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Abstract
The Uniform Truncated Poisson distribution defined on the interval [0, 1] is studied in

detail and has shown that this distribution is derivable in three different ways. Analytical
properties of this distribution are derived and estimation problems are addressed. Real data
sets are modeled using this distribution. Generalization of the distribution on any finite
interval is also considered and properties are studied.
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1. Introduction

Theoretical probability distribution gives us a law according to which different values
of the random variables are distributed with specified probabilities which can be expressed
mathematically. Recent studies on probability distributions are mainly concerned with sup-
port either in the real line or positive real line. Distributions on finite intervals are less
considered by the researchers. But we know that many of our real data sets are lying in
finite intervals. Moreover many of the organisms in biology, experimental results in physics,
chemistry, etc. show a uniform pattern in [0, 1]. Some recent distributions defined on [0, 1]
are available in the research papers, Altawil (2019) and Hassan et al. (2020). Rescaling a
data into [0, 1] is useful in machine learning and image processing. The most elegant and
common method widely used in these fields are min-max scaling procedure. This is an alter-
native method to z-score normalization. By the min-max transformation discussed in this
paper any random variable with support on a real line can be transformed into [0, 1] and
further analysis can be done. Also in neural networks [0, 1] data is required for normalizing
pixel intensities. As mentioned in Weigend and Gershenfeld (1993) and Yu et al. (2006)
normalization has an important role in the data management. By this transformation all
the features are kept same, but it results in smaller standard deviations of the observations,
which minimizes the outlier effect. So an attempt is made to study a distribution with
support on [0, 1] which was mentioned in Hao and Godbole (2014). More recently a new
distribution with support on [0, 1] called unifed distribution has been introduced in Qui-
jano Xacur (2019) which can be used as the response distribution for a generalized linear
model. When the index parameter is unity this family gives the distribution we study in this
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paper. We further explore this distribution by introducing it in another way and bringing
together the relevant properties and results concerning it. We used a compounding method
for the derivation of this distribution. Derivations of new discrete and continuous distribu-
tions compounding two distributions have been discussed by several authors, see for instance
uniform-geometric distribution in Akdogan et al. (2016), binomial-Poisson distribution in
Hu et al. (2007), and Weibull-power series distribution in Morais and Barreto-Souza (2011).
Similar distributions can also been seen in Adamidis and Loukas (1998), Kus (2007), Tah-
masbi and Rezaei (2008), and Chahkandi and Ganjali (2009). We have some well-known
distributions like beta distribution and power function distribution with support on [0, 1].
These distributions are found to have useful applications in several real life situations in
reliability, time series, etc. So we have made a comparison of the distribution studied in this
paper with these well known distributions. We could also use this new distribution in the
modeling of time series data. So an advanced level model diagnosis in non-linear and volatile
time series data using this distribution will be quite interesting in the near future.

This paper is organized as follows. In Section 2, uniform truncated Poisson distribution
is introduced and its properties are studied. Transformations are considered and correspond-
ing distributions are derived in Section 3. The estimation of the parameter is done in Section
4 and numerical illustrations are given therein. Asymptotic properties of the estimators are
also delineated in the same section. A generalization of this new distribution with support
on any finite interval is done in Section 5. Application to real data sets is given in Section
6 followed by a concluding Section.

2. Uniform Truncated Poisson Distribution

Distributions defined on [0,1] are not very common in literature and the most widely
used distributions belonging to this category are power function distribution and beta dis-
tribution. Several applications of the distributions defined on [0,1] have been portrayed in
the introduction part. The applications of such distributions in neural networks, pixel in-
tensities, artificial intelligence, physics, engineering, time series etc. are the motivation for
this present study. Also for the variates in [0,1] like percentages or fractions, we have only
few studies on regression/time series models. In this context some of the notable works are
Kieschnick and McCullough (2003), Jara et al. (2013), Ristic and Popovic (2000), Rocha
and Cribari-Neto (2009) and Bayer et al. (2018). So the distribution studied in this paper
may be applied in the advanced fields of the areas mentioned above even though we have
illustrated some of the applications in the last section of this paper. Now we consider the
distribution on [0,1] mentioned in Hao and Godbole (2014) and propose its construction in
three different ways. These methods are described below.

Method 1: We consider a transformation of the truncated uniform distribution to form
a new random variable defined on [0,1]. Let U be a random variable following truncated
uniform distribution with probability density function (pdf),

g (u) = 1
eθ − 1 , 0 ≤ u ≤ eθ − 1.

Consider the transformation,
X = log (1 + U)

θ
. (1)
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Then the probability density function of X is

f (x) = 1
eθ − 1θeθx, 0 ≤ x ≤ 1, θ ̸= 0. (2)

It may be noted that when θ = 0 the distribution is uniform in [0,1].

Method 2: The distribution specified in (2) can be derived as a solution of the first order
differential equation as given below. We have used this method keeping in mind that the
radioactive decay is associated with a differential equation and an exponential random vari-
able is an example for it. So we are trying to construct a distribution with an initial value
at time zero as a function of θ but the limit of the initial value function at time point zero
is 1. This initial value function θ

eθ−1 is monotone decreasing in θ. Let
dy

dx
− θy = θ

eθ − 1 (3)

be the first order differential equation and choose y = F (x).
That is

dF (x)
dx

− θF (x) = θ

eθ − 1 .

Solving we get

F (x) = eθx − 1
eθ − 1

F̄ (x) = 1 − F (x) = eθ − eθx

eθ − 1
and hence f (x) is of the form (2). So this distribution is the solution of the first order
differential equation

dy

dx
− θy = θ

eθ − 1 .

Method 3: Random minimum or maximum of N independent and identically distributed
(i.i.d) random variables are studied in Louzada et al. (2011), Kus (2007), Cancho et al.
(2011) and several other papers. It may be noted that Hao and Godbole (2014) has intro-
duced the uniform-Poisson model, deriving it as given below. They have applied the method
mentioned above and considered only a few properties in that paper. So using the procedure
used there, assuming the random variable N to be truncated Poisson with probability mass
function

P (N = n) = e−θθN

N !(1 − e−θ) , N = 1, 2, ...

and X1, X2, ..., XN i.i.d U [0, 1] with distribution function F(.), the distribution of
X = min1≤i≤N(Xi) is,

g (X = x) = f (x)
∞∑

n=1
n (F (x))N−1 P (N = n)

which is exactly the same as (2). Hence we call this random variable X with pdf (2) as
Uniform Truncated Poisson distribution (θ) denoted as UTPD(θ).

It is quite interesting to note that UTPD(θ) is derived in three different ways. Now we
look at the properties of this new distribution.
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2.1. Properties

1. The survival function is eθ−eθx

eθ−1 .

2. The hazard function, h (x) = f(x)
F (x) = θeθx

eθ−eθx = θ
eθ(1−x)−1 .

It can be seen that for all θ values, the distribution has an increasing failure rate (IFR).

3. The characteristic function, ϕX (t) = θ

(eθ−1)
1

(θ+it)

(
eθ+it − 1

)
.

4. The rth moment of UTPD is given by

E(Xr) = eθ

eθ − 1

[
1 − r

θ
+ r(r − 1)

θ2 − r(r − 1)(r − 2)
θ3

+ r(r − 1)(r − 2)(r − 3)
θ4 − ... + (−1r)r(r − 1)(r − 2)(r − 3)...1

θr

]

+ 1
eθ − 1(−1)r+1 r(r − 1)(r − 2)(r − 3)...1

θr
, for r=1, 2, ...

5. Mean= eθ(θ−1)+1
θ(eθ−1) .

6. Variance= eθ

eθ−1

(
1 − 2

θ
+ 2

θ2

)
− 2

θ2(eθ−1) −
(

eθ(θ−1)+1
θ(eθ−1)

)2
.

For θ = 1, Mean= 1
(e−1) , V ariance = e2−3e+1

(e−1)2 .

7. The pth quantile is given by xp = 1
θ

log
{
1 + p

(
eθ − 1

)}
, 0 ≤ p ≤ 1.

8. Entropy, a measure of the uncertainty associated with the random variable is given by
H (X) = −θ

θ−1

{
ln θeθ

θ
− ln θ

(
1
θ

)
+ eθ

θ
− 1

θ2

(
eθ − 1

)
− ln

(
eθ − 1

)}
.

9. Odds ratio : Odds ratios are often used in the medical literature.

(a) The odds ratio of surviving beyond time, ϕ+ = F̄ (X)
F (X) = eθ−eθx

eθx−1 .

(b) The odds ratio of failure by time, ϕ− = F (X)
F̄ (X) = eθx−1

eθ−eθx .

The density function, distribution function, and the hazard function for different values
of θ are plotted in Figures 1 to 3 respectively. From the density plots, it is clear
that the positive value of the parameter θ confirms the left-skewed behavior and a
negative value indicates the right-skewed behavior. So it is a distribution on [0, 1],
which can be used for modeling left or right skewed data sets. When the value of θ is
positive and increases the density function becomes more peaked but less left-skewed.
But the behavior is just the opposite when θ is negative. Even though from Figure
3 it is clear that the distribution has IFR for different values of θ, the behavior of
the hazard function doesn’t vary much. The nature of this distribution is actually
very similar to the power function distribution. It means a comparison with power
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function distribution will be quite interesting. For illustrating this, the density plots
of UTPD and power function distribution are drawn together in Figure 4. As θ > 0
and increases UTPD coincides with power function distribution. A comparison with
beta distribution is also interesting since beta distribution is a flexible distribution
with wide applications. But we know that the failure rate function of the beta (p, q)
distribution is increasing only if p ≥ 1, and the comparison will be meaningful only
under this particular case. So we have not given much importance to this part in this
study.

Figure 1: Density plots of UTPD for various values of θ

Figure 2: Distribution function of UTPD for various values of θ

10. Skewness and Kurtosis
Using the quantile function given in property 7, the first, second and third quantiles
are x0.25, x0.50, x0.75 respectively.
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Bowley’s measure of skewness,

S = x0.75 + x0.25 − 2x0.50

x0.75 − x0.25

=
log[

1
16 ((3eθ+1)(eθ+3)

( 1
2 (eθ+1))2 ]

log[3eθ+1
eθ+3 ]

.

The kurtosis is measured by the method introduced by Moors (1988). He derived this
measure using octiles, where the octiles Ei are defined as,

P (X < Ei) ≤ i

8
and

P (X > Ei) ≤ 1 − i

8 .

Using octiles the measure of kurtosis,

K = (E7 − E5) + (E3 − E1)
E6 − E2

.

These two measures are given in Table 1 and the observations we made from the density
plots regarding skewness and kurtosis are very well established numerically in this table. It
is clear that the distribution is symmetric for θ, and the values of the kurtosis are the same
for both the negative and positive values of the parameter.

Table 1: Skewness and Kurtosis

Parameter:θ Skewness Kurtosis
0.5 -0.0613 1.0114
2 -0.1953 1.1385
5 -0.2579 1.2925
8 -0.2616 1.3055

-0.5 0.0613 1.0114
-2 0.1953 1.1385
-5 0.2579 1.2925
-8 0.2616 1.3055

Remark 1: This distribution is useful in machine learning specifically for the normalization
used for the data representation, further processing and accuracy. The usual transformation
used for this purpose is

xi − min(xi)
max(xi) − min(xi)

. (4)

Later in our real data analysis part described in the last section of this paper, we
explain the use of this distribution in such transformations.
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Figure 3: Hazard function of UTPD for various values of θ

2.2. Distribution of order statistics

Assume that X1, X2, X3, ..., Xn are independent random variables following UTPD with
parameter θ. The pdf of min (X1, X2, X3, ..., Xn) is given by

fX(1) (x) = nθeθx

(eθ − 1)n

(
eθ − eθx

)n−1

and the pdf of max (X1, X2, X3..., Xn) is given by

fX(n) (x) = nθeθx

(eθ − 1)n

(
eθx − 1

)n−1
.

In the next section, we describe some transformed distributions, which seems very
similar to some familiar distributions but with different domains.

3. Transformed Distributions

Here we consider some random variables generated through the transformations of (2)
and derive their distributions.

Result 1: Considering the transformation

U = − log X,

where X follows UTPD with density function given in (2), the pdf of U is

g(u) = θ

eθ − 1e−ueθe−u

, 0 ≤ u < ∞, (5)

which is the Weibull-Poisson distribution by Morais and Barreto-Souza (2011).
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Figure 4: Comparison of UTPD and power function distribution

Result 2: When we take a power transformation

V = X
1
β (6)

the density function of V becomes

g(v) = θβ

eθ − 1vβ−1eθvβ

, 0 ≤ v ≤ 1, (7)

which has the form of the Weibull distribution, but domain is quite different.

Result 3: The probability density function of W = 1
X

, where X follows UTPD is

h(w) = θ

eθ − 1e
θ
w

1
w2 , 1 ≤ w < ∞. (8)

Estimation of the parameter of the UTPD is done in the next section.
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4. Estimation of the Parameter

For the estimation of the parameter, we employ the maximum likelihood (ML) method
and the method of moments (MM), and comparisons are made with numerical illustrations.

4.1. Maximum likelihood estimation (MLE)

Suppose a sample of size n is taken from UTPD with pdf (2). By taking logarithm
of the likelihood function and finding the derivative with respect to θ, we have a nonlinear
equation

∂ log L

∂θ
= 0 ⇒ n

θ
− neθ

eθ − 1 +
n∑

i=1
xi = 0,

which can be solved numerically to estimate the parameter.

4.2. Method of moments

Another method used for the estimation of the parameter is the method of moments.
Equating the first raw moment to the corresponding sample moment, the following equation
is obtained, and solving the same for θ results in the estimate.∑n

i=1 xi

n
= eθ (θ − 1) + 1

θ (eθ − 1) .

4.3. Large sample properties

The asymptotic properties of the ML estimators, assuming the usual regularity condi-
tions are provided in this section.

Property 1: The ML estimator θ̂ is asymptotically normally distributed with mean θ and
variance 1

nI(θ) where I(θ) is the well known information matrix.

Proof: We have the log likelihood function

log L = n log θ − n log
(
eθ − 1

)
+ θ

n∑
i=1

xi.

Then
∂2logL

∂θ2 = −n

θ2 + neθ

(eθ − 1)2 .

If we denote the gradient of log L, the score statistic as S(θ), and −∂2logL
∂θ2 as K(θ), then the

above equation can be written as,

K(θ) = −S ′(θ) = n

θ2 − neθ

(eθ − 1)2 .

Also we know that,

S(θ) = ∂logL
∂θ

= ∑n
i=1

∂logf(Xi,θ)
∂θ

and



288 KRISHNARANI S. D. and VIDYA V. P. [Vol. 20, No. 1

K(θ) = ∑n
i=1 K(Xi, θ).

Then, E(K(θ)) = nI(θ) where I(θ) = E[∂logf(Xi,θ)
∂θ

]2, the information matrix.

Using Taylor’s formula,

0 = S(θ̂) = S(θ) − K(θ)(θ̂ − θ) + R, where R tends to zero.

And finally after adjusting the terms,
√

n(θ̂ − θ) = S(θ)/
√

n
K(θ)/n

.

By Slutsky’s theorem θ̂ converges in distribution to N(θ, 1
nI(θ)).

Now the consistency property of θ̂ is stated below, the proof of which readily follows as in
Kale (2007).

Property 2: The likelihood equation admits a consistent solution and the consistent esti-
mator is essentially unique.

4.4. Numerical examples

Simulated samples of sizes 20, 60 and 100 from the population following UTPD for
selecting the better method of estimation. For the comparison purpose of the two methods
discussed above, each sample is generated 1000 times. The estimate of θ, standard error (SE),
mean square error (MSE), 95% confidence intervals (CI) for the parameters and the coverage
probabilities (CP) are shown in Table 2. All the simulation works and other computations
are done using R-programming and the R codes are presented in the Annexure. The SE
and MSE are decreasing with an increase in sample size. The coverage probabilities are
increasing when the sample size is increasing. But for smaller sample sizes, the coverage
probabilities of the parameters estimated using the ML method are lesser than that generated
by MM. From the table, it is clear that both the ML method and MM are equally good for
estimation purposes based on the MSE. Both the methods give us approximately equal values
as parameter estimates.

In the next section, an attempt is made to generalize the UTPD into a general finite
interval (a,b).

5. Generalized UTPD

In this section, we construct a generalization of UTPD. As we have seen in the definition
of UTPD, the domain is [0, 1]. This can be generalized to a distribution defined on a finite
interval (a, b). Let X be a continuous random variable defined on (a, b). The probability
density function of X is given by

f (x) = θ

eθb − eθa
eθx, a < x < b, θ ̸= 0.

When θ = 0, it becomes the uniform distribution defined on (a,b).
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Properties

1. The kth raw moment is given by

E(Xk) = C{bkeθb − akeθa

θ
− k

θ2 (bk−1eθb − ak−1eθa) + (k − 1)k
θ3 (bk−2eθb − ak−2eθa)

+... + (−1)k(1.2.3...k)
θk+1 (eθb − eθa)},

where C = θ
(eθb−eθa) .

2. Mean= beθb−aeθa

(eθb−eθa) − 1
θ
.

3. Variance= θ

(eθb−eθa)
{

b2eθb−a2eθa

θ
− 2

θ2

(
beθb − aeθa

)
+ 2

θ3

(
eθb − eθa

)}
−

(
beθb−aeθa

(eθb−eθa) − 1
θ

)2
.

4. The hazard rate function, h (x) = θeθx

eθb−{eθx} .

5. The mean residual life function (MRL), µ(t) = 1
eθb−eθa−eθt−eθa

{
eθb (b − t − 1) + etb

}
.

6. The quantile function is x = 1
θ

ln
[
eθa (1 − u) + ueθb

]
.

More interesting features are the topics for further studies.

6. Applications

In this section, the application of the distribution is illustrated by fitting the UTPD to
four data sets. As mentioned in Section 2, we are comparing the UTPD and power function
distributions for all these data sets.

Data Set 1: This data set is obtained from the Los Angeles Department of Water and Power
(LADWP) solar incentive program, which offers incentives to offset the cost of installing
a solar rooftop system in the homes/business of the people of Los Angeles. This metric
measures the Net Energy Metering (NEM) installed capacity (Kilowatts), which is available
in https://catalog.data.gov/dataset. The data consists of the observations from 2016 to 2018,
which describes the application of UTPD in time series as well as physics. As mentioned in
Remark 1, the data can be transformed using (4) to bring the data into the range [0,1]. Now
we try to fit the power function and UTPD to this transformed data. By the Kolmogorov-
Smirnov (K-S) distance measure and p-value given in Table 3, it is clear that both these
distributions are good fit for this data set. The p value is greater than 0.05, confirming that
the UTPD and power function distribution are good approximations. But we may conclude
that UTPD is a better fit for this data since K-S distance is lesser but p-value is greater
when compared with power function distribution.

Data Set 2: Data set 2 is the total tax and non-tax revenue of Egypt from 2002 to 2018
available in https://stats.oecd.org and these are time series observations from financial sector.
Transform the data using (4) and here also we obtain the power function and UTPD as
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suitable fit for this data based on K-S distance and p-value given in Table 3. In the light
of these two values we could identify that UTPD is a better fit for this data than power
function distribution.

Figure 5: Density plots of fitted data sets
Data Set 3: Now we consider another time series data for describing the applications of
UTPD. This is a set of observations of Japan consumer confidence index from January 2014
to March 2021. (Ref: https://stats.oecd.org). Again after suitable transformation we get
the power function and UTPD as suitable fit for this transformed data from the values in
Table 3. But since the p-value is higher and K-S distance is lesser for UTPD than power
function, it is clear that UTPD is a better fit.

Data Set 4: The fourth data set we consider is the ball bearing data taken from Lawless
(2003) to employ it in the engineering field. The data are the number of million revolutions
before failure for each of the 23 ball bearings in the life test and they are 17.88, 28.92, 33.00,
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41.52, 42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12, 93.12,
98.64, 105.12, 105.84, 127.92, 128.04, and 173.40. As mentioned in Remark 1, the data can
be transformed using (4) to [0, 1]. The K-S distance and p-value given in Table 3, reveal
that UTPD is a better fit for this data than power function distribution.

The densities of the original data sets together with the fitted densities plotted in Figure 5
reveal that UTPD is a good fit for all the data sets considered.

Table 2: Parameter Estimates

Sample size (n) Parameter (θ) Method Estimate (θ̂) SE MSE CI CP
20 4 MLE 4.12 1.110 1.307 (3.15,5.09) 0.627

MM 4.10 0.252 1.288 (1.88,6.37) 0.957
60 MLE 4.07 0.625 0.385 (3.12,5.02) 0.880

MM 4.03 0.080 0.394 (2.80,5.26) 0.948
100 MLE 4.01 0.482 0.234 (3.07,4.96) 0.955

MM 4.02 0.048 0.246 (3.06,4.98) 0.954
20 3 MLE 3.06 0.968 1.020 (2.21,3.91) 0.620

MM 3.09 0.233 1.098 (1.05,5.14) 0.938
60 MLE 3.06 0.553 0.303 (2.22,3.90) 0.876

MM 3.04 0.072 0.312 (1.95,4.13) 0.950
100 MLE 3.01 0.424 0.183 (2.18,3.84) 0.950

MM 3.01 0.043 0.190 (2.15,3.86) 0.947
20 1.5 MLE 1.56 0.835 0.740 (0.83,2.29) 0.622

MM 1.54 0.196 0.770 (-0.17,3.26) 0.950
60 MLE 1.50 0.475 0.231 (0.78,2.22) 0.861

MM 1.55 0.063 0.147 (0.79,2.23) 0.942
100 MLE 1.50 0.367 0.147 (0.78,2.22) 0.942

MM 1.49 0.036 0.130 (0.78,2.20) 0.947
20 0.5 MLE 0.52 0.792 0.653 (-0.16,1.22) 0.610

MM 0.51 0.180 0.653 (-1.07,2.09) 0.950
60 MLE 0.50 0.452 0.209 (-0.18,1.19) 0.868

MM 0.50 0.058 0.208 (-0.38,1.40) 0.957
100 MLE 0.49 0.349 0.125 (-0.20,1.16) 0.949

MM 0.48 0.034 0.119 (-0.18,1.16) 0.950
20 -2 MLE -2.06 0.870 0.780 (-2.83,-1.31) 0.631

MM -2.10 0.203 0.840 (-3.89,-0.31) 0.954
60 MLE -2.04 0.495 0.263 (-2.79,-1.28) 0.865

MM -2.04 0.062 0.234 (-2.98,-1.09) 0.948
100 MLE -2.01 0.382 0.148 (-2.78,-1.26) 0.941

MM -2.03 0.036 0.132 (-2.74,-1.33) 0.952
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Table 3: Fitting of real data sets

Distribution Parameter K-S distance p-value
Dataset 1 UTPD 0.75 0.0967 0.9991

Power function 1.28 0.1290 0.9634
Dataset 2 UTPD 2.29 0.1176 0.9999

Power function 2.08 0.1764 0.7631
Dataset 3 UTPD 3.64 0.0919 0.8585

Power function 3.04 0.1149 0.6164
Dataset 4 UTPD 1.91 0.1421 0.7657

Power function 1.86 0.2173 0.6487

7. Conclusion

In this paper, we have studied in detail the uniform truncated Poisson distribution
as the solution of a first order differential equation and derived the same from the trun-
cated uniform distribution. Comparisons with some well known distributions are done.
The expressions for moments, distributions of the order statistics, etc. are further derived.
Some transformed distributions are also studied. Some of the estimation procedures of the
parameter are discussed. The newly constructed distribution is applied on real data. Char-
acterizations and further applications of UTPD in time series, regression and reliability are
the topics for further studies.
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ANNEXURE

A1: R Code for simulation studies using MLE method

m=1000
n=20
para=4
x<−l i s t (mode = ” vecto r ” , length = m)
z<−l i s t (mode = ” vecto r ” , length = m)
z<−l i s t (mode = ” vecto r ” , length = m)
out<−l i s t (mode = ” vecto r ” , length = m)
e s t<−l i s t (mode = ” vecto r ” , length = m)
dut<−function (x , a=4)(( a/ (exp( a ) −1))∗exp( a∗x ) )
put<−function (x , a=4)(1−(1/ (exp( a)−1)∗ (exp( a)−exp( a∗x ) ) ) )
qut<−function (u , a =4)((1/a )∗ log (1+u∗ (exp( a ) −1)))
rut<−function (n , a=4)qut ( runif (n ) , a )
for ( i in 1 :m)
{
x [ [ i ] ]<−runif (n)
z [ [ i ] ]<−qut (x [ [ i ] ] )
fn <− function ( theta )
sum( log ( ( exp( theta )−1)/ theta )− theta∗z [ [ i ] ] )
out [ [ i ] ]<−nlm( fn , theta<−0 . 1 , he s s i an=TRUE)
out
}
w<−vector (mode = ” numeric ” , length = m)
se the ta=vector (mode=” numeric ” , length = m) #standard error o f t h e t a
for ( j in 1 :m)
{
w[ j ]=out [ [ j ] ] $ es t imate
s e the ta [ j ]=sqrt ( diag ( solve ( out [ [ j ] ] $ he s s i an ) ) )
}
#Confidence i n t e r v a l s
l c l a<−vector (mode = ” numeric ” , length = m)
uc la<−vector (mode = ” numeric ” , length = m)
for ( i in 1 :m)
{
l c l a [ i ] <− (w[ i ] − 1 .96∗ s e the ta [ i ] )
uc la [ i ] <− (w[ i ] + 1 .96∗ s e the ta [ i ] )
}
#Coverage P r o b a b i l i t y
covera<−vector (mode = ” numeric ” , length = m)
for ( i in 1 :m)
{
covera [ i ] <− ( l c l a [ i ]<=4)&( uc la [ i ]>=4)
}
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A2: R Code for simulation studies using the method of moments
for ( i in 1 :m)
{
x [ [ i ] ]<−runif (n)
z [ [ i ] ]<−qut (x [ [ i ] ] )
z [ [ i ] ]<−na . omit ( z [ [ i ] ] )
func=function ( theta ){
(sum( z [ [ i ] ] ) /n)− ( ( exp( theta )∗ ( theta −1)+1)/ ( theta∗ (exp( theta ) −1)))
}

Result [ [ i ] ]= BFfzero 2( func , −10 ,100)
}
# w1<−vec t o r (mode = ”numeric ” , l e n g t h = m)
sew1<−vector (mode = ” numeric ” , length = m)
for ( j in 1 :m)
{
w1 [ j ]= Result [ [ j ] ] $ root
}
#Confidence i n t e r v a l s
l c l aw1<−vector (mode = ” numeric ” , length = m)
uclaw1<−vector (mode = ” numeric ” , length = m)
for ( i in 1 :m)
{
l c l aw1 [ i ] <− (w1 [ i ] − 1 .96∗sqrt ( var (w1 ) ) )
uclaw1 [ i ] <− (w1 [ i ] + 1 .96∗sqrt ( var (w1 ) ) )
}
#Coverage P r o b a b i l i t y
coveragew1<−vector (mode = ” numeric ” , length = m)
for ( i in 1 :m)
{
coveragew1 [ i ]<−( l c law1 [ i ]<=4)&( uclaw1 [ i ]>=4)
}


