̂ML) = 1
B − 1

B∑
b=1

(
λ̂

[b]
ML − λ̂∗

ML

)2

where

λ̂∗
ML = 1

B

B∑
b=1

λ̂
[b]
ML

5. RE based on bootstrap samples is computed as the ratio of v(λ̂ML) to v(δ(t))

4.1. Simulation study

A simulation study is carried out to examine the behaviour of the ML and MVU
estimates by computing the MAB and RE. Random samples of sizes n = 25, 50 are generated
from the CMP distribution by fixing the parameters λ and ν as below.

• Case 1: ν = 0.2, λ ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}

• Case 2: ν = 2.0, λ ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}
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The COMPoissonReg package in R (Kimberly et al., 2019) is used to generate the sample
observations. Case 1 corresponds to over-dispersed counts and Case 2 to under-dispersed
counts. Based on the simulated observations, δ[b](t), λ̂

[b]
ML and RE are computed using the

bootstrap procedure given in steps 1 to 5 of the previous section taking B = 200. To
find λ̂

[b]
ML, the in-built function glm.cmp() available in COMPoissonReg package is used. To

understand the fluctuations in the above values when the sample observations change, the
procedure is repeated for 100 runs. One run of the bootstrap procedure will yield a value for
the RE, v(λ̂ML) and v(δ(t)). Based on the B bootstrap estimates in each run, MAB of the
estimators are computed. MAB of the bootstrap estimator L of the parameter θ is defined
as MAB = 1

B

∑B
b=1 |L[b] − θ|. The summary statistics of the MAB values under case 1 and

2 for n = 25 and 50 are presented in Table 2.

Table 2: Summary statistics (min, 25th quantile, median, mean, 75th quantile, max) of
MAB values of λ̂ML and δ(t) under case 1 and case 2 for n = 25 and 50

Case 1
ν=0.2

λ Estimator n = 25 n = 50

0.5 λ̂ML (0.0750, 0.1404,0.1829,0.2504,0.2831,1.1164) (0.0582,0.1006,0.1207,0.1460,0.1636,0.4210)
δ(t) (0.0680,0.0960,0.1196,0.1319,0.1578,0.2877) (0.0558,0.0730,0.0900,0.1097,0.1379,0.2413)

1.0 λ̂ML (0.1680, 0.2274,0.2870,0.4468,0.5143,1.7551) (0.1221,0.1546,0.1831,0.2734,0.2631,2.2928)
δ(t) (0.0421,0.0679,0.0802,0.0900,0.1166,0.1743) (0.0327,0.0506,0.0734,0.0771,0.0947,0.1727)

1.5 λ̂ML (0.0421,0.0679,0.0802,0.0900,0.1166,0.1743) (0.1343,0.1952,0.2439,0.3188,0.3358,1.3648)
δ(t) (0.0288,0.0381,0.0467,0.0519,0.0599,0.1357) (0.0204,0.0290,0.0340,0.0390,0.0439,0.0986)

2.0 λ̂ML (0.2569,0.4035,0.5755,1.1046,1.0828,10.7535) (0.1773,0.2574,0.3040,0.4520,0.5003,1.9523)
δ(t) (0.0187,0.0256,0.0293,0.0335,0.0348,0.0987) (0.0135,0.0190,0.0220,0.0247,0.0269,0.0753)

2.5 λ̂ML (0.4173,0.6163,0.8842,1.9223,2.0632,24.4187) (0.0530,0.0950,0.1145,0.1581,0.1869,0.7314)
δ(t) (0.0141,0.0186,0.0225,0.0252,0.0278,0.0625) (0.0585,0.0739,0.0916,0.1069,0.1297,0.2484)

3.0 λ̂ML (0.5448,1.0515,1.5072,3.8200,3.2055,67.8926) (0.4440,0.6244,0.8051,1.1763,1.4477,5.2907)
δ(t) (0.0092,0.0141,0.0176,0.0205,0.0245,0.0563) (0.0078,0.0101,0.0126,0.0144,0.0175,0.0341)

Case 2
ν=2.0

λ Estimator n = 25 n = 50

0.5 λ̂ML (0.0750,0.1404,0.1829,0.2504,0.2831,1.1164) (0.0582,0.1006,0.1207,0.1460,0.1637,0.4210)
δ(t) (0.0680,0.0960,0.1196,0.1319,0.1578,0.2877) (0.0558,0.0730,0.0901,0.1097,0.1379,0.2413)

1.0 λ̂ML (0.0000,0.0000,0.0000,9.7e+05,1.0000,9.7e+07) (0.2016,0.2394,0.2754,0.3733,0.4210,1.3105)
δ(t) (0.1378,0.1953,0.2286,0.2703,0.3053,1.2498) (0.1218,0.1505,0.1869,0.2168,0.2527,0.7250)

1.5 λ̂ML (0.0000,1.0000,1.0000,1.3e+06,1.0000,7.3e+07) (0.3160,0.3915,0.4694,0.5979,0.6645,2.0552)
δ(t) (0.1686,0.2887,0.3404,0.3877,0.4182,1.0897) (0.1683,0.2167,0.2513,0.2860,0.3255,0.6965)

2.0 λ̂ML (1.0000,1.0000,1.0000,3.3e+06,3.0000, 1.1e+08) (0.4564,0.5459,0.6823,1.0315,1.1313,7.3437)
δ(t) (0.2765,0.3927,0.4420,0.5051,0.5440,1.4926) (0.1950,0.2934,0.3349,0.3841,0.4470,0.9988)

2.5 λ̂ML (1.0000,1.0000,2.0000,3.8e+06,2.3e+05,9.5e+07) (0.5956,0.7449,0.8666,1.6464,1.7517,10.5577)
δ(t) (0.3069,0.4858,0.5898,0.6579,0.7665,1.3116) (0.2547,0.3283,0.3813,0.4420,0.5051,1.1666)

3.0 λ̂ML (1.0000,2.0000,4.0000,6.8e+06,6.8e+05,2.1e+08) (1.0000, 1.0000,1.0000,4.2e+05,3.0000,4.2e+07)
δ(t) (0.4241,0.5499,0.6534,0.7568,0.8361,2.5188) (0.2375,0.3989,0.4527,0.5337,0.6380,1.4019)

The boxplots of MAB values under both the cases for n = 50 are given in Table 3. It
is observed from the plots and the summary statistics that the MAB values corresponding
to MVU estimator are comparatively small and less dispersed than that of ML estimator
under both the cases. Also, the presence of extreme values in the plots corresponding to
the ML estimator indicate that the likelihood approach at times over or under estimates the
parameter. The line plots displayed in Table 4 correspond to the variances of the ML and
MVU estimates based on bootstrap samples for 100 runs. The x-axis in the plots denote the
runs and the y-axis denote the variances of the estimates.
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Table 3: Boxplots of MABs of λ̂ML and δ(t) for n = 50
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Table 4: Plots of variances of λ̂ML and δ(t) for n = 50

It can be observed from the plots that the estimates of δ(t) are less dispersed compared
to λ̂ML. Also, it is observed that the variances of the ML estimates are large when compared
to that of MVU estimates. In particular, for ν = 2 and λ = 3, the variance is found to be
much larger than 2e+17 in some runs. However, the corresponding variances of the MVU
estimates are very close to zero for all the runs.
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For each of the cases, RE value is computed and the proportion of RE values greater
than one in the 100 runs are obtained for n = 25 and 50 respectively. The proportions are
given in Tables 5 and 6.

Table 5: Proportion of RE values greater than one for Case 1

λ 0.5 1.0 1.5 2.0 2.5 3.0
n = 25 0.86 0.99 1.00 1.00 1.00 1.00
n = 50 0.88 0.99 0.99 1.00 0.86 1.00

Table 6: Proportion of RE values greater than one for Case 2

λ 0.5 1.0 1.5 2.0 2.5 3.0
n = 25 0.79 0.94 0.98 1.00 0.98 0.97
n = 50 0.88 0.96 0.98 0.99 0.99 0.99

As seen from Tables 5 and 6, the proportion of times RE values greater than one
is more than 0.8, at times closer to 1, for both the cases indicating δ(t) yields estimates
having smaller variance than λ̂ML. Thus, the simulation results indicate that the proposed
MVU estimator is better than the ML in terms of MAB and variance for both over- and
under-dispersed data.

4.2. Real-life illustration

As an application of the proposed estimation method to real-life data, we consider the
article publishing dataset given in Long (1997). The data relates to the number of articles
(X) published by Ph.D. biochemists (B). The dataset is as given in Table 7.

Table 7: Article publication data

X 0 1 2 3 4 5 6 7 8 9 10 11 12 16 19
B 275 246 178 84 67 27 17 12 1 2 1 1 2 1 1

The data is tested for equi-dispersion using dispersiontest() in AER package in
R and the results indicate that the data is over-dispersed (p-value is 1.44e-06, dispersion
index is 2.1889). Hence, Poisson distribution is not a suitable choice to model the data
and therefore it can be modelled using CMP distribution. The dispersion parameter ν is
estimated using the method of moments and is found to be ν̂ = 0.1249. The estimate of
the location parameter of λ is obtained using the proposed MVU estimator δ(t) and the ML
estimator by fixing ν = 0.1249. The MVU and the ML estimates are found to be 0.8248 and
0.7809, respectively. To compute the sample variances of the estimates, bootstrap samples
each of size n = 915 are replicated for B = 200 times from the data set. The corresponding
sample variances are found to be 0.0001304 and 0.0021546. The plot of the observed and
the expected frequencies from CMP distribution using δ(t), λ̂ML and ν = 0.1249 is shown
in Figure 1. The corresponding residual (difference of the observed and expected frequency)
plots are also presented. From the plots, it can be observed that both the estimators provide
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similar fits. However, the variance of the MVU estimator of λ is smaller than that of the
ML estimator suggesting that MVU estimation is efficient.
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Figure 1: Observed (■) and expected (□) frequencies of CMP distribution with (a)
MVU estimate of λ and (b) ML estimate of λ with the corresponding residual plots

5. Concluding remarks

The method of MVU estimation of the location parameter of CMP distribution pro-
posed in this paper is simple and easy to compute. Unlike the existing estimators available
in the literature, the proposed MVU estimator has a closed-form expression and does not
require iterative procedures for computation. The estimator is based on the distribution of
the complete sufficient statistic of the parameter. Application of the proposed estimator to
simulated and real-life data reveals that the resulting estimates are less biased and efficient.
Unlike the ML estimator, the proposed MVU estimator does not over or under estimate
the parameter. However, to implement the proposed method, the value of the dispersion
parameter ν should be known. In case it is not available, the same can be estimated using
the ratio of the sample mean to the sample variance or by the method of moments.
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