Statistics and Applications {ISSN 2454-7395 (online)}
Volume 23, No. 2, 2025 (New Series), pp 267-290
http://www.ssca.org.in/journal

APPLICATIONS

A Framework for Building a Novel Causal Proximity
Driven GNN from Biomedical Text

Samridhi Dev and Aditi Sharan

School of Computer and Systems Sciences
Jawaharal Nehru University, New Delhi 110067

Received: 11 February 2025; Revised: 25 March 2025; Accepted: 02 April 2025

Abstract

In the digital era, the abundance of biomedical text, along with the advanced Graph
Neural Network (GNN) based algorithm, provides a forum for unrevealing significant infor-
mation hidden in the text. In this context, researchers have tried to predict Adverse Drug
Reactions (ADRs) in cancer treatments using GNN. However, ADR prediction in cancer is
still a challenging research problem. Current GNN based methodologies face critical lim-
itations, including over-smoothing, equal weighting of neighboring nodes, and inability to
capture intersentential, causal, and high-granular indirect information. Additionally, the
field is hindered by limited annotated data and the absence of automated methods for cor-
pus construction, making it challenging to scale the models for effective ADR prediction.
To overcome these barriers, we propose a two-model framework. The first is a linguistics-
driven, rule-based approach designed to automate corpus construction and causal relation
extraction process, thereby generating a cancer-specific ADR corpus with annotated entity
types and causal relationships. This automated corpus construction leverages sophisticated
linguistic rules to ensure accurate and consistent causality annotation, significantly enhanc-
ing available resources. Building on this, the second neural network-based model, termed
the Causality and Proximity-based Relational Multi-head Attention Model (CPRMAM)), is
trained on the constructed corpus, integrating both causal semantics and proximity con-
siderations. Together, these models address key limitations in existing GNN frameworks,
advancing ADR prediction by enabling the extraction of complex causal structures and en-
hancing interpretability within oncological contexts.

Key words: Graph neural network; Adverse drug reactions; Aggregation function; CPRMAM;
Knowledge graph completion; Data mining; Healthcare; Neural networks.

1. Introduction
With the digitization of health data, a significant amount of textual information is

being generated from biomedical journals, research articles, and case reports. However, much
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of this data remains untapped due to its unstructured nature. Graph neural network based
models offer a systematic approach to extract valuable insights from this information, trans-
forming unstructured medical /biomedical text into structured graphs, leading to meaningful
findings. These models assist in maximizing the potential of previously underutilized med-
ical data. By improving data-driven inferences, the model assist healthcare professionals in
making informed clinical decisions.

Data-driven graph neural networks have been studied widely to infer meaningful
insights for complicated diseases such as cancer. Cancer is a complicated disease mainly
because it is caused by changes in genes that control functioning of multiple cells and involve
complex progression pathways. Inspite of a lot of progress in detecting and treating cancer,
cancer-related Adverse Drug Reactions (ADRs) remain a significant challenge in healthcare
and biomedical research. To address this, we have chosen to construct a cancer-related
corpus specifically for ADR prediction, enabling a more structured and data-driven approach
to analyze adverse drug effects in cancer treatment. Effective extraction of cancer-related
entities and relations from textual data is crucial for understanding the complexities of drug
interactions in oncology. Considering various types of relations that can be extracted from
textual data, causal relations extraction is an open research problem. However, the success
of such extraction processes hinges on accurate and comprehensive annotation of biomedical
data, which is inherently challenging due to its complexity, terminologies, and ambiguity. In
the context of ADR prediction, earlier deep learning and machine learning models have shown
limitations, especially in capturing complex, intersentential, and indirect relationships within
biomedical knowledge graphs. Graph Neural Networks (GNNs) have a better potential of
capturing these complicated relations.

This paper proposes a framework to build causal proximity based GNN. The study
introduces two models; the first model is a novel causal linguistic driven framework for com-
plex entity and causal relation annotation, leveraging linguistic and grammatical properties
alongside a rule-based approach. The framework consists of key subtasks: entity extraction,
coreference resolution, rule generation, relation extraction, and the formation of triplets in a
novel format that surpasses the limitations of state of art triplet representations. By combin-
ing semantic and linguistic dependencies, this approach ensures robust and efficient relation
extraction in biomedical texts.

Our second proposed model is the Causality and Proximity-based Relational Multi-
head Attention Model (CPRMAM). It is trained on a cancer-specific ADR knowledge graph
constructed using the first model. The model integrates causal reasoning and proximity for
better knowledge discovery, addressing critical gaps in current methods and improving the
robustness and accuracy of predictions. The paper is structured as follows: it begins with
the automatic construction of the required corpus, where entities and causal relations are
systematically annotated. Afterward, we design and implement the GNN model, leveraging
the constructed dataset to predict ADRs in oncology.

2. Related work

This section briefly reviews and summarizes the recent studies related to our work.
Adverse drug reaction prediction has been approached using various methodologies, encom-
passing statistical, machine learning (ML), deep learning (DL), graph-based, and similarity-
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based techniques. In statistical-based approaches, researchers have developed drug-pair pro-
tein interaction profiles using data from the STITCH and TWOSIDES databases, employing
the Laplacian-corrected estimator to predict drug-induced effects [Pauwels et al. (2011)]. An-
other group of researchers modeled ADR-drug relationships with a three-layer hierarchical
Bayesian model [Bate et al. (1998)], utilizing latent Dirichlet allocation to uncover biochem-
ical mechanisms linking ADRs to drug structures[Liu et al. (2017)]. Additional statistical
methods include using proportional reporting ratio, reporting odds ratio, and empirical Bayes
geometric mean algorithms to identify drug-associated adverse event [Kwak et al. (2020)],
and extracting biomedical knowledge via MetaMap and SemRep to support reasoning about
drug-effect relationships [Yildirim et al. (2014)]. Moreover, researchers collected data from
seven databases and implemented methods such as Bayesian confidence propagation neural
network, gamma Poisson shrinker, proportional reporting ratio, and reporting odds ratio to
detect ADRs [Szarfman et al. (2002) and Schuemie et al. (2012)]. Extended LRT meth-
ods based on Poisson models were used to identify ADR signals with disproportionately
high reporting rates [Zhao et al. (2018)], while other studies leveraged EudraVigilance data
[Monaco et al. (2017)], tree-based scan statistics [Wang et al. (2018)], and disproportion-
ate methods to detect unknown causal associations [Lerch et al. (2015)]. In the realm of
ML /DL-based approaches, researchers focused on integrating data from DrugBank, Drug-
Central, CTD, and TWOSIDES databases, proposing the HCNS-ADR machine learning
method to predict ADRs from combined medication [Xiao et al. (2017)]. Another team
developed a structure-enhanced line graph convolutional network to learn comprehensive
representations of drug-disease pairs, transforming the task into a node classification prob-
lem using the SEAL architecture for link prediction [Zheng et al. (2018) and Shang et al.
(2014)]. A convolutional framework was also proposed to construct chemical fingerprint
features and assess their associations with ADRs [Mantripragada et al. (2021)]. Graph-
based approaches have seen significant advancements, with authors proposing a GNN model
trained on clinical data using SIDER database labels to predict side effect signals between
drug-disease pairs [Gao et al. (2023)]. Another innovative method, the contextualized graph
embedding model (CGEM), captures cause-effect relations for ADR detection by combin-
ing contextualized embeddings, convolutional GNNs, and BertGCN for classification [Liu
et al. (2024) and Dey et al. (2018)]. Additional graph-based techniques include analyzing
non-directional heterogeneous healthcare data for triad prediction [Zhang et al. (2021)], com-
bining deep learning with a biomedical tripartite network to predict drug-ADR associations
[Xue et al. (2020)], and inferring new associations through drug-ADR network topological
features [Manzi and Reis (2011)]. An external link concept was also proposed to infer as-
sociations in a heterogeneous network by connecting drugs sharing common ADRs [Ji et al.
(2011) and Lin et al. (2013)]. Similarity-based approaches involve predicting drug side effects
by combining canonical correlation analysis with network-based diffusion [Atias and Sharan
(2011)], identifying significant correlations between chemical fragments and side effects for
ADR prediction [Pauwels et al. (2011)], and using a naive Bayesian model to infer drug-ADR
associations based on known drug-protein and drug-ADR associations [Xiang et al. (2015)].
These diverse methodologies illustrate the multifaceted nature of ADR prediction, leverag-
ing a broad spectrum of data sources and analytical techniques to enhance the safety and
efficacy of pharmaceutical treatments.
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3. Proposed work

We propose two models; the first model is to construct an automatically annotated
relational corpus by extracting entities of interest and the causal relationship between them.
In this model, we propose an algorithm and an extended version of the triplet structure. The
second proposed model is a causal proximity based multi-head attention relational graph
neural network that enhances biomedical knowledge discovery. This model is trained on the
constructed corpus. The proposed work section is divided into three parts: the construction
of the corpus, the development of the GNN-based CPRMAM knowledge discovery model,
and the training of the CPRMAM model with the corresponding joint probability density
function.

3.1. Automatic annotation model

This sub-section provides a brief overview of the workflow illustrated in Figure 1, that
outlines the process for automatic construction of the relational corpus and the steps taken
to annotate the same. The proposed algorithm begins by focusing on coreference resolution
within raw textual data derived from case reports that have been pre-processed. Once
coreference resolution is achieved, entities are carefully extracted and annotated, followed
by a normalization process.

Using the extracted entities along with grammatical dependencies and linguistic prop-
erties, rules for identifying complex and causal relationships are systematically developed.
Subsequently, these relationships are extracted and organized into a novel triplet structure
based on the established rules. The generation of novel triplets involves assigning relevant
properties to the entities and establishing connections that link triplets that occur in close
contextual proximity.

POS ientMation

Grammatical dependencies
penerans "

Unguistic rubes.

Linkage
assignment

Figure 1: Workflow of first model

3.1.1. Raw corpus collection

Case reports, acknowledged for their ability to capture realistic and practical knowl-
edge, serve as the primary data source for the constructed corpus. The curation process
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involved the selection and gathering of case reports from PubMed by executing the query,
with the overarching objective of semantically capturing pertinent and realistic medical data
[Dev and Sharan (2023b)]. PubMed executed query is responsible for collecting only relevant
case reports (cancer specific case reports).

3.1.2. Coreference resolution

The objective of Coreference Resolution is to effectively cluster expressions denoting
the same entity within a document, thereby mitigating textual ambiguity. To achieve this,
SpanBERT, a self-supervised method meticulously designed to optimize the prediction of
text spans, is employed for coreference resolution. SpanBERT adopts a training approach
where a single contiguous segment of text is sampled for each training example. Figure 3
elucidates the architectural representation of SpanBERT. Figure 2a and 2b exemplify an
instance of both raw and coreferenced corpus, explaining the imperative need for such a
resolution in comprehensive linguistic analysis. Figures 2c and 2d, respectively, depict the
extracted pattern with and without including the SpanBERT algorithm. In the absence of
coreference resolution using SpanBE, the extraction of relations from a paragraph would
follow the pattern depicted in Figure 2c. Highlighting the significance of coreference, once
coreference resolution is applied, it becomes evident that without this process, the rela-
tionship highlighted in Figure 2d would remain uncaptured. Coreference resolution plays a
pivotal role in ensuring complete latent semantics encapsulation.

A combination of chemotherapies including dexorubicin, bleomycin, vinblastine and docarborine hos been standard theropy for odvonced
MHodgkin's lymphoma. This couse ocute liver failure.
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Figure 2: Instance of coreference resolution

3.1.3. Entity extraction

Entity extraction procedure is compartmentalized into two segments: the extraction
of nine primary entities and the seventeen secondary entities delineated in Table 1. Primary
entities represent the key entities considered as nodes (subjects, or objects) while secondary
entities encompass properties assigned to the nodes and relationships. Primary entities
include the following categories: drugs, adverse drug reactions, cancer, and dysn. These
entities were extracted using METAMAP and the variant settlement algorithm [Dev and
Sharan (2023a)]. The extraction of the remaining entities was accomplished using clinical
BERT [Alsentzer et al. (2019)], a model trained through the integration of three datasets:
BC2GM, Jnlpba, and Maccrobat. Earlier, BERT models did not produce the desired results
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Figure 3: Span BERT architecture

in the medical domain because they were not pre-trained on medical data. This led to the
realization that a model needed to be trained on a medical corpus, resulting in the devel-
opment of medical domain specific BERT models such as MedBERT and Clinical BERT.
Clinical BERT is pre-trained on clinical reports and electronic health records making it suit-
able for extraction of secondary entities. Clinical BERT enhances the accuracy of secondary
entity extraction, as clinical reports contain complex sentences filled with medical jargon
and rare terms.

In Clinical BERT, input sentence is represented by vector X = {1, xs,...,2n},
where x; is the i-th word and N represents the length of the sentence. The Clinical BERT
model aims to classify word z; € X and assign it a corresponding label y € Y by fine-tuning
the pre-trained embeddings. The model is tested using test data. The testing accuracy
obtained was 0.951. Following the testing of the model, it is deployed to extract entities
from the case report corpus, subsequently mapping them to their respective entity types as
illustrated in Table 1. These identified entities are then employed in subsequent tasks related
to relation extraction. The clinical BERT architecture is depicted in Figure 4.

3.1.4. Relation extraction

An annotated document is represented as D = [dy, ...d,,]|, words set of each document
as W = [wy, ..., w,], set of tagged entities as E = [ey, ... .e,] and R(w;, w;) describes the re-
lation between pair of entities w; and w;. Extraction of relation is grounded in dependency
relations and grammatical properties to delineate specific relation patterns. Dependencies
between the words in a document required for relation extraction were extracted using Bil.-
STM based deep bi-affine neural network dependency parser. Resultant relations are subse-
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Figure 4: Workflow of first model

Table 1: Primary and secondary entities

Category Entities

Primary Entities Drug, Cancer type, Adverse drug reaction, Dysn, Protein, Gene,
Gene mutation, Cell type

Secondary Entities Age, Date, Detailed description, Family history, Dosage, Duration,
Height, History, Non-biological location, Lab value, Biological structure,
Activity, Personal background, Gender, Severity, Clinical event, Area

quently transformed into triplets, a format conveying semantics in text. It includes subject,
object, and predicate. They can be either three words or three phrases. The assignment of
triplet elements is contingent on their respective grammatical roles and dependencies.

This baseline triplet structure proves insufficient in capturing the semantic nuances
inherent in complex sentences. To address this limitation, we introduce a novel extended
triplet structure, as illustrated in Figure 5. This structure builds upon the base triplet
format by incorporating properties for each triplet component and proximity links between
them. By augmenting triplet elements with properties, we encapsulate detailed and vital
information. Concurrently, the inclusion of proximity links establishes connectivity among
proximate triplets, facilitating the extraction of comprehensive and meaningful relational
data.

[([relation id, [‘Subject’, ‘Predicate’, * ‘Object’]], ‘Linkage’), ['Property vaiue’, ‘Property type'], triplet part]]

Figure 5: Proposed triplet format

For example, consider a sentence of a case report. ‘Severe rashes were caused due
to bleomycin during cycle 1 treatment of metastasis breast cancer’. In this sentence, an
extracted relation triplet was

[‘Rashes’, ‘caused due to’, ‘bleomycin’].

But in this triplet format, most of the information is lost, such as:
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e Rashes are severe

e Bleomycin was given during breast cancer cycle 1 treatment

e Breast cancer was metastasis

The introduced novel extended triplet format serves as a robust solution to circumvent this
constraint. We showcase in the given example how the relational data was extracted and
significantly enriched through the utilization of our innovative triplet structure.

(1, [‘rashes’, ‘caused due to’, ‘bleomycin’], [2, 3], [severe, severity, subject])

(2, [‘bleomycin’, ‘during’, ‘treatment’], [3], [cycle 2, process, object])

(3, [‘treatment’, ‘of’) ‘breast cancer’], [Metastasis, characteristic, object])
For instance, within Sentence 1, the individual triplets, each denoted by IDs 1, 2, and 3,
may initially appear devoid of substantial significance. However, when considered collectively

and augmented with incorporated properties and proximity links, they synergistically yield
a profound, comprehensive, and contextually rich array of relational information.

3.1.5. Relation categorization

Relations extracted in the form of triplets can be classified into two distinct types:

regular relations and causal relations. Figure 6 visually represents the categorization of the
extracted relation types.

Relation extraction

Regular relation Causal relation
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Figure 6: Relations classification

Regular relation: Regular relations are typically based on various semantic associa-
tions between entities. These associations can be diversely based on biomedical information.
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These relations can be further divided into binary, complex relations, negation, conjectures,
implicit relations, explicit relations, event-occurring relations, high granularity relations,
nested relations, and multiword relations.

Causal relations: Causal relations are typically more complex and explicitly con-
cerned with cause-and-effect connections and focus on understanding the factors or events
that lead to a specific outcome or result. Causality or causation is a concept that expresses
how one variable contributes to the creation of another variable [Szarfman et al. (2002)].
Causal relations were further classified into intra-sentential relations, inter-sentential rela-
tions, causal chains, consequence, reason, condition, common cause, combined effect, com-
mon effect, and action. Extracting these causal relations from medical literature is integral
for constructing a knowledge graph. Such a graph serves to assist healthcare professionals
in swiftly identifying causality patterns, such as diseases causing symptoms, diseases lead-
ing to complications, treatments improving conditions, and ultimately tailoring personalized
treatment plans.

3.2. CPRMAM model development

This section outlines the development of the second proposed model, the Causal
Proximity-based Multihead Attention Relational Graph Neural Network (CPRMAM), that
is trained on triplets in the proposed triplet structure extracted by the first model. CPRMAM
is designed to predict adverse drug reactions (ADRs) specific to cancer treatment drugs as
a case study. To enhance message passing and mitigate over-smoothing, we introduce a
novel aggregation function incorporating a proximity vector. Our approach aims to improve
GNN performance in heterogeneous graph learning by effectively capturing comprehensive
node roles and relationships. Each subsection in this section defines a step in the process,
presented sequentially, to provide a clear and structured overview of the model development
workflow. The proposed model is elucidated in Figure 7 and an algorithm for the proposed
model is described in Algorithm 1.
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Figure 7: Proposed CPRMAM model

Figure 7 illustrates the Causal Proximity-based Multihead Attention Relational Graph
Neural Network (CPRMAM) framework, designed for ADR prediction in oncology by lever-
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aging relational information and proximity-aware aggregation. The process begins with
a heterogeneous knowledge graph representation of triplets, where nodes (such as drugs,
ADRs, and genes) are connected through different relationships. Mathematically, given a
set of triplets T, the feature matrix is generated as: X!"*¢ where d is the feature dimension
and n is the node size. To enhance information propagation, proximity hops were added.
A weight matrix W is applied to encode relational dependencies, followed by the multihead
attention mechanism. The final embeddings were generated using the proposed aggregation
function.

3.2.1. Initial node embedding generation

The efficacy of graph machine learning tasks, such as link prediction, hinges upon the
acquisition of a useful feature representation for nodes within the graph. Conventionally,
node embedding generation methods rooted in structural equivalence have predominated in
literature. However, these methods suffer from two primary drawbacks. Firstly, they are
inherently transductive, thereby impeding their generalization to unseen nodes. Secondly,
there exists no standardized approach for seamlessly integrating node attributes into the
network representation. Consequently, in these methods, proximity between nodes fails to
guarantee semantic similarity.

To circumvent these challenges, we propose an extension to the role2vec [Ahmed et al.
(2018)] algorithm, designed to learn a function capable of capturing the semantic role and
behavior of nodes within a graph. The basic idea of role2vec is to introduce the notion of
attributed random walks that are not tied to structural similarity but tied to a function that
maps a node to a role in a graph.

The goal of the proposed algorithm is to generate the embedding of a node based on
role that is plays in a graph. The role of a node is defined by its features that are described
in Table 2. Notion is that the nodes having similar roles must have similar embedding. It
includes structural properties as well as semantic properties. Role2vec framework integrates
vertex mapping and attributed random walks.

Consider a knowledge graph G = (V, R, T)

Where V = set of entities, R = set of relations, T'= set of triplets in extended format
Now Vyand Rpcan be represented as follows

V ={v,v0,v3,...,0,}

Ry ={r,r,rs...,n}

Now extended triplet t can be represented as follows

Extended triplet t = {(v;, 7., vj; O, P);vi,v; € Vi and 1, € R}

Where O is the element properties set and P is the proximity link set.

Qjjry, < ANXN (1)
Consider AN*N as the relational adjacency matrix for G, where a;j, defines the
existence of a relation type rj between entities v; and v;. Let X be the set of node attributes
defining the semantic role of each node. Let FV*P be the feature matrix for the set of
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Algorithm 1 CPRMAM Model
Input: Extended triplets ¢ = (v;,ry, v;; 0, P) where wv;,v; € Virp, € R; O = element
properties set and P = proximity link set

Output: Missing link triplets M = (vf", 77", v7")

1. Initialize feature set for a node v

2. Generate feature matrix FN¥*F for V
Xy =A{xy, 29, 23,...,2N,}
3. Calculate initial node embeddings e for each node v
Eq = {e1,ea,e3,...,en.}

4. Set initial relational weight matrix W
5. Initialize Proximity nodes and embedding set Y

6. For each r, € R do

(a) For each v, € V do
i. Initialize causal proximity aggregation function
ii. Calculate Multi-head attention vector for different heads
iii. Calculate final embedding for v based on (7) and (8)
7. Initialize Decoder (scoring function)
8. Initialize final embeddings for V'
9. Generate negative embeddings for V' using Negative sampling
10. Compute triplet loss and update weight W
11. Train relational model
12. Fort € T' do

a) Generate corrupted triple set T

(a)
(b) Initialize final embeddings for V'
(c) Initialize scoring function f;, (h;, h;)
(d)
)

(e) Generate rank for ¢ against T°

Calculate scores for testing triplet ¢t and T

13. Evaluate model
14. Predict missing links
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Table 2: Node semantic features

Feature Description

Entity name Name of the entity

Entity_class Class or type of the entity

Entity_CUI Concept Unique Identifier (CUI) of the entity
Entity_property Properties associated with the entity

Entity _Synonyms Synonyms of the entity

Entity normalized version Normalized version of the entity

entities having N entities and P features. Additionally, e;; denotes the initial embedding of
a node v;, generated by the ¢(v;) function using the extended Role2Vec algorithm.

Eq={e1,es,e3,...,e,} and {xy,x9,23,...,21} € X (2)
o(vi) = ev; (3)
P(v;) =2t oxboxbo...ox, where o denotes concatenation. (4)

Extended Role2Vec focuses on minimizing the cosine distance d or maximizing cosine
similarity s that relates a node to the nodes having similar roles using the mapping function
¥. For v; and v; € V, which are two nodes having similar semantic roles, the goal should
be:

¥(ef|e;)—>Max(S(ef|e;f)) or Min(d(eﬂe;)) (5)
el . ev
oy — I
Silvs) = e (©)
el . ev
dlvilv;) =1 — —+ 7
(i) =1 = e @)

3.2.2. Attention vector calculation

Attention weight ay,, is the result of the attention mechanism, which defines how
much attention or weightage must be given to a neighbor u of node v. In graph convolutional
methods, it is defined as m , where a weighing factor for all nodes is the same in GCN.
The basic graph attention network is given by:

b =g ( 3 awW@)th—l)) (8)

ueN (v)

Gev, = QW IR, WEREY) (9)

v
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eacvu

- 10
2o keN(v) €*F (10)

auv

Multiple ay,, values with different parameters for each attention head are used in
multi-head attention. These are calculated as:

h;(L)[l]: Z awlw(L)rhqu—l) (11)
ueN (v)

hZ(L)[2]: Z OZUUQW(L)rh?(AL—l) (12)
u€eN (v)

hZ(L)[Tl]: Z &uvnw(L)rhELLfl) (13)
u€N (v)

Finally, the embedding of node u after multi-head attention is obtained by aggregating
the results from all attention heads:

HMIY) — AGG(RE[1], hE]2), ... hE[n)) (14)

u,r

3.2.3. Proposed aggregation function

After the initial embedding generation, we introduce a novel aggregation function
tailored for message passing and final node generation. This pioneering aggregation function
is specifically designed to integrate a proximity vector, a crucial addition to address the
over-smoothing dilemma pervasive in Graph Neural Networks (GNNs). Typically, GNN ar-
chitectures limit the number of layers to 2-5 hops to mitigate over-smoothing. However, this
restricted depth fails to capture the intricate semantics and contextual intricacies inherent
in complex relations.

To overcome this limitation, we propose the inclusion of a proximity vector, which
aggregates all nodes interconnected and proximate to a given relation. These proximity
relations, derived from the training set produced by our novel triplet format, enrich the
model’s understanding by incorporating contextual information from neighboring nodes. In
general, the Graph Neural Network (GNN) framework consists of layers, where each layer L
includes a message function M and an aggregation function 7. The message function for a
node u is defined as:

Mp = mf*(hi) (15)

where

mfE(hEDy = wE R (16)

The proposed aggregation function is defined as:
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n=H"=ReLU|> > - +wihlV+ AN P, (17)
rERuEN(v acY
where for v;,
Zi=H'+H?+-.-+ HF (18)

Here, H” represents the updated embedding at layer L, and Z is the final embedding. The
relational node degree is given by:

Cor = |Nuyl, Ny, = relational node degree (19)
P=>"Z Y = set of prozimity triplets (20)
Y

The proximity function is defined as:

reR beN(a)

_ReLU(Z > T )awwfh,ﬁL‘”+wgthl>> (21)

The message function is given by:

M = mfE(hEY) (22)

which can also be written as:

M =mf"(Hy,bc) (23)

where O represents the shared network parameters. The normalization function is denoted
by:

A = Normalization function (24)

Each relation has L relational weight matrices. For a given relation r, the relational weight
matrices are:

W w? . Wk (25)

r

3.3. CPRMAM model training
3.3.1. Positive sampling training

We trained the model using the proposed aggregation function on the constructed
ADR corpus. We set the number of hidden layers to two (k=2). The final embedding for
each node has been encoded. We trained four distinct translational and deep learning graph
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models on our cancer-specific triplet corpus. Our proposed model, the Causal Proximity
Relational Multihead Attention Model (CPRMAM), was compared against four existing
models: TransE, DistMult, ComplexE, and RAGAT. CPRMAM produced the best results
because its encoders are trained to handle complex and indirect relationships, thereby en-
hancing the efficiency of knowledge discovery to generate accurate and precise results. The
training data contains 132184 triplets in the proposed novel format.

3.3.2. Negative sampling training

Negative sampling is also important to reduce false positive cases. We opted 1:N
negative sampling strategy [Qian et al. (2021)].

3.3.3. Loss computation and weight updation

We trained our CPRMAM model on two different loss functions; cross entropy loss
and pairwise hinge loss. It was seen that model performed better with the cross entropy loss
function. Then we applied gradient descent to update the weights.

Cross Entropy Loss = —log(ReLU( f,,(hi, h;j))) — log(1 — ReLU( f,,(hi, hj))) (26)

3.3.4. Selection of most suitable parameters

Efficient model training depends on the selection of correct parameters and avoiding
overfitting and underfitting. To make sure that the model gives the best results, we used
grid search to find the suitable embedding size z, learning rate Ir, number of corruptions that
have to be made for each triplet eta, and maximum epochs to run.

3.3.5. Triplet scoring

After training the encoder part and generation of final embeddings, the decoder plays
an important role in scoring the sample triplets and generates non-existent knowledge. We
used four different scoring functions with each different encoder. Table 4 shows the possible
combinations of encoders and decoders, or we can say aggregation function and scoring
functions. It was noticed that the proposed aggregation function as encoder and ConvE as
decoder/ scoring function gave the best results.

3.3.6. Corrupt triplet generation

To test the model against false positives, we generated corrupted triplets in test data
using the filter strategy. In the filter strategy, only one element of a triplet will be corrupted
by replacing that element with random entities and relations. Corruption parameter eta
defines the total number of corruptions that should be generated for each triplet. It was
found that the most suitable value for eta is 20. Practically generating corruption for every
triplet is not feasible. Therefore, we corrupted triplets that contain the relations among
entities of interest: drug, ADR, cancer types, food, genes, protein, and allele.
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t = (v, 71, v;), create corrupted triplets  t. = (vi, g, V§) (27)

3.3.7. Scoring of triplets

After generating corrupted triplets in test data, every triplet will now be scored
based on scoring functions/decoder. We used four available scoring functions: TransE,
DistMult, Complex, and ConvE. Score tells how likely two nodes relate to a particular
relation. Each scoring function mentioned have been used in possible combination with the
available algorithms and proposed model. It was noticed that ConvE performed better as
shown in Table 5.

Compute the score for the triplet t using the function f that takes the relationally
weighted final layer embeddings h and the transformation matrix ©.

frk(hi7hj) = frk(Wf’mhi?Wf’k?hj) (28)
Fri (i, hy) = ReLU (vee (ReLU ([H; e,] x ) W;) H,) (29)
4. Triplet ranking and model evaluation

Since there is no benchmark dataset available for model validation, the performance of
the model has been evaluated using several metrics: Mean Reciprocal Rank (MRR) [Craswell
(2009)], Hits@1, Hits@3, Hits@10, and Hits@100 [Khan et al. (2024)], as shown in Tables 3
and 4. Each triplet in the test data is ranked against its corrupted triplet variants based on
the generated score. In Table 3, the left side presents the available and proposed encoders
for final embedding generation, while the top side lists the available decoders used to score
triplets based on the translation method. These encoders and decoders are combined, and
the model’s performance is evaluated for each possible combination using the mentioned
metrics. Table 4 provides the evaluation metrics for the GNN-based model and the proposed
model when combined with translational and convolutional decoders. The proposed model,
CPRMAM, achieved the best results when paired with the ConvE scoring function. We have
used dense ranking strategy for triplet ranking. These metrics assess the overall quality of
the model in ranking the correct triplet for ADR prediction, which is particularly crucial in
high-stakes domains like oncology, where incorrect ranking can have severe consequences.

rank = COUNT(corruption score > hypothesis score) + 1 (30)

The MRR (equation 31) measures the ranking quality by computing the average
reciprocal rank of the first correct triplet among the predicted scores. It is defined as:

Ll

MRR =
|Q| = rank;

(31)
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where () is the set of all queries, and rank; represents the position of the first correct triplet
for the i-th query. A higher MRR value indicates that the model ranks correct predictions
closer to the top, which is critical in clinical settings where lower-ranked correct predictions
may be overlooked.

The Hits@QK metric (equation 32) evaluates the proportion of test samples where the
correct entity appears within the top K ranked predictions. It is formulated as:

Cl
Hits@QK = 0l > H(rank; < K) (32)

i=1
where H is an indicator function that returns 1 if the condition inside holds, otherwise it
will be 0. A higher Hits@QK value signifies that the model can reliably place correct ADR
predictions among the top K results, ensuring that critical drug interactions are not missed.

These metrics are particularly significant in the domain of oncology, where precise
ADR prediction is essential for patient safety. A high MRR ensures that correct predictions
appear early in ranked lists, making them more accessible for decision-making. Similarly,
a high Hits@QK ensures that crucial ADR predictions are consistently included in the top-
ranked results, reducing the risk of missing life-threatening interactions. By optimizing
these metrics, models can improve clinical decision support systems, leading to safer and
more effective treatment strategies.

Table 3: Evaluation metrics for translational-based models

Decoder Encoder MRR Hits@l Hits@3 Hits@10

Transk Transk 0.236  0.004 0.087 0.125
DistMult 0.284 0.005 0.051 0.150
ComplEx 0.297  0.008 0.101 0.189

DistMult TransE 0.284  0.005 0.471 0.145
DistMult 0.290  0.007 0.018 0.124
ComplEx 0.295  0.052 0.907 0.105

ComplEx TransE 0.297  0.008 0.101 0.189
DistMult 0.295  0.007 0.018 0.128
ComplEx 0.307  0.052 0.087 0.287

5. ADR related knowledge discovery

After evaluating the CPRMAM model on testing data, we try to predict all possible
adverse drug reactions for all cancer related drugs that were not earlier mentioned in the
training text data by predicting the missing edges in the knowledge graph. Our model
predicted 200 missing links that have been ranked based on the score generated by the
scoring function for each triplet. The following triplets are generated through the knowledge
discovery process and were not present earlier in the corpus.

(colon cancer, undergo, galantamine)
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Table 4: Evaluation metrics for GNN-based models

Decoder Encoder MRR Hits@l Hits@3 Hits@10

RAGAT TransE 0.244 0.144 0.344 0.414
DistMult 0.244  0.144 0.344 0.414
ComplEx 0.234  0.154 0.354 0.398
ConvE 0.498 0.301 0.341 0.398

CPRMAM TransE 0.348  0.258 0.548 0.878
DistMult 0.348  0.258 0.548 0.877
ComplEx 0.375  0.281 0.581 0.818
ConvE 0.658  0.538 0.621 0.695

(Ipilimumab, adverse effects, fever)
(Ipilimumab, adverse effects, increased orthostatic hypotensive activities)

Table 6 provides a knowledge discovery analysis of ADRs identified by CPRMAM and
the baseline models (TransE, DistMult, and ComplEx). While all models detect common
ADRs, CPRMAM uniquely incorporates critical medical contexts, such as affected body
organs, age-related factors, and dose dependency key aspects for clinical relevance.

For example, baseline models identify "peeling” as an ADR of 5-Fluorouracil, but
only CPRMAM specifies "peeling at palms and soles,” enhancing clinical interpretability.
Likewise, CPRMAM uniquely captures age-related nausea and constipation (more preva-
lent in patients aged 65+) and dose-dependent seizures, improving ADR specificity. These
refinements enhance real-world applicability in oncology pharmacovigilance.

6. Model comparison and validation
6.1. Validation of constructed ADR corpus

To ensure the accuracy and quality of the constructed ADR corpus, we conducted
validation at four stages.

First, we validated the extracted entities by normalizing and mapping them to stan-
dard medical terminologies using SNOMED CT. In the second stage, we validated the rela-
tionships between drugs and the adverse drug reactions associated with cancer and its var-
ious types, using established pharmaceutical knowledge databases: SIDER and DrugBank.
Third, any relationships not found in these databases were confirmed by a domain expert.
Finally, in the fourth stage, we validated the missing links generated by the CPRMAM
model, again in consultation with medical experts.

6.2. Model comparison

The results obtained through the proposed model 1 were systematically compared
with two state-of-the-art models, namely ScispaCy and BERT, for relation extraction. No-
tably, the proposed approach demonstrated a superior capability in incorporating additional
semantics, evidenced by its extraction of a greater number of relations compared to the
aforementioned methods. Figure 8 visually presents the relations extracted by the proposed
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approach and also provides an illustration of the relations extracted by the existing meth-
ods. Proposed model 2 CPRMAM addresses the existing limitations in the literature and
performs better than existing models. Different GNN algorithms were implemented in com-
bination with different scoring functions. We applied different scoring function combinations
and found proposed aggregation function with ConvE scoring function gave the best results
in evaluation. Our model achieved 0.658 MRR, 0.538 Hits@1, 0.621 hits@3, 0.695 hits@10
and 0.877 Hits@100. The proposed model was compared with the state-of-the-art model;
RAGAT. It was noticed that the proposed model performed better. Comparison can be seen
in Table 5.

Table 5: Model comparison based on MRR and Hits@QK metrics

Model MRR Hits@l Hits@3 Hits@l0 Hits@100

RAGAT 0.498 0.301 0.341 0.398 0.414
CPRMAM 0.658  0.538 0.621 0.695 0.877

Epidermal growth factor receptor-tyrasine kinase inhibitors [EGFR-TKIS) are a strain of small molecule inhibitors mainly used to treat metstatic non-small el lung cancer.
Their predominant adverse effect is skin taxicity, usually manifestad as acneiform rash, skinfissure, xerosis, and paronychia. Severa epidermal necrosis and exfoliation rarely
occur. As one of the new generation of epidemal growth factor receptortyrosine kinase inhibitors, AZD-8281 is claimed to have better efficacy and fewer side effects,
particularly appropriste for patients with EGFR T790M mutation a 51-year-old man who developed a large ares of skin necrosis and was diagnosed with toxic epidermal
necrolysis after AZD-9291 ingestion. In October 2017, 3 51-year-old man, suffering from loase blisters, large-area skin peelings [nearly involving the entire body), mucasal
erosion and fever, visited The First Affilistad Hospital with Nanjing Medical University. He had besn disgnosad with stage IV EGFR-muration-positive sdvanced NSCLC with
pleursl memstasis in 2016 and raceived treatments 2t 3 thoracic hospitl regularly. After chemotherapy (pemetrexed plus cisplatin for six cycles) was completed, icotinib
continued to be used till August 2017 when the drug resistance was revesled. Once EGFR T790M mutation was disgnosed, he started taking AZD-5251 with 2 dose of 80
mg/dayto delay the diszase prograssion. Twenty-ane days latar, he presantad with severs| orsl blisters and scamersd erythematous maculopapular rashes, which rapidly
davaloped into mucosal erosion and general epidermal detachment invalving his ntire body with exolistion on his back skin [Figure 14 and B). When sdmited into our
department, he was unable to get up awing tosevere pain, extreme feebleness, fever, and lower limb edema.™

r side effects')),
ewer side effects')),
', 'body entire’)],

', 'blisters')),

ing', 'ercsion'l),

', 'blisters’)),

', ‘peelings’)),
‘peelings’, ‘imwolwing®', 'body'l),
*NSCLC', ‘diagnosed’, 'man')),
‘men’, ‘received’, 'treatments')),
'tyrosine kinase inhibitors', 'treat’, 'lung cancer')),
'AZD, 'treat', 'lung cancer'])]

{b) Relations extracted thraugh propased appraach

[{'head': 'RZD-9291', 'type': 'medical condition treated', 'tail’: 'mon-small cell lung cancer'}, ['head': 'mon-small cell
lung cancer', 'type': 'drug used for treatment', 'tail': 'AZD-9291'], ['head': 'non-small cell lung cancer', 'type': 'drug
used for treatment', 'tail': "RZD-9281"}, ('head': 'RZD-%291", 'type': 'medical condition treated', 'tail': 'non-small cell

lung cancer'}]

le} ) Relatians extracted through BEAT made

[['patient’, ‘suffering’, ‘blisters’}, {"AZD-5231", 'treated’, 'lung cancer’'}, {' lung cancer’,
‘drug', 'AZD-9251}, {'pavient’, 'unsble to’, 'get wp'}]

{d} ) Relations extracted through SciSpacy

Figure 8: Results comparison
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7. Conclusion

In conclusion, this study presents two models designed to enhance adverse drug reac-
tion (ADR) prediction in oncology, addressing the limitations in existing approaches. Our
first model focuses on automated corpus construction, employing rule-based entity extrac-
tion, coreference resolution, and relation extraction to annotate entities of interest from
cancer-specific case reports. By introducing a novel triplet format, it captures regular and
causal relations with improved semantic clarity. The second model, CPRMAM, leverages this
annotated corpus and integrates causal and proximity-based information into Graph Neural
Networks (GNNs). By overcoming challenges like over-smoothing and equal neighbor weigh-
tage, CPRMAM captures complex, indirect, and nested relations, significantly enhancing the
quality of knowledge graphs and message passing in GNNs. Together, these models offer a
robust framework for ADR prediction and knowledge discovery, with potential applications
in broader biomedical domains. Future work will focus on expanding the models’ scope,
incorporating additional data sources, and further enhancing their generalizability across
diverse biomedical contexts.

Acknowledgements

We would like to express our heartfelt gratitude to Dr. Neera Samar, Professor of Gen-
eral Medicine, RNT Medical College and Hospital, Udaipur, for her invaluable expertise and
validation of our findings. Her insightful guidance and expert validation have significantly
contributed to the rigor and relevance of this research. We would also like to acknowledge
the University Grants Commission (UGC), India, for providing financial support through
the Junior Research Fellowship (JRF) under the UGC-JRF scheme. Finally, we thank the
reviewers for their constructive feedback and suggestions, which have greatly enhanced the
quality of this manuscript.

Conflict of interest

No financial or non-financial conflicts of interest are associated with this research
work included in this article.

References

Ahmed, N. K., Rossi, R., Lee, J. B., Willke, T. L., Zhou, R., Kong, X., and Eldardiry, H.
(2018). Learning role-based graph embeddings. In ArXiv. /abs/1802.02896.
Alsentzer, E., Murphy, J., Boag, W., Weng, W.-H., Jindi, D., Naumann, T., and McDer-
mott, M. (2019). Publicly available clinical BERT embeddings. In Rumshisky, A.,
Roberts, K., Bethard, S., and Naumann, T., editors, Proceedings of the 2nd Clinical
Natural Language Processing Workshop, pages 72—78, Minneapolis, Minnesota, USA.
Association for Computational Linguistics.

Atias, N. and Sharan, R. (2011). An algorithmic framework for predicting side effects of
drugs. Journal of Computational Biology, 18, 207-218.

Bate, A., Lindquist, M., Edwards, I. R., Olsson, S., Orre, R., Lansner, A., and DeFreitas
(1998). A Bayesian neural network method for adverse drug reaction signal generation.
FEuropean Journal of Clinical Pharmacology, 54, 315-321.


/abs/1802.02896

288 SAMRIDHI DEV AND ADITI SHARAN [Vol. 23, No. 2

Craswell, N. (2009). Mean Reciprocal Rank, pages 1703-1703. Springer US, Boston, MA.

Dev, S. and Sharan, A. (2023a). Annotated and normalized causal relation extraction corpus
for improving health informatics. In Proceedings of ICON 2023, 20th International
Conference on Natural Language Processing. Presented at ICON 2023.

Dev, S. and Sharan, A. (2023b). Automatic construction of named entity corpus for adverse
drug reaction prediction. In Lecture Notes in Computer Science: Innovations in Data
Analytics (ICIDA), volume 1442. Springer.

Dey, S., Luo, H., Fokoue, A., Hu, J., and Zhang, P. (2018). Predicting adverse drug reactions
through interpretable deep learning framework. BMC' Bioinformatics, 19 Suppl 21,
476.

Gao, Y., Ji, S., Zhang, T., Tiwari, P., and Marttinen, P. (2023). Contextualized graph
embeddings for adverse drug event detection. In Lecture Notes in Computer Science:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD), volume
13714. Springer.

Ji, Y., Ying, H., Dews, P., Mansour, A., Tran, J., Miller, R. E., and Massanari, R. M.
(2011). A potential causal association mining algorithm for screening adverse drug
reactions in postmarketing surveillance. IEEE Transactions on Information Technol-
ogy in Biomedicine, 15, 366-372.

Khan, M., Mello, G. B. M., Habib, L., Engelstad, P., and Yazidi, A. (2024). Hits-based
propagation paradigm for graph neural networks. ACM Trans. Knowl. Discov. Data,
18.

Kwak, H., Lee, M., Yoon, S., Chang, J., Park, S., and Jung, K. (2020). Drug-disease graph:
Predicting adverse drug reaction signals via graph neural network with clinical data.
In Advances in Knowledge Discovery and Data Mining, volume 12085, pages 633—644.
Springer.

Lerch, M., Nowicki, P., Manlik, K., and Wirsching, G. (2015). Statistical signal detection as
a routine pharmacovigilance practice: effects of periodicity and resignalling criteria
on quality and workload. Drug Safety, 38, 1219-1231.

Lin, J., Kuang, Q., Li, Y., Zhang, Y., Sun, J., Ding, Z., and Li, M. (2013). Prediction of
adverse drug reactions by a network based external link prediction method. Analytical
Chemistry, 5, 6120.

Liu, B.-M., Gao, Y.-L., Li, F., Zheng, C.-H., and Liu, J.-X. (2024). SLGCN: Structure-
enhanced line graph convolutional network for predicting drug—disease associations.
Knowledge-Based Systems, 283, 111187.

Liu, R., AbdulHameed, M. D. M., Kumar, K., Yu", X., Wallqvist, A., and Reifman, J. (2017).
Data-driven prediction of adverse drug reactions induced by drug-drug interactions.
BMC Pharmacology and Tozicology, 18, 44.

Mantripragada, A. S., Teja, S. P., Katasani, R. R., Joshi, P., V, M., and Ramesh, R.
(2021). Prediction of adverse drug reactions using drug convolutional neural networks.
Journal of Bioinformatics and Computational Biology, 19, 2050046.

Manzi, S. and Reis, B. (2011). Predicting adverse drug events using pharmacological network
models. Science Translational Medicine, 3, 114ral27.



2025] BIOMEDICAL TEXT BASED CPRMAM MODEL 289

Monaco, L., Melis, M., Biagi, C., Donati, M., Sapigni, E., Vaccheri, A., and Motola, D.
(2017). Signal detection activity on eudravigilance data: analysis of the procedure
and findings from an italian regional centre for pharmacovigilance. Ezpert Opinion
on Drug Safety, 16, 271-275.

Pauwels, E., Stoven, V., and Yamanishi, Y. (2011). Predicting drug side-effect profiles: a
chemical fragment-based approach. BMC' Bioinformatics, 12, 169.

Qian, J., Li, G., Atkinson, K., and Yue, Y. (2021). Understanding negative sampling in
knowledge graph embedding. International Journal of Artificial Intelligence and Ap-
plications, 12, 7T1-81.

Schuemie, M. J., Coloma, P. M., Straatman, H., Herings, R. M., Trifiro, G., Matthews, J. N.,
Prieto-Merino, D., Molokhia, M., Pedersen, L., Gini, R., et al. (2012). Using electronic
health care records for drug safety signal detection: a comparative evaluation of
statistical methods. Medical Care, 50, 890-897.

Shang, N., Xu, H., Rindflesch, T. C., and Cohen, T. (2014). Identifying plausible adverse
drug reactions using knowledge extracted from the literature. Journal of Biomedical
Informatics, 52, 293-310.

Szarfman, A., Machado, S. G., and O'Neill, R. T. (2002). Use of screening algorithms and
computer systems to efficiently signal higher than-expected combinations of drugs and
events in the US FDA’s spontaneous reports database. Drug Safety, 25, 381-392.

Wang, S. V., Maro, J. C., Baro, E., Izem, R., Dashevsky, I., Rogers, J. R., Nguyen, M.,
Gagne, J. J., Patorno, E., Huybrechts, K. F., et al. (2018). Data mining for adverse
drug events with a propensity score-matched tree-based scan statistic. Epidemiology,
29, 895-903.

Xiang, Y.-P., Liu, K., Cheng, X. Y., Cheng, C., Gong, F., Pan, J. B., and Ji, Z. L. (2015).
Rapid assessment of adverse drug reactions by statistical solution of gene association
network. [EEE/ACM Transactions on Computational Biology and Bioinformatics,
12, 844-850.

Xiao, C., Zhang, P., Chaowalitwongse, W. A., Hu, J., and Wang, F. (2017). Adverse drug
reaction prediction with symbolic latent dirichlet allocation. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence (AAAI’'17), pages 1590-1596.
AAALI Press.

Xue, R., Liao, J., Shao, X., Han, K., Long, J., Shao, L., Ai, N., and Fan, X. (2020).
Prediction of adverse drug reactions by combining biomedical tripartite network and
graph representation model. Chemical Research in Toxicology, 33, 202-210.

Yildirim, P., Majnari¢, L., Ekmekei, O., and Holzinger, A. (2014). Knowledge discovery of
drug data on the example of adverse reaction prediction. BMC' Bioinformatics, 15
Suppl 6, S7.

Zhang, F., Sun, B., Diao, X., Zhao, W., and Shu, T. (2021). Prediction of adverse drug reac-
tions based on knowledge graph embedding. BMC' Medical Informatics and Decision
Making, 21, 38.

Zhao, Y., Yi, M., and Tiwari, R. C. (2018). Extended likelihood ratio test-based methods
for signal detection in a drug class with application to FDA’s adverse event reporting
system database. Statistical Methods in Medical Research, 27, 876-890.



290 SAMRIDHI DEV AND ADITI SHARAN [Vol. 23, No. 2

Zheng, Y., Peng, H., Zhang, X., Zhao, Z., Yin, J., and Li, J. (2018). Predicting adverse
drug reactions of combined medication from heterogeneous pharmacologic databases.
BMC' Bioinformatics, 19 Suppl 19, 517.



	Introduction
	Related work
	Proposed work
	Automatic annotation model
	Raw corpus collection
	Coreference resolution
	Entity extraction
	Relation extraction
	Relation categorization

	CPRMAM model development
	Initial node embedding generation
	Attention vector calculation 
	Proposed aggregation function

	CPRMAM model training
	Positive sampling training 
	Negative sampling training
	Loss computation and weight updation 
	Selection of most suitable parameters
	Triplet scoring 
	Corrupt triplet generation
	Scoring of triplets


	Triplet ranking and model evaluation 
	ADR related knowledge discovery 
	Model comparison and validation
	Validation of constructed ADR corpus
	Model comparison

	Conclusion

