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Abstract

Crucial aspects of applying approximate Bayesian computation (ABC) for Gibbs
point processes are the choice of summary statistic and method of constructing the dis-
crepancy measure. In this paper, we present a comparative study of ABC for Gibbs point
processes based on various summary statistics and different approaches of constructing
the discrepancy measure. We also demonstrate the issue of identifiability of the parame-
ter values for Gibbs point processes and provide a solution for parameter estimation. We
further propose robust choices for the discrepancy measures for different point processes
through an intensive simulation study. The ABC algorithm, with all of the tested dis-
crepancy measures, is also applied to the Swedish pines data and Chicago crime data to
illustrate the feasibility of the proposed approaches.

Key words: Approximate Bayesian computation; Discrepancy measure; Functional char-
acteristic; Gibbs point processes; Informative prior.

1. Introduction

As an important class of spatial point processes, Gibbs point processes have been
intensively studied over the past few decades. Since Gibbs point processes can take into
account interactions between event locations, they have become reasonable choices for
describing this kind of phenomena, i.e., the inhibition and clustering behaviors in point
processes. Here, we refer to point processes with inhibition as repulsive spatial point
processes and to point processes with clustering as attractive spatial point processes. In
the literature, the most well known models for repulsive point processes are the Strauss
process (Strauss, 1975) and hardcore process (Ripley, 1981). For attractive point pro-
cesses, a model that can be used to describe this behavior is the area-interaction process,
proposed by Baddeley and Van Lieshout (1995).

Although Gibbs point processes meet the need for describing the underlying pro-
cess in different fields of science, conducting inference directly using the likelihood of
the point process is challenging, and standard Bayesian analysis based on Markov chain
Monte Carlo (MCMC) is not feasible due to the intractable normalizing constant. Maxi-
mum pseudo-likelihood estimation (MPLE) (Besag, 1975) can be applied to spatial point
processes. However, Huang and Ogata (1999) show that the performance of MPLE is
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poor for repulsive point processes with strong interaction. There are also several estima-
tion methods that have been developed in a Bayesian framework. Geyer (1991) proposed
the Markov chain Monte Carlo maximum likelihood estimate (MCMCMLE) for stochastic
processes with an intractable normalizing constant. One of the issues with MCMCMLE is
that the required computational effort within each MCMC iteration is intensive for Gibbs
point processes. Moreover, the estimation result is sensitive to the auxiliary parameters.
By implementing an auxiliary variable, Møller et al. (2006) proposed an auxiliary vari-
able Markov chain Monte Carlo (AVM) and an exchange algorithm approach, which can
cancel out the intractable normalizing constant in the acceptance probability ratio of the
Metropolis-Hastings algorithm. Extending the exchange algorithm through “bridging”
was proposed by Murray et al. (2012).

In addition, the double Metropolis-Hastings (DMH) and an adaptive exchange
(AEX) algorithm were proposed by Liang (2010) and Liang et al. (2016). Alternatively,
approaches based on likelihood approximation were proposed by Beaumont (2003), An-
drieu et al. (2009), Alquier et al. (2016), and Atchadé et al. (2013). A comparison of
these methods was provided by Park and Haran (2018). The overall conclusion from this
comparison recommends that researchers start with DMH since it is computationally ef-
ficient and does not require perfect sampling. However, the convergence of DMH cannot
be guaranteed, and the auxiliary variable approaches become computationally expensive
when the inner sampler for the auxiliary variable is expensive. Recently, Park and Haran
(2018) focused on comparing likelihood based sampling methods and provided practical
recommendations. In contrast, our study provides evaluations of a likelihood free algo-
rithm and its applications (see details in Section 3).

As an alternative to the approaches based on classic MCMC, Stoica et al. (2017) and
Shirota and Gelfand (2017) proposed an approximate Bayesian computation (ABC) algo-
rithm for Gibbs point processes. The ABC algorithm provides a likelihood free approach
for approximating the posterior distribution and it is straightforward to implement. In
Shirota and Gelfand (2017), the simulation results for the Strauss model and the deter-
minantal point process show that the true models can be recovered. Also, the authors
compare the ABC with the exchange algorithm of Murray et al. (2012) and point out
that the ABC is more efficient in terms of the parameter inefficiency factors (IF).

In this study, we propose a more robust approach to constructing discrepancy mea-
sures for the ABC and compare the performance of available summary statistics for both
repulsive and attractive point processes. Implementing the ABC algorithm for fitting
Gibbs point processes has been proven feasible and efficient. However, we still need to
thoroughly investigate how to construct the best discrepancy measure for different sit-
uations. Inspired by the discussion surrounding the choices of various distance metrics
between two point process realizations (Mateu et al., 2010), we use the integrated dis-
tance of the available functional summary characteristics to measure the similarity of the
interactive structure for two point patterns. This measure takes into account the infor-
mation of the interactions among all the reasonable scales, which can be more informative
compared with the measures only calculated at a given interaction distance.

An important component of the ABC algorithms for Gibbs point processes is the
choice of summary statistic. In Stoica et al. (2017), the authors discuss the issue, but did



2020] A COMPARATIVE STUDY OF APPROXIMATE BAYESIAN COMPUTATION 225

not conduct a comparative study, especially when the sufficient statistics are not available.
In our study, we implement and compare the performance of Ripley’s K-function, nearest
neighbor distance distribution function (D-function), empty-space function (F -function),
and J-function (Van Lieshout and Baddeley, 1996) when used in the ABC algorithm, in
terms of recovering the parameters of a Gibbs point process. The final recommendation
on the most robust summary statistic among the ones tested is formed based on an exten-
sive simulation study. Note that Geyer (1998) proposed to use stochastic approximation
as rough estimates of the parameter values. Thus, we implement this estimate as an
informative prior and compare it with a vague prior for the ABC algorithms presented
herein.

The paper proceeds as follows. Section 2 begins by reviewing the repulsive and
attractive Gibbs point processes that we investigate. Section 3 provides the functional
summary statistics considered for Gibbs point processes, the proposed structure of the
discrepancy measure for the ABC algorithm, and the choices of prior distributions. Sec-
tions 4 and 5 include the results of the simulation study, and Section 6 presents applica-
tions to the Swedish pines data and Chicago crime data. Finally, in Section 7, we provide
concluding remarks.

2. Review of Classic Gibbs Point Processes

The general density function of a Gibbs point process for a finite point pattern
ϕn = {x1, . . . , xn} over a bounded domain B ∈ R2 (Cressie, 1993) is given by

f(ϕn) = c−1 exp


n∑
i−1

g1(xi) +
∑

1≤i<j≤n
g1,2(xi, xj) + · · ·+ g1,...,n(x1, . . . , xn)

 (1)

with respect to the Poisson process with unit intensity, where the function g1,...,k(·) de-
scribes the k-level interaction. Hence, c is a normalizing constant and the form of c
cannot be provided analytically. In other words, the normalizing constant for the Gibbs
point process is typically intractable. Another fundamental functional is the Papangelou
conditional intensity,

λ(u|ϕn,θ) = f(ϕn ∪ u|θ)
f(ϕn|θ) ,

which is the intensity at location u given the point pattern ϕn. Note that the normal-
izing constant in the likelihood function cancels out when calculating the Papangelou
conditional intensity. Thus, it is used to construct the log pseudo-likelihood as follows

logPL(ϕn|θ) = −
∫
B
λ(u|ϕn,θ)du+

n∑
i

logλ(xi|ϕn,θ), (2)

and the MPLE is obtained by maximizing the latter equation.

In this paper, we consider point processes that are suitable for describing inhibi-
tion and attraction. Thus, two classes of Gibbs point processes are investigated: the
homogeneous Strauss process and the area-interaction point process.
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2.1. Strauss point process

The Strauss process was introduced by Strauss (1975) to model point processes
with pairwise interactions; however, Kelly and Ripley (1976) showed that the Strauss
process density is only integrable for repulsive interactions. Hence, it is extensively used
to model point processes under the regularity assumption. The density function of the
homogeneous Strauss model for ϕn = {x1, . . . , xn} over a bounded domain B ∈ R2 is
given by

f(ϕn) = c(β, γ)−1βnγSr(ϕn), ϕn ∈ Bn, (3)
Sr(ϕn) =

∑
1≤i<j≤n

I(||xi − xj|| ≤ r),

where β > 0, γ ∈ [0, 1], c(β, γ) is the normalizing constant, r is the interaction distance
and Sr(ϕn) is the number of pairs of points that are closer than a distance r. In the
Strauss process, β and γ represent the main effect and the interaction effect, respectively.
For γ ∈ (0, 1), the point process shows inhibition between points and smaller γ leads to
stronger interaction. For γ = 0, the process is known as the hardcore process which does
not allow points to be closer than distance r. For γ = 1, the process is equivalent to the
homogeneous Poisson process with intensity β.

2.2. Area-interaction point process

The area-interaction process (Baddeley and Van Lieshout, 1995) can be used to
model point processes with attraction or repulsion. The density function of the homoge-
neous area-interaction process for ϕn = {x1, . . . , xn} in B is defined as follows

f(ϕn) = c(β, γ)−1βnγ−m(Ur(ϕn)),

with respect to the Poisson process with unit intensity, where β > 0, γ > 0, c(β, γ) is the
normalizing constant, m denotes the Lebesgue measure and

Ur(ϕn) = ∪ni=1B(xi, r),
is the union of discs with radius r centered at the points contained in the point pat-
tern. Similar to the Strauss process, γ controls interaction between points. The area-
interaction process generates repulsive point patterns if γ ∈ (0, 1) and clustered point
patterns if γ > 1. For γ = 1, this process is also equivalent to the Poisson point process
with intensity β.

In our study, we implement a canonical scale-free version of the area-interaction
process proposed by Baddeley and Turner (2014), since the interpretation is easier. The
density function is

f(ϕn) = c(κ, η)−1κnη−A(ϕn),

where κ is the new main effect, η is the new interaction effect and
A(ϕn) = m(Ur(ϕn))/(πr2)− n.

In this way, each isolated disc has unit area and contributes a factor κ to the density.
Parameter η has the same interpretation as the original parameterization. Notice that
the parameter r denotes the disc radius at each point but not the interaction distance.
Thus, for the area-interaction process, the interaction distance is 2r.
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3. Approximate Bayesian Computation for Gibbs Point Processes

The ABC algorithm has been widely used for estimating model parameters with an
intractable normalizing constant. The fundamental algorithm is known as ABC rejection
sampling that was implemented by Pritchard et al. (1999) and Sunn̊aker et al. (2013). The
specific pseudo-code associated with ABC rejection sampling is shown in Algorithm 1,
where ϕobs is the observed data, ϕsim is the simulated data, T(ϕn) is the summary statistic
and d(·, ·) is the discrepancy measure that is used to evaluate the similarity between the
data. Moreover, ε > 0 is the acceptance threshold.

Algorithm 1 ABC rejection sampling
for i = 1 to L do

repeat
Sample θ∗ from its prior, θ∗ ∼ π(θ).
Generate simulated data, ϕsim ∼ f(ϕ|θ∗).

until d(T(ϕobs),T(ϕsim)) ≤ ε
end for

Based on Algorithm 1, the proposed θ will be accepted if the discrepancy measure
is smaller than the pre-specified threshold, which implies that the data simulated based
on θ is similar to the observed one. In this way, the accepted θ is generated from the ap-
proximated posterior distribution, since the simulated data approximate the realizations
from the observed likelihood. More importantly, the choices of discrepancy measures and
summary statistics can determine the efficiency and unbiasedness of the approximation
of the posterior distribution.

In order to improve the efficiency of the ABC rejection sampling algorithm, Marjo-
ram et al. (2003) proposed the ABC-MCMC, which combines the MCMC with the ABC.
This algorithm was applied to repulsive spatial point processes by Shirota and Gelfand
(2017). However, the choice of proposal kernel can significantly affect the efficiency of
the ABC algorithm in terms of the level of mixing. In addition, choosing the most ap-
propriate proposal kernel is a challenging issue. Thus, we implement the ABC rejection
sampling algorithm for our study in order to investigate the performance of different
summary statistics, prior distributions, and discrepancy measures.

3.1. Summary Statistics

For homogeneous Gibbs point processes, it is reasonable to evaluate the similarity
of point patterns by comparing summary statistics for the main and interaction effects.
We use the number of points as a summary statistic of the main effect, since it is also
a function of the sufficient statistic. In the literature, several useful functional summary
characteristics can be used for describing the interaction effect, e.g., Ripley’s K-function,
D-function (the nearest neighbor distance distribution function), F -function (the empty
space function), and the J-function (Van Lieshout and Baddeley, 1996). The definition
of each function for a stationary point process with intensity λ is as follows:

K-function

K(r) = Eo(N(b(o, r) \ {o}))/λ,
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with N(b(o, r) \ {o}) representing the number of points found within the distance r from
the typical point o.

D-function

D(r) = Po(N(b(o, r) \ {o}) > 0),

where Po represents the Palm probability, which is the conditional probability that the
point process has the property N(b(o, r) \ {o}) > 0 given that a point of the process is in
o (see Illian et al. (2008), Page 178).

F -function

F (r) = 1−P(N(b(o, r)) = 0),

where P represents the distribution for a given point process.

J-function

J(r) = 1−D(r)
1− F (r) .

Illian et al. (2008) point out that these summary characteristics play an important
role in the analysis of point processes, and that each of them has specific advantages
that can reveal unique information about the point pattern. Hence, we implement the
functions mentioned above and compare their performance within the ABC algorithm.
In order to obtain estimates of the various functions, we use the empirical estimators
with edge correction using the R package “spatstat” (Baddeley and Turner, 2014).

3.2. Prior distributions

The prior distribution in the ABC is typically used as the proposal kernel or part of
the Metropolis-Hastings acceptance probability. Here, we discuss various choices for the
prior distribution for the ABC algorithm. Simulation studies detailing their performance
are included in Sections 4 and 5.

A common choice of prior distribution for the ABC is a vague prior over a reason-
able parameter space, such as a uniform prior with a pre-specified range. However, the
choice of parameter space is subjective without strong prior knowledge. Additionally, a
uniform prior with a wide parameter space can significantly reduce the efficiency of the
ABC algorithm.

Alternatively, a more informative distribution can be applied as a prior for the ABC
to improve estimation and efficiency. Geyer (1998) proposed using the stochastic approx-
imation to obtain the starting point for more sophisticated methods. In this context,
the estimates provided by the stochastic approximation form a consistent estimator for
the model parameters. Thus, we use the estimate from the stochastic approximation as
the mean in an informative prior that has an associated large variance. Specifically, we
implement the Robbins-Monro (R-M) algorithm (Robbins and Monro, 1951) for Gibbs
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point processes. Given the canonical form of the homogeneous Gibbs point process, the
model is as follows

f(ϕn) = exp{θ′T(ϕn)− logc(θ)},

and the R-M algorithm generates a sequence of estimates θk, k = 1, 2, . . . , given by

θk+1 = θk + A

k
{T(ϕobs)−T(ϕk)},

where ϕk is a realization generated from the specified Gibbs process given parameters θk.
We also implement an objective stopping rule proposed by Gu and Zhu (2001),

K1 = inf

K ≥ K0 :

∥∥∥∥∥∥
K∑

k=K−K0+1
sgn(θj,k − θj,k−1)/K0

∥∥∥∥∥∥ ≤ δ,∀j = 1, . . . ,m

 ,
whereK0 and δ are the pre-specified length of the subsequence of θk and required precision
level in order to calculate the stopping rule and sgn(x) is the sign function, which equals
to 1,0 or -1 depending on the sign of x. Also, A is preassigned to ensure that the
step function is slowly decreasing. It is difficult to tune these parameters, and iterative
adjustment can introduce a computational burden. However, since we only need the
sequence to converge to an area that is close to the true value, any reasonable choice of
tuning parameters should yield a satisfactory result.

3.3. Construction of the discrepancy measure

We briefly review the details of constructing discrepancy measures and propose
several measures that emerge as more robust in ABC estimation. Shirota and Gelfand
(2017) implement the approach of constructing discrepancy measures based on linear
regression for repulsive point processes (Fearnhead and Prangle, 2012). First, h(ϕu, ϕv)
is defined as a vector of functions of summary statistics for two point patterns, and
typically, the length of the vector h(ϕu, ϕv) is the same as the number of parameters
in the specified model. Shirota and Gelfand (2017) used the difference of the number
of points and the squared difference of the estimated variance stabilized K-function at
a given interaction distance to construct the vector of functions. In contrast, Mateu
et al. (2010) proposed to construct these functions based on functional summaries over
a certain range of interaction [0, rmax], e.g., the integrated squared difference between
estimates of Ripley’s K-function for two point patterns. Inspired by both approaches, we
use the difference of the number of points and the integrated absolute difference between
estimated functional summaries of the two point patterns to propose and construct our
general discrepancy measure, i.e.,

h1(ϕobs, ϕsim) = n(ϕsim)− n(ϕobs),

h2(ϕobs, ϕsim) =
∫ rmax

0
|Fsim(r)−Fobs(r)|dr,

where F represents the estimated summarizing functional, such as those mentioned in
Section 3.1 and h2(ϕobs, ϕsim) is approximated numerically.
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For comparison purposes, following the approach of Shirota and Gelfand (2017), one
of the discrepancy measures implemented in our study for a parameter vector of length
m is,

dreg(T(ϕobs),T(ϕsim)) =
m∑
j

(ξ̂l,j − ξ̂obs,j)2/v̂ar(ξ̂j), (4)

and

ξ̂l = â + b̂h(ϕsim, ϕobs),
ξ̂obs = â + b̂h(ϕobs, ϕobs) = â,

where â and b̂ are obtained by fitting linear regression for the pilot run. Moreover, v̂ar(ξ̂j)
is the sample variance of the j-th component of ξ̂ and it is also provided by the pilot
run. Notice that for Gibbs point processes model, ξ is the log transformed parameter
vector. Specifically, ξ is (logβ, logγ) for the Strauss process and (logκ, logη) for the area-
interaction process.

We further propose and implement another way of constructing the discrepancy
measure by rescaling the function h(ϕu, ϕv) based on the pilot run. The form of the
discrepancy measure is

drescale(T(ϕobs),T(ϕsim)) = w1|h1(ϕobs, ϕsim)|+ w2|h2(ϕobs, ϕsim)|, (5)

where w1, w2 are the scales provided by the inverse of the maximum absolute value
of the elements of h(ϕu, ϕv) for the pilot run, i.e., w1 = 1/max(|h1(ϕobs, ϕpilot)|) and
w2 = 1/max( |h2(ϕobs, ϕpilot)|). The goal of this approach is to rescale the effect of each
element in the discrepancy measure to a common level.

The surface of the log discrepancy measure from Shirota and Gelfand (2017) and
the proposed surfaces based on the pilot run are shown in Figures A1, A2, and A3 (in
the Appendix). The value of each pixel in the surfaces is the log discrepancy between
the observed point pattern and the simulated point pattern that is generated using the
corresponding parameter values on the axes. Smaller discrepancy values indicate that the
simulated and observed point pattern are similar. For the simulation study, we expect
that the pixel associated with the true parameter value will minimize the discrepancy.
However, we can see that the area having minimum discrepancy value is significantly
larger than one pixel and that the value of neighboring pixels are also small. This be-
havior illustrates the identifiability issue associated with the Gibbs point process, i.e.,
different parameter value combinations can generate similar point patterns in terms of
the discrepancy measures discussed in this study. We mitigate the identifiability effect by
using an informative prior; simulation results are shown in Section 5. Also, the value of
the surfaces from Shirota and Gelfand (2017) are smaller than the values of the surfaces
for the proposed method because of the lack of information. The flatness of these surfaces
can also cause inefficiencies in the ABC algorithm.

4. Simulation Study: Vague Prior

For this study, we implement a uniform prior for the ABC rejection algorithm. In
other words, we generate proposed parameter values from a uniform distribution with
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reasonable lower and upper bounds for both the Strauss process and the area-interaction
process. The crucial components of the discrepancy measures are the number of points
in the point pattern and the estimated summary characteristics over interaction range
[0, rmax]. For the K, D and F -function, we choose a moderately large rmax = 0.18
based on a sensitivity study. However, rmax is 0.08 for the J-function since the value
of J-function is either highly unstable or undefined for large r. For the pilot run, we
generate 100 parameter values equally spaced in the pre-specified parameter space, e.g.,
a sequence of β from 50 to 400 and a sequence of γ from 0 to 1. Thus, there are
10,000 combinations of parameter values in total, and the corresponding realizations are
generated to calibrate the coefficients â, b̂, w1 and w2 for the discrepancy measure. The
acceptance threshold ε is set to be the 1% percentile of drescale(T(ϕobs),T(ϕsim)) for the
pilot run. To simulate point patterns from the specified process in the ABC and pilot
run, we assume that the interaction distance is known, however it can also be estimated
using profile maximum pseudo-likelihood in practice. Finally, 1000 samples are accepted
as the posterior realizations. The simulation study is conducted based on 50 realizations
from each process, and the average estimate of the model parameters are compared in
the following sections.

4.1. Strauss point process

We first consider the homogeneous Strauss process with strong interaction on the
unit window, W = [0, 1] × [0, 1]. Following the same parameterization of (3), we set
β = 200, γ = 0.1 and r = 0.05. The simulation algorithm used to generate the point pat-
terns is the dominated coupling from the past algorithm (Berthelsen and Møller, 2003).
The prior distributions that are used as proposal kernels for β and γ are U(50, 400)
and U(0, 1), and the estimation results are shown in Table 1. Each metric in this ta-
ble corresponds to the discrepancy measures based on different summary statistics and
structures (Formulas (4) and (5)). Specifically, K(r) represents the discrepancy measure
proposed by Shirota and Gelfand (2017). For the remaining metrics, the name of the
metric indicates the functional characteristic that is used in the ABC and the method
used to construct the discrepancy measure is shown in the parentheses, e.g., D-function
(regression) means that the discrepancy measure is constructed by linear regression with
summary statistics based on the D-function and number of points.

Considering the point estimate and standard deviation of the posterior distribution
for each parameter, the algorithm proposed by Shirota and Gelfand (2017) has the best
performance, since the average posterior median provides the smallest bias for the main
effect and second smallest bias for the interaction effect. Additionally, the posterior stan-
dard deviations are the smallest for both parameters among all of the algorithms. ABC
with the discrepancy measure constructed based on the D-function and rescaling method
also has a competitive performance, and therefore, both algorithms can be considered in
order to fit the Strauss process. However, the large posterior standard deviation indi-
cates that the estimates are affected by the apparent identifiability issue inherited from
the underlying mechanism of the Gibbs processes.

4.2. Area-interaction point process

We also conducted a simulation study for the homogeneous area-interaction process
with strong interaction on unit window W . By implementing the canonical scale-free
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Table 1: The average posterior mean, median and standard deviation for
Strauss process with vague prior: K(r) represents the algorithm proposed by
Shirota and Gelfand (2017), “regression” and “rescaling” indicate that the
discrepancy measure is constructed based on Formulas (4) and (5). The bold
numbers represent the best and second best value in each column.

Metric Parameter True value Average mean Average median Average SD
K(r) β 200 203.5 200.4 35.65

γ 0.1 0.125 0.113 0.070
D-function β 200 251.9 248.2 51.37
(regression) γ 0.1 0.097 0.084 0.063
D-function β 200 206.5 202.9 41.81
(rescaling) γ 0.1 0.120 0.103 0.080
K-function β 200 226.2 220.7 57.87
(regression) γ 0.1 0.147 0.123 0.109
K-function β 200 195.9 192.5 42.18
(rescaling) γ 0.1 0.173 0.141 0.135
F -function β 200 182.5 179.4 40.94
(regression) γ 0.1 0.265 0.228 0.187
F -function β 200 182.9 180.1 40.14
(rescaling) γ 0.1 0.248 0.210 0.184
J-function β 200 197.0 194.0 39.50
(regression) γ 0.1 0.182 0.156 0.128
J-function β 200 194.9 192.0 37.70
(rescaling) γ 0.1 0.167 0.142 0.119

version, we set κ = 50, η = 7 and r = 0.05. Here, setting the disc radius of the area-
interaction process to be 0.05 implies that the interaction distance is 0.1. For this process,
the prior distributions of κ and η are U(10, 400) and U(1, 30). The estimation results of
50 realizations from the area-interaction process are shown in Table 2. The average mean
and median show that only using the J-function as the summary statistic can provide
reasonable estimates for both parameters. Although, the discrepancy measure based on
the K-function and D-function can provide a reasonable estimate of one parameter, the
posterior standard deviations are significantly larger than using J-function. Moreover,
the discrepancy measure based on the J-function outperforms the one proposed by Shi-
rota and Gelfand (2017).

Overall, the most robust estimator in this case is the median of the posterior sample
from the ABC algorithm based on the discrepancy measure constructed by the summary
statistic J-function and rescaling method. Similar to the Strauss process, the large pos-
terior standard deviations indicate that the identifiability issue still exists for the area-
interaction process.

5. Simulation Study: Informative Prior

In order to reduce the effect of the identifiability issue that was illustrated in Fig-
ures A1, A2, and A3 (in the Appendix), we implemented a class of informative prior
distributions for the ABC. For the Strauss process, the prior of the main effect is a shifted
gamma distribution and for the interaction effect a truncated normal distribution. Simi-
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Table 2: The average posterior mean, median and standard deviation for area-
interaction process with vague prior: K(r) represents the algorithm proposed
by Shirota and Gelfand (2017), “regression” and “rescaling” indicate that the
discrepancy measure is constructed based on Formulas (4) and (5). The bold
numbers represent the best and second best value in each column.

Metric Parameter True value Average mean Average median Average SD
K(r) κ 50 99.95 80.62 69.83

η 7 6.760 3.912 6.647
D-function κ 50 141.4 122.1 88.04
(regression) η 7 4.457 2.933 4.112
D-function κ 50 100.3 77.65 72.66
(rescaling) η 7 6.737 4.833 5.703
K-function κ 50 65.46 54.12 42.05
(regression) η 7 9.811 7.893 6.902
K-function κ 50 73.15 63.53 41.36
(rescaling) η 7 7.820 6.193 5.646
F -function κ 50 89.12 75.14 56.49
(regression) η 7 6.661 4.293 6.146
F -function κ 50 93.53 80.33 57.59
(rescaling) η 7 6.155 3.980 5.682
J-function κ 50 46.53 38.53 29.30
(regression) η 7 9.604 8.450 5.387
J-function κ 50 58.78 49.16 35.06
(rescaling) η 7 9.000 7.880 5.221

larly, the shifted gamma distribution is used for both parameters of the area-interaction
process. The summary statistics and discrepancy measures considered are the same as in
Section 4.

5.1. Strauss point process

We consider an informative prior as the proposal kernel for the ABC. In order to
generate enough points to estimate the summary characteristics, we set a lower bound for
the prior of the main effect by shifting it to the right. Specifically, the prior distributions
for β and γ are

β − lβ ∼ G((β̂ − lβ)2/σβ, σβ/(β̂ − lβ)), (6)
γ ∼ N[0,1](γ̂, σ2

γ), (7)

where lβ = 50, σβ = 300 and σγ = 0.1. β̂ and γ̂ are the estimated parameter values using
stochastic approximation. Thus, the mean and variance of the shifted gamma distribu-
tion for β are β̂ and σβ. For γ, we choose a standard deviation that is not too large over
the parameter space [0, 1] to preserve the information from the stochastic approximation.
In order to demonstrate the consistency of the stochastic approximation, we show that
the average of the estimated parameter values for β and γ over 50 realizations are 200.7
and 0.098, respectively.

The simulation results of the same realizations of Section 4.1 are shown in Table 3.
From this table, we can see the improvement in terms of the point estimate when com-
pared to the estimate from stochastic approximation, is limited and that the estimated
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Table 3: The average posterior mean, median and standard deviation for
Strauss process with informative prior: K(r) represents the algorithm pro-
posed by Shirota and Gelfand (2017), “regression” and “rescaling” indicate
that the discrepancy measure is constructed based on Formulas (4) and (5).
The bold numbers represent the best and second best value in each column.

Metric Parameter True value Average mean Average median Average SD
K(r) β 200 200.2 202.0 16.51

γ 0.1 0.111 0.116 0.063
D-function β 200 206.2 199.8 16.40
(regression) γ 0.1 0.110 0.104 0.051
D-function β 200 200.5 199.9 15.87
(rescaling) γ 0.1 0.104 0.098 0.051
K-function β 200 202.6 201.9 16.51
(regression) γ 0.1 0.122 0.116 0.063
K-function β 200 200.1 199.5 15.68
(rescaling) γ 0.1 0.112 0.105 0.062
F -function β 200 199.9 199.4 15.36
(regression) γ 0.1 0.123 0.118 0.067
F -function β 200 199.3 198.8 15.35
(rescaling) γ 0.1 0.118 0.111 0.066
J-function β 200 200.4 199.8 15.55
(regression) γ 0.1 0.117 0.112 0.062
J-function β 200 199.6 199.0 15.38
(rescaling) γ 0.1 0.113 0.107 0.060

values are close for different summary statistics and discrepancy measures. However,
ABC provides significant reduction of the standard deviation when compared with the
standard deviation of the prior distribution, which is an indication of Bayesian learning.
The maximum standard deviation reductions for the distribution of β and γ are 11.4% and
49%, respectively. Notice that the discrepancy measure proposed by Shirota and Gelfand
(2017) shows good point estimates of the parameters. However, combining the results
from the point estimates and the posterior standard deviation, using the D-function as
the summary statistic, and constructing the discrepancy measure by rescaling, provides
the most robust performance. More importantly, implementing the informative prior can
significantly improve point estimation and reduce the posterior standard deviation, in
contrast to the ABC with vague prior.

5.2. Area-interaction point process

We also implement the informative prior for the area-interaction process. The right
shifted gamma distribution is used as the prior distribution for κ and η,

κ− lκ ∼ G((κ̂− lκ)2/σκ, σκ/(κ̂− lκ)),
η − lη ∼ G((η̂ − lη)2/ση, ση/(η̂ − lη)),

where lκ = 10, lη = 1, σκ = 300, ση = 100, κ̂ and η̂ are the estimates from stochas-
tic approximation. That is, the mean and variance of the shifted gamma distribution
for κ and η are (κ̂, σκ) and (η̂, ση). We choose to use large prior variances to ensure
that the choice of prior will not dominate the results of the analysis. Alternatively, the
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Table 4: The average posterior mean, median and standard deviation for
area-interaction process with informative prior: K(r) represents the algorithm
proposed by Shirota and Gelfand (2017), “regression” and “rescaling” indicate
that the discrepancy measure is constructed based on Formulas (4) and (5).
The bold numbers represent the best and second best value in each column.

Metric Parameter True value Average mean Average median Average SD
K(r) κ 50 58.11 55.64 17.67

η 7 7.521 6.834 3.310
D-function κ 50 60.72 58.42 17.52
(regression) η 7 7.360 6.873 2.753
D-function κ 50 57.18 54.79 16.75
(rescaling) η 7 7.726 7.158 3.051
K-function κ 50 56.33 54.60 15.46
(regression) η 7 7.843 7.061 3.924
K-function κ 50 58.02 56.17 15.63
(rescaling) η 7 7.154 6.504 3.335
F -function κ 50 59.02 56.64 17.63
(regression) η 7 7.311 6.642 3.311
F -function κ 50 59.34 56.92 17.66
(rescaling) η 7 7.221 6.566 3.241
J-function κ 50 51.10 49.33 13.83
(regression) η 7 7.324 6.808 2.967
J-function κ 50 53.74 51.90 14.32
(rescaling) η 7 7.623 7.098 3.030

truncated gamma distribution can be used as the proposal kernel to simulate parameters
with a specific mean, variance, and positive lower bound. The average estimates from
the stochastic approximation of κ and η over the 50 realizations used in Section 4.2 are
56.57 and 7.151, and the simulation results are shown in Table 4. By comparing the
average posterior mean, median, and standard deviation with the prior distribution, we
see significant improvements in terms of the point estimate and reduction in standard
deviation, i.e., the maximum reduction for κ and η are 20.2% and 70.3%, respectively.
Among all the possible combinations, using the J-function as the summary statistic to
construct the discrepancy measure provides the most robust results for both parameters
and using regression or rescaling methods do not drastically affect the performance of
the J-function. Similar to the results in Section 4.2, the proposed discrepancy measures
based on the J-function outperform the one proposed by Shirota and Gelfand (2017).
Also, implementing the informative prior significantly improves point estimation and re-
duces the posterior standard deviation for all the approaches.

6. Real Data Application

6.1. Swedish pines data

The Swedish pines data, shown in Figure 1(a), contains the locations of 71 pine
saplings in a 9.6 by 10 meter window provided (Strand, 1972). Previous analyses on this
data include Ripley (1981), Venables and Ripley (1997) and Baddeley and Turner (2000).
All the results indicate that the interaction distance r is 0.7. To be proportional with the



236 J. CHEN, A. C. MICHEAS AND S. H. HOLAN [Vol. 18, No. 2

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5

(a)

4610

4620

4630

4640

4650

4660

420 430 440 450 460

X

Y

(b)

Figure 1: (a) The Swedish pines data: locations of 71 pine saplings in a 9.6
m × 10 m window first studied by Strand (1972). The data is available in
the R package “spatstat”. (b) Chicago crime data: locations based on UTM
projection of 564 Chicago homicide incidents in 2018. The data is published
by the City of Chicago Data Portal.

window size, the maximum interaction distance rmax is 0.8 for the J-function and 1.8 for
the other summary characteristics. By assuming the Strauss process, the point estimates
for β are between 1.49 and 3.29 and for γ are between 0.20 and 0.29 in the previous
analyses mentioned above. In our study, we fit the Strauss process and area-interaction
process to this dataset by using the ABC algorithm with different discrepancy measures
and prior distributions

For the Strauss process, informative and vague priors are implemented in the ABC
algorithm. Similar to Section 5, the prior distributions are gamma and truncated nor-
mal distribution with the mean provided by the estimate of the parameter values from
stochastic approximation, i.e., β̂ and γ̂ are 2.262 and 0.197, respectively. The standard
deviations of the prior distributions are

√
30 and 0.1, respectively. The results from the

ABC are shown in Table 5. For all the ABC algorithms, the acceptance threshold is the
1% percentile of the discrepancy measure in the pilot run. The overall results indicate
strong inhibition between points in the point pattern and the values are consistent with
the previous studies. Moreover, the standard deviations of the posterior distributions
show significant reduction when compared with the prior standard deviations. For the
vague priors, U(0.5, 40) and U(0, 1) are used for β and γ. The results are included in
Table A1 in the Appendix and indicate larger posterior standard deviation. However,
the overall results based on the vague prior are still consistent with the ones from the
informative prior and previous studies.

We also fit an area-interaction process to the Swedish pines data, and the estimates
show strong inhibition as well. However, a goodness-of-fit test shows lack of fit for the
area-interaction process compared with the Strauss process. We included the estimates
of the area-interaction process in the Appendix.
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Table 5: The posterior mean, median, standard deviation and 95% credible
interval of Strauss process for the Swedish pines data with informative prior:
K(r) represents the algorithm proposed by Shirota and Gelfand (2017), “re-
gression” and “rescaling” indicate that the discrepancy measure is constructed
based on Formulas (4) and (5).

Metric Parameter Mean Median SD 95% CI
K(r) β 2.877 2.494 1.766 (1.471, 7.175)

γ 0.203 0.196 0.089 (0.047, 0.381)
D-function β 1.960 1.732 1.024 (0.694, 4.479)
(regression) γ 0.211 0.204 0.078 (0.078, 0.379)
D-function β 2.047 1.878 0.945 (0.782, 4.401)
(rescaling) γ 0.207 0.201 0.077 (0.077, 0.265)
K-function β 5.134 4.006 4.190 (1.070, 16.06)
(regression) γ 0.201 0.196 0.069 (0.080, 0.343)
K-function β 2.783 2.449 1.462 (0.935, 6.691)
(rescaling) γ 0.201 0.200 0.077 (0.058, 0.361)
F -function β 2.894 2.755 0.846 (1.659, 5.029)
(regression) γ 0.168 0.163 0.089 (0.016, 0.360)
F -function β 2.881 2.748 0.850 (1.658, 4.951)
(rescaling) γ 0.167 0.163 0.087 (0.162, 0.356)
J-function β 2.406 2.234 0.761 (1.311, 4.250)
(regression) γ 0.156 0.150 0.077 (0.021, 0.311)
J-function β 2.616 2.479 0.801 (1.465, 4.605)
(rescaling) γ 0.164 0.158 0.082 (0.022, 0.343)

6.2. Chicago crime data

The Chicago crime data contains locations of reported homicide incidents in Chicago
during 2018. The source of the raw data is the City of Chicago Data Portal which is an on-
line resource summarizing incidents of crime that occurred in the city of Chicago (https:
//data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2).
As demonstrated in Figure 1(b), we use the Universal Transverse Mercator (UTM) coor-
dinates for incident locations and the city boundary as the irregular domain of this point
pattern. It is obvious that the point pattern shows significant clustering. Thus, we have
reason to assume the data is generated from an attractive point process.

In order to be consistent with the simulation study, we assume that the process is
homogeneous and proceed to fit the area-interaction process to this point pattern using
the ABC algorithm. The disc radius of the area-interaction process is 0.35, which is
calculated based on maximizing the profile pseudo-likelihood. Following the same choices
in the simulation study, the maximum interaction distance rmax is 2 for the J-function
and 7 for the other summary characteristics. Also, we implemented the gamma distribu-
tion as the informative prior along with the prior mean provided by the estimates from
stochastic approximation. The prior mean and standard deviation for κ are 0.3575 and
1 and for η are 24.2648 and 30.

For all the ABC algorithms, the acceptance threshold is the 1% sample percentile
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Table 6: The posterior mean, median, standard deviation and 95% credible
interval of area-interaction process for the Chicago crime data with informa-
tive prior: K(r) represents the algorithm proposed by Shirota and Gelfand
(2017), “regression” and “rescaling” indicate that the discrepancy measure is
constructed based on Formulas (4) and (5).

Metric Parameter Mean Median SD 95% CI
K(r) κ 0.346 0.265 0.114 (0.175, 0.586)

η 35.74 27.18 26.69 (9.035, 102.4)
D-function κ 0.495 0.448 0.216 (0.180, 0.994)
(regression) η 21.68 14.65 22.54 (1.605, 88.19)
D-function κ 0.542 0.468 0.292 (0.197, 1.300)
(rescaling) η 20.46 13.40 22.69 (0.605, 77.62)
K-function κ 0.078 0.012 0.162 (0.001, 0.561)
(regression) η 18.40 8.497 25.86 (0.046, 90.69)
K-function κ 0.590 0.447 0.469 (0.159, 1.841)
(rescaling) η 27.03 15.30 34.82 (0.094, 126.0)
F -function κ 0.372 0.353 0.131 (0.172, 0.642)
(regression) η 32.60 24.29 27.39 (5.625, 105.9)
F -function κ 0.488 0.392 0.316 (0.175, 1.383)
(rescaling) η 28.57 20.32 28.35 (0.484, 100.6)
J-function κ 0.381 0.363 0.119 (0.191, 0.661)
(regression) η 29.32 25.31 17.75 (8.026, 75.16)
J-function κ 0.417 0.381 0.189 (0.165, 0.912)
(rescaling) η 31.31 21.59 30.50 (2.258, 114.1)

of the pilot run. The results are shown in Table 6 and indicate significant attraction
between points. Similar to the results in Section 5, the ABC algorithm provides significant
standard deviation reduction for both parameters. We also use U(0, 5) and U(0, 150) as
the vague prior for κ and η. The results are included in Table A4 in the Appendix, which
show larger posterior variances for the parameters compared with the ones from the ABC
with informative prior. This indicates that the informative prior helps alleviate the lack
of identifiability.

7. Concluding Remarks

In this study, we compared the performances of several discrepancy measures for
the ABC algorithm and proposed new measures. The simulation results confirm several
aspects of our assumptions: the effect of different summary statistics on the estimation re-
sults, the improved performance of comparing the functional characteristics over a range
of interaction distances and the effect of implementing the informative prior for the ABC.

First of all, the candidate summary characteristics show different performances for
different point processes. This indicates that the choices of the most robust summary
statistic for the ABC algorithm is point process specific. Although the literature points
out that the choice should be a function of the sufficient statistic based on the sufficiency
principle, we observed that the nearest neighbor distance distribution function can also
provide competitive results for the Strauss process. Also, the F -function and J-function
are both sufficient statistics for the area-interaction process, but the simulation shows
that the J-function is more robust. Secondly, the discrepancy measure constructed by
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the K-function given a specific interaction distance K(r) out-performs the one that is con-
structed by the K-function over a range of interaction distances for the Strauss process,
but not for the area-interaction process. This result indicates that evaluating attrac-
tive point processes requires more information than repulsive point processes. Finally,
we demonstrated that applying an informative prior can significantly improve the point
estimates of the parameters and reduce the posterior standard deviation. However, the
identifiability issue of the Gibbs process cannot be completely eliminated by the current
approaches. The applications to the Swedish pines data and Chicago crime data show
that the ABC algorithm can be easily applied to point processes with regular and irreg-
ular windows.

In practice, we recommend that the analysis of the Gibbs point processes using
the ABC algorithm should proceed as follows. First, an appropriate model for the point
pattern should be specified based on an initial exploratory analysis. The Strauss process
can be considered for patterns with strong inhibition and the area-interaction process can
be considered for general clustered patterns. After choosing a specific model, one should
decide the best discrepancy measure for the chosen model. For the models included in
this study, the most robust discrepancy measures are provided. For other models, a sim-
ilar simulation study, to the ones conducted in this paper, can provide a good indication
for the best discrepancy measure. Finally, assuming that an informative prior is imple-
mented, the median of the posterior realizations from the ABC is usually the most robust
estimator of the parameters.

Since the Gibbs point process can be uniquely determined by the Papangelou condi-
tional intensity, our future work will be investigating possible choices of the nonparametric
estimate of the Papangelou and its implementation as the summary statistic for the ABC
algorithm in order to resolve the identifiability issue. Moreover, a non-homogeneous ver-
sion of the ABC algorithm will be developed. However, examining the non-homogeneous
Gibbs point processes can be challenging since the non-homogeneity of the main effect is
always confounded with the interaction effect.
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Appendix

Table A1: The posterior mean, median, standard deviation and 95% credible
interval of Strauss process for the Swedish pines data with vague prior: K(r)
represents the algorithm proposed by Shirota and Gelfand (2017), “regres-
sion” and “rescaling” indicate that the discrepancy measure is constructed
based on Formulas (4) and (5).

Metric Parameter Mean Median SD 95% CI
K(r) β 5.379 2.812 5.909 (1.367, 12.38)

γ 0.242 0.190 0.201 (0.018, 0.674)
D-function β 2.176 1.727 1.514 (0.617, 6.450)
(regression) γ 0.283 0.237 0.177 (0.057, 0.712)
D-function β 2.226 1.873 1.372 (0.660, 5.633)
(rescaling) γ 0.272 0.227 0.171 (0.053, 0.674)
K-function β 11.90 9.761 8.942 (1.345, 34.63)
(regression) γ 0.181 0.166 0.093 (0.052, 0.409)
K-function β 3.665 3.118 2.398 (0.900, 9.879)
(rescaling) γ 0.213 0.189 0.129 (0.029, 0.528)
F -function β 2.894 2.755 0.846 (1.659, 5.029)
(regression) γ 0.168 0.163 0.089 (0.016, 0.360)
F -function β 3.227 3.065 1.194 (1.393, 5.981)
(rescaling) γ 0.169 0.117 0.158 (0.004, 0.561)
J-function β 2.810 2.650 0.993 (1.307, 5.263)
(regression) γ 0.123 0.096 0.103 (0.004, 0.338)
J-function β 3.011 2.919 1.037 (1.381, 5.417)
(rescaling) γ 0.137 0.105 0.120 (0.003, 0.437)

A.1. Swedish pines data: fitted by the area-interaction process

The gamma distribution is used as the informative prior, with prior means 1.128 and
0.109 for κ and η. The standard deviations for the priors are

√
30 and

√
0.1, respectively.

The estimation results are shown in Table A2. The results also show strong inhibition
in the point pattern. We can see that the ABC algorithms with the J-function yield
smaller standard deviations for the main function and closer values to the estimate from
the Strauss process (Table 5). For the ABC with the vague prior, the prior distributions
are U(0.1, 40) and U(0, 1). The corresponding results are included in the Appendix, see
Table A3.
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Table A2: The posterior mean, median, standard deviation and 95% credible
interval of area-interaction process for the Swedish pines data with informa-
tive prior: K(r) represents the algorithm proposed by Shirota and Gelfand
(2017), “regression” and “rescaling” indicate that the discrepancy measure is
constructed based on Formulas (4) and (5).

Metric Parameter Mean Median SD 95% CI
K(r) κ 4.557 1.821 7.405 (0.344, 24.80)

η 0.055 2.410×10−4 0.210 (0.000, 0.450)
D-function κ 5.343 2.057 8.555 (0.330, 28.88)
(regression) η 0.046 2.083×10−4 0.181 (0.000, 0.417)
D-function κ 4.541 1.752 7.609 (0.265, 25.49)
(rescaling) η 0.057 2.630×10−4 0.236 (0.000, 0.461)
K-function κ 5.012 1.939 8.166 (0.272, 27.87)
(regression) η 0.036 1.839×10−4 0.137 (0.000, 0.307)
K-function κ 4.169 1.605 6.583 (0.252, 23.54)
(rescaling) η 0.058 2.470×10−4 0.223 (0.000, 0.495)
F -function κ 3.892 1.018 7.607 (0.071, 25.30)
(regression) η 0.083 15.08×10−4 0.291 (0.000, 0.704)
F -function κ 4.689 2.408 6.296 (0.618, 21.54)
(rescaling) η 0.065 2.640×10−4 0.245 (0.000, 0.610)
J-function κ 1.785 0.843 2.421 (0.127, 8.619)
(regression) η 0.090 9.084×10−4 0.247 (0.000, 0.867)
J-function κ 1.758 0.764 2.345 (0.005, 8.618)
(rescaling) η 0.075 4.930×10−4 0.263 (0.000, 0.664)

Table A3: The posterior mean, median, standard deviation and 95% credi-
ble interval of area-interaction process for the Swedish pines data with vague
prior: K(r) represents the algorithm proposed by Shirota and Gelfand (2017),
“regression” and “rescaling” indicate that the discrepancy measure is con-
structed based on Formulas (4) and (5).

Metric Parameter Mean Median SD 95% CI
K(r) κ 5.379 2.812 5.901 (1.367, 23.38)

η 0.242 0.190 0.201 (0.018, 0.674)
D-function κ 1.982 0.966 3.611 (0.305, 11.06)
(regression) η 0.308 0.237 0.282 (0.001, 0.942)
D-function κ 1.726 1.117 2.151 (0.276, 7.722)
(rescaling) η 0.342 0.290 0.281 (0.002, 0.945)
K-function κ 2.084 1.455 1.875 (0.300, 7.506)
(regression) η 0.342 0.290 0.258 (0.004, 0.913)
K-function κ 1.717 1.281 1.513 (0.270, 6.373)
(rescaling) η 0.350 0.268 0.289 (0.005, 0.956)
F -function κ 2.102 1.701 1.573 (0.565, 6.080)
(regression) η 0.375 0.334 0.287 (0.006, 0.958)
F -function κ 1.988 1.624 1.394 (0.587, 6.366)
(rescaling) η 0.373 0.302 0.294 (0.005, 0.965)
J-function κ 1.553 1.247 1.360 (0.199, 6.024)
(regression) η 0.390 0.335 0.297 (0.006, 0.965)
J-function κ 1.420 1.161 1.165 (0.165, 4.511)
(rescaling) η 0.388 0.348 0.286 (0.008, 0.958)
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Table A4: The posterior mean, median, standard deviation and 95% credi-
ble interval of area-interaction process for the Chicago crime data with vague
prior: K(r) represents the algorithm proposed by Shirota and Gelfand (2017),
“regression” and “rescaling” indicate that the discrepancy measure is con-
structed based on Formulas (4) and (5).

Metric Parameter Mean Median SD 95% CI
K(r) κ 0.304 0.273 0.110 (0.173, 0.568)

η 48.18 44.88 26.90 (9.206, 97.20)
D-function κ 0.398 0.334 0.208 (0.174, 0.927)
(regression) η 36.49 29.24 28.82 (1.648, 95.90)
D-function κ 0.434 0.343 0.272 (0.181, 1.188)
(rescaling) η 34.72 27.56 28.42 (0.867, 95.26)
K-function κ 0.123 0.032 0.174 (0.003, 0.653)
(regression) η 42.18 25.71 43.63 (0.138, 139.9)
K-function κ 0.370 0.245 0.320 (0.142, 1.372)
(rescaling) η 61.18 56.44 46.72 (0.557, 145.0)
F -function κ 0.304 0.266 0.121 (0.171, 0.616)
(regression) η 47.99 45.41 27.58 (6.391, 97.21)
F -function κ 0.367 0.282 0.241 (0.177, 1.045)
(rescaling) η 44.05 41.26 29.05 (1.182, 96.66)
J-function κ 0.423 0.408 0.111 (0.236, 0.656)
(regression) η 23.77 20.71 13.10 (7.700, 58.63)
J-function κ 0.300 0.250 0.160 (0.145, 0.733)
(rescaling) η 61.35 53.80 41.85 (4.342, 141.7)
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Figure A1: Surfaces of the log discrepancy measure from Shirota and Gelfand
(2017) for pilot run of Strauss and area-interaction process. (a) Strauss pro-
cess; (b) Area-interaction process. The symbol “X” indicates the true values
of the parameters.
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Figure A2: Surfaces of the log discrepancy measure constructed by regression
dreg(T(ϕobs),T(ϕsim)) for the pilot runs of the Strauss process. Each discrepancy
measure is constructed based on different summary characteristics: (a) K-
function; (b) D-function; (c) F -function; (d) J-function. The symbol “X”
indicates the true values of the parameters.
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Figure A3: Surfaces of the log discrepancy measure constructed by regression
dreg(T(ϕobs),T(ϕsim)) for the pilot runs of the area-interaction process. Each
discrepancy measure is constructed based on different summary character-
istics: (a) K-function; (b) D-function; (c) F -function; (d) J-function. The
symbol “X” indicates the true values of the parameters.
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Figure A4: Surfaces of the log discrepancy measure constructed by rescaling
drescale(T(ϕobs),T(ϕsim)) for the pilot runs of the Strauss model. Each discrep-
ancy measure is constructed based on different summary characteristics: (a)
K-function; (b) D-function; (c) F -function; (d) J-function. The symbol “X”
indicates the true values of the parameters.
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Figure A5: Surfaces of the log discrepancy measure constructed by rescaling
drescale(T(ϕobs),T(ϕsim)) for the pilot runs of the area-interaction model. Each
discrepancy measure is constructed based on different summary character-
istics: (a) K-function; (b) D-function; (c) F -function; (d) J-function. The
symbol “X” indicates the true values of the parameters.


