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Abstract

This paper review the theoretical framework of modeling high frequency financial data (HFD)
using a point process approach. We represent the financial event arrival times as the realization of
non-homogeneous Poisson process with an intensity function A(¢), which is assumed to be periodic.
In the case of HFD, this periodic pattern is quite well known, as the intensity of trades is higher
in the morning and just before closing the market and lower during the afternoon. We make an
attempt to study this intra-day cyclic behaviour with an intensity modelling approach using Bayesian
nonparametric method. The posterior consistency of the proposed nonparametric Bayesian procedure
is established. The Bayesian estimation of the intensity function is described for a specific case
where the conditions of the prior are satisfied. This paper is just a first step towards modelling
the HFD using point process approach and the corresponding Bayesian nonparametric analysis. It
may be mentioned that lot more computations need to be done to complete this ongoing work.

Key words: Bayesian nonparametrics; Financial point processes; High frequency financial data;
Intensity function; Intensity process.
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1. Introduction

The empirical studies in finance literature usually concentrate on opening, closing or average
prices of stocks from financial markets. However, due to technological advancements, researchers
can now work with the high frequency data (HFD), which contains details of all the transactions
along with the marks such as price, volume, time of transaction etc. Such data has attracted lot of
researchers and this has become a new area of research these days. Known as ‘high-frequency finance’,
it helps to understand the financial markets at a micro level, see Viens et al. (2011), Gregoriou
(2015) and Florescu et al. (2016) for a broad overview. Here, there can be details of hundreds of
transactions happening in a micro time interval corresponding to a particular stock from an electronic
stock exchange. An important feature of HFD is that the transactions are recorded as and when
they occur, hence the observations are irregularly time spaced. This prevents the use of standard
time series methods in high frequency finance. The timing of transactions carry substantial amount
of information, which can be used in studying the micro structure of a financial market. Therefore,
it is very important to model the time interval between transactions (durations) appropriately.
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One way of modeling the durations is to make use of the autoregressive-type conditional
duration (ACD) models introduced by Engle and Russell (1998), which attempts to model the time
between the events occurring at ¢;_; and ¢;, by defining x; =t; —t;_1, where {to,t1,...,t,...} is a
sequence of arrival times with 0=ty <t; <t <...<t, <.... The sequence {x;,zs,...} of non negative
random variables form the durations. Here, the arrival times ¢; may not necessarily mean the time
corresponding to consecutive trades. There can be other type of events of interest as well. For example,
t; can be time of occurrence of a volume event, which is said to have occurred if the cumulative trade
volume since the last volume event is at least a preset amount v. Similarly, price event is said to have
occurred if the cumulative price change since last price event is at least of a preset amount p. Thus,
x; is the interval between consecutive events of interest leading to trade, volume or price durations.

Let the conditional expected duration be
Vi =E(xi| Fi-1), (1)
where, F; is the information set at transaction ¢, that is, F; =o(x;,x;_1,,21). The main assumption
of an AC'D model is that the durations are of the form

€T;= 77ij €, (2)
where ¢; are independent and identically distributed (i.i.d) random variables with E(¢;)=1 (In fact,
without loss of generality, it is possible to assume that this is true). The above set up is very general
and it allows a variety of models which can be obtained by choosing different specifications for the
expected duration ¢ and different distributions for e. We refer to two interesting review papers
Pacurar (2008) and Bhogal and Ramanathan (2019) for detailed discussions on this approach.

Another approach of modeling HFD is using a point process. In this method, one represents
the event of arrival times as a realization of non-homogeneous Poisson process with an intensity
function A(t) having a specific structure. This method is usually known as financial point process
method. A further extension of this is modelling based on the intensity function of the process,
which leads to more flexible and powerful models. Such an approach is recommended when we deal
with multivariate processes, in which case, the conditional duration approach is not very successful
(see Russell (1999), Hautsch (2004) and Bauwens and Hautsch (2006)).

Researchers have been using the periodicity adjustment procedure of Engle and Russell (1998),
which we have also used to remove intra-day effect in a paper published recently Mishra and
Ramanathan (2017). However, WSu (2012) had claimed that this procedure is not very satisfactory.
Hence, using a non-homogeneous Poisson process may resolve the issue, as suggested by various
researchers in related problems. Belitser et al. (2013) proposed an M-estimator to estimate the
period of a cyclic non-homogeneous Poisson process, established its consistency and demonstrated
the effectiveness by applying it to a call center data. In our case, we already know the period,
which is ‘daily’ and hence we are not interested in estimating the period. Weinberg et al. (2007)
modelled the day-to-day as well as intraday variations in the same call center data using a normal
approximation to Poisson. Specifically, in finance, Andersen et al. (2019) develop a procedure to
test intra-day periodicity in return volatility. We propose a procedure to adjust the periodicity using
a Bayesian approach and prove its consistency.

Bayesian approaches for Hawkes models have received much less attention. The only con-
tributions for the Bayesian inference are due to Gulddahl (2013) and Blundell et al. (2012) who
explored parametric approaches and used MCMC to approximate the posterior distribution of the
parameters. Donnet et al. (2018) study the properties of Bayesian nonparametric procedures in
the context of multivariate Hawkes processes.
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The paper is organized a follows. In Section 2, we discuss the financial point process. Bayesian
nonparametric approach for financial point process is described in Section 3. Extensions to Hawke-type
processes is described in Section 4. Section 5 concludes with some future directions.

2. Financial Point Processes

Let {t;;i =1, ,n} denote a random sequence of increasing event times 0 < t; < - <t,
associated with an orderly (simple) point process. Then,
N(t)=> Iit<t
i>1
define a right-continuous counting function which gives the number of events of some type in the
time interval (0,t). The F-intensity process A(t) of the counting process N(t) is defined as

M) =lima o BN (4 8)~ N (D)), (3)

where F; =0{N(s);0<s<t}. Therefore, the sequence of event arrival times {t;} can be modeled
as a point process by modelling the intensity A(t).

The simplest type of point process is the homogeneous Poisson process defined by
Pr((N(t+A)=N(@)=1F) = I+o(A), (4)
Pr((N({t+A)=N(@)>1F) = o(A),

with o(A)/A—0, as A—0. Note that in this case, the intensity is constant and it leads to
L iEle e (\g)
P(t;>x)=P(N(x)<i) :2)7.
=

A straight generalisation from here is the case when the intensity function is a deterministic
function of time or a non-homogeneous Poisson process with intensity function A(¢). This can be
particularly useful in modelling the intra-day cyclic behaviour of durations with an appropriate
choice of A(t). One another possibility here is to use a marked point process defined with marks
such as arrival of buys, sells and certain limit orders, see Bauwens and Hautsch (2006).

3. Bayesian Point Processes

Let (N;)¢>0 be a non-homogeneous process on [0,77], that is, the sample paths of (N;):>o are
right-continuous step functions with Nyg=0 and with jumps of size 1. Let NV, be the number of
jumps in [0,t] and N; < oo almost surely. We assume the following about the process N(t) and the
intensity function A(t).

A1 For any disjoint subsets By,Bs,+,B,,, € B([0,17]), B(|0,77]) the random variables N(By),N(By),
-+,N(B,,) are independent random variables denoting the number of jumps in By,Bs,, B,
respectively.

A2 For any B € B([0,7]) the random variable N(B) is distributed as Poisson with parameter
A(B); where A is a finite measure on ([0,77,5([0,77)), called as the compensator of the process.

A3 A admits a density A with respect to the Lebesgue measure on B([0,77]). That is,

t
m:/A@@,
0

where, A(t) is called the intensity of N;.
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We estimate A(¢) using Bayesian procedure and establish the posterior consistency. Consistency
results for intensities of Poisson processes can be established by connecting and extending the two
main approaches regarding consistency for i.i.d. observations. The first approach, due to Schwartz
(1965), Barron et al. (1999), and Ghosal et al. (1999), requires construction of an increasing sequence
of sets, a sieve, and a sequence of uniformly consistent tests. This is the approach followed by
Belitser et al. (2015) and Donnet et al. (2018). An alternative approach, which we follow in this
paper, provided by Walker (2004) relies on a martingale sequence to obtain sufficient conditions
for posterior consistency in the i.i.d. case. This alternative approach, though equivalent to the use
of a suitable sieve, simplifies the verification of necessary conditions for consistency.

Below we state Theorem 1.3 of Kutoyants (1998) as a lemma.

Lemma 1: For any A, the law P, of N under the parameter value A admits a density p, with respect
to the measure induced by a standard Poisson point process with intensity 1. This density is given by

p()\):exp(/o log)\(t)dNt—/O (A(t)—1)dt).

Suppose we observe n independent non-homogeneous Poisson processes N N@ ... N on
0,7 with a common intensity A, which is a positive integrable function on [0,7]. Then, by Lemma
1, the likelihood is given by

Hexp/ log\(t )dNt(Z) /OT(/\(t)—l)dt).

We define the parameter space as
T
Fe {A: 0] %}m/ )\(t)dt<oo}.
0

Here, we are estimating the intensity function A(2), given NV, N®)...N™ ysing a Bayesian
nonparametric approach. Let A belong to the class F of intensities which need not be indexed by a
finite dimensional parameter. Let IT be a prior on F, IT: (F,o(F)) —[0,1]. Let II(.|] NV N ... N())
stand for the posterior distribution of A given the data. So, if B is a set of intensities, the posterior
mass assigned to it is given by

(BINW N®@ ... N®) = W’

Rn()\) :izl_{]iN(i)a/\O)

is the likelihood ratio with A\ € F being the true fixed but unknown transition density.

where

The Bayesian model is consistent if the posterior mass increases around Ay as n increases.
Suppose that a topology on F has been specified. Then posterior distribution is said to be consistent
at \g if for every neighborhood U of )y, we have that,

NUNY N .. NW) 50 a.s.

3.1. Posterior consistency

For a continuous function f on [0,77] we define the norms || f||2 and || ||~ as usual by defining

1 lla= / F2(t)dt, and. | fllso=supreppry| D).
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In the following theorem, we establish the posterior consistency of Bayesian procedure under a couple
of conditions on the prior assumed and on the space of intensity functions.

Theorem 1: For any given € >0, let A, be a set of intensities around the true intensity Ao € F

defined as,
A= (e F: VA= dol2> V2e). (5)

Let the prior II be such that

a) II(A:|[A—=Xo)|loo <€) >0 and

b) 224/TI(A}) <oco, where {A;} is a countable cover of size %((5 <e) for A

Then,
(A ND N@ .. N™) 50 a.s. (6)

Condition (a) is similar to Belitser et al. (2015) and Donnet et al. (2018). But we have an
easily verifiable condition (b), as compared to other conditions provided by the same authors.

Let the square of the Hellinger distance h(py,p,/) be defined as

(V)

py(N) ) )

where F) is the expectation corresponding to the probability measure under which the process IV is a
Poisson process with intensity function A. Let the Kullback-Leibler divergence K (py,p,/) be defined by

PA(N)
K(px,p')z—E(log( ))
g A py(N)
We state two lemmas before proving Theorem 1. Lemma 2 constitutes a part of Lemma 1 of
Belitser et al. (2015) and Lemma 3 is nothing but Theorem 4 of Walker (2004), which gives posterior
consistency result for density estimation. Proofs of these lemmas are omitted as they are available

in the references mentioned.

hQ(p,\,pX) =2(1-E,

Lemma 2: For the Hellinger distance h(py,p,/) and the Kullback-Leibler divergence K (py,py),
the following hold good.

() J5lVA= VX2 <h(papy) S V2(IVA=VX )

(i) [[A=20)lloc K (pr:py)

Lemma 3: Let A, be a set of intensities defined in terms of densities with respect to Poisson
measure py h-bounded away from p,,,

Ac=(AEF :h(pr,pr,) >€). (7)
Assume that the prior IT has the following properties:

Cl. TI(K (px,pr,) <€) >0

C2. 35 \/lI(4;) < o0, where {4;} i table h-cover of size (<) for A..
J;m oo, where {A;} is a countable h-cover of size §(<¢) for
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Then,
ANV N® . NW) 0 a.s. (8)

Proof: of Theorem 1: We can view our problem as a density estimation problem with respect to
the Poisson measure, and as a consequence, we have the posterior consistency of Lemma 3. By
Lemma 2(i), we have from (7) and (5), A, C A., which gives
I1(A.) —0=TI(A) —0. (9)

By Lemma 2(ii), we have

IT(A: IA—=Aol|oo <€) >0=TI(A: K (pr,p»,) <€) >0. (10)
Again, by Lemma 2(i), if {A;} is a countable h-cover of size 6(<e¢) for A, then {A;} is a countable
cover of size %((5 <e) for A_. Moreover, we also have, again by Lemma 3,

iN/H(A;)<oo:i\/H(Aj)<oo (11)

We have shown in (10) and (11) that condition (a) and (b) of Theorem 1 implies Lemma 3(C1) and
3(C2). Under these conditions, we have the result (8) of Lemma 3, which implies the result (6) of
Theorem 1 by (9). O

Thus we have proved a general result. We can use Theorem 1, to obtain the suitability of
specific priors. For clarification, we illustrate an example in the subsection below, but would like
to emphasize that these results may also be used to verify the posterior consistency of other priors.

3.2. Ilustration

There is a huge literature on prior construction for nonparametric models, where space of
functions serve as the parameter space, see Chapter 2 of Ghosal and van der Vaart (2017) for details.
The simplest and most popular is the random basis expansion, which we discuss briefly.

Given a set of basis functions ¢;:[0,7]— R, one way of constructing prior on intensity functions
A:[0,T] — Ry is by writing A =exp(3232,8;¢;) and putting priors on the coefficients 3; in this
representation. There can be many choices of bases, such as, polynomials, trigonometric functions,
wavelets, splines, spherical harmonics, etc. See De Boor (1978) for details on splines, Hérdle et al.
(2012) and Donald and Percival (2000) for details on wavelets and Fourier bases. Also see Appendix
E of Ghosal and van der Vaart (2017) for their approximation properties. For a given application,
the suitability of the prior is determined by the approximation properties of the basis together with
the prior on the coefficients. Rivoirard and Rousseau (2012) discussed a very general adaptive priors
based on wavelets and Fourier bases. Shen and Ghosal (2015) and Belister et al. (2014) carry out
a similar study for priors based on spline basis. Shen and Ghosal (2015) assumed the knots as fixed,
whereas, Belister et al. (2014) considered them as random.

We outline the procedure of estimation without getting into the details of computations.

Given infinite basis functions, the convergence of A is not guaranteed always. However, it
is true if and only if ZBJZ <00 a.s.. Let Bj~N (0,0?). To ensure that A\ defines a valid intensity
function with probability 1, it is sufficient that ) o; <oo. Conditions for posterior consistency can
be obtained by applying Theorem 1. Walker (2004) studied the same prior with adjustments for
density estimation case and obtained a sufficient condition as Z(Z—j)zm_% < oo for some sequence

w; satisfying Y w; <oo. Basically, if we want to use this basis representation as a prior on intensity
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functions, then we will put priors on 3;, which will induce a prior on intensity functions. Also we
want the prior on 3; to shrink to zero at an appropriate speed. For example, by taking o;ocj !¢
for any ¢ >0, this will be satisfied (put w;ocj =" for any r>0).

What we have provided till now is not a method of estimating the intensity, but, mentioned
the conditions that are to be verified, in order to justify the Bayesian procedure.

3.3. Bayesian estimation procedure using HFD

In order to estimate the intensity using the Bayesian procedure, appropriate choice of prior needs
to be made along with different bases, and then the posterior has to be computed. The purpose here is
not to estimate the intensity in detail, but, to throw some light on the procedure using a particular case.
The result will be true for any Bayesian procedure where the conditions on the priors are satisfied.

Let n denote the observed number of days of trading activity and T'n the total time in seconds
during which market operates everyday. For example, if market timing is 10 AM to 4 PM, then
T'=0 sec corresponds to the time 10:00:00 and 7'=21,600 sec corresponds to the time 16:00:00.
Then the complete event counting process is given by N ={N;:t€[0,nT]}, where N, denotes the
number of events in [0,¢]. The assumption of periodicity implies that A(t+7)=A(t), V ¢ >0. For
t=1,-+,n, the event arrival counting process during day ¢ may be defined as

Nt(l) =NG—yr+—Na—yr, t€[0,T].
Since the increments of the process N; are independent, the processes Nt(l) are independent non-
homogeneous Poisson processes with A as the intensity function, restricted to [0,7].

Our objective is to estimate the intensity function. Let A be a small grid of time, say 15
seconds, and m=T/A be the number of grids per day in the data set. Then the number of events
in the 5% time grid on day i is given by

_ (
which is assumed to follow a Poisson distribution with mean \; = féﬁl) AA(), for every i=1,--n

and j=1,--m. We denote the available data over grids as A"=(A;;:i=1,n,j=1,-;m). Hence,
the likelihood is given by

" n m \Ai eXPA;
L(MA™) z1_[1]1_[1 J A (12)
Putting a prior of the random basis type on A, we have
J
A= B (13)

This finite basis representation may not be truly non-parametric in nature. However, this problem
can be addressed by putting another prior on J (see Chapter 2, Ghosal and van der Vaart (2017)).
Therefore, a draw from prior I can be constructed as follows:

1. Draw J from a Poisson distribution with mean p (around 12).

2. Given J=j, draw /3 vector of j-independent N (0,0’?)

Given the data, likelihood (3.8) and the prior (3.9), we can use MCMC to sample from posterior
distribution, as it will be difficult to obtain the analytical form of the posterior. As long as the bases
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considered are fairly easy to evaluate and integrate, we can compute the likelihood and posterior
up to a normalising constant, without making any approximation. After that the computations will
be a straightforward adoption of existing MCMC methods Polasek (2012). Also, having the data,
form of the prior and the likelihood, we can use Stan programming language Carpenter et al. (2017),
which does the posterior computation automatically using the Hamiltonian Monte Carlo (HMC)
Betancourt (2017). While using HMC, proper care needs to be taken as a discrete parameter J
is introduced into the model, and HMC does not work in discrete parameter case. However, properly
augmenting HMC with Gibbs-type update for discrete parameter may circumvent this problem.
This demand further investigations in this front.

We need to do a detailed computation considering all the bases and their variations in order
to recommend an optimal choice of the prior and the basis for an intra-day periodicity adjustment.
To carry out this task with the data, there has to be some additional changes in the structure of
the intensity function. For example, here, we have considered the case of a Poisson process where
the intensity does not depend on the observations. But in real cases we can incorporate a dynamic
behaviour into the structure of the intensity function, so that, it actually affects the intensity of
events in the market. This can be achieved by using the Hawkes- type models for the counts. Next
we briefly discuss the Hawkes process and some of its generalizations.

4. Extensions to Hakwes-type Processes

A different generalization of the Poisson process is obtained by specifying A(¢) as a (linear)
self-exciting process given by

)\(t):,u—I—/O w(t—u)dN(u)=p+» w(t—t;) (14)

ti<t
where p(t) provides a Poisson base for the process and w(u) is a kernel (exciting). This process
is known as Hawkes process and was first proposed by Hawkes (1971) and was applied in seismology.
The generalisation capability in Hawkes process over Poisson comes from kernel, which allows
contribution by an event that occurs at a previous time t—k to intensity at time ¢. This kind of
a dynamic behaviour is not supported by the Poisson process.

following are some of the kernels that are frequently used in the case of Hawkes process.

1. Exponential kernel: The exponential kernel is given by
w(u)=afe ", u>0. (15)
This kernel implies an exponential decay in the effect of an event on future events and
drives the strength of the time decay and «, the overall strength of excitation.

2. Power-law kernel: The power-law kernel is given by
b0 (16)

(1+Bu)t+e’
This kernel implies a hyperbolic decay and capture long range dependence.

wlu)=

Another approach lies in using kernels that take the form of linear combination of exponential and/or
power functions with different rate constants, which might help in capturing different short and
long range dependence.
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The intensity given in (4.1) can also be generalised to accommodate marks. There may be
a mark, y; associated with the the event ¢;, that can affect the intensity. For example, a trade
with large volume may excite future trades more than a trade with small volume. Marks may be
contained within the kernel function as w(u,x). The Hawkes process with such a modification is
known as Marked Hawkes process.

Multivariate Hawkes models can be also obtained by a generalization of (4.1). In such a case,
A(t) is a K x 1 vector defined by A(t)=(A'(¢),-- A5 (t)) with

N = (0)+ 32 Y wn(t—th) (17)

m=lgk<y

The function w,,;, is a cross-exciting term with w,,(t—tF) being the contribution to the intensity
of type-m events made by a type-k event at ¥ .

The probabilistic properties of Hawkes processes are discussed in Hawkes (1971), and Brémaud
and Massoulié (1996). Hawkes and Oakes (1974) show that every self-exciting Hawkes processes can
be represented as a Poisson cluster process. Thinking of each event as a parent, an event occurring at
time ¢; gives birth to offspring according to a Poisson process with intensity w(t—t;) : these offspring
generate their own offspring, and so on. Ogata (1978) discusses the maximum likelihood estimation of
Hawkes process, whereas, asymptotic behaviour of such an estimate is investigated by Ozaki (1979).

Despite their usefulness, Hawkes-type models did not find their place in financial econometrics
for a long time. Bowsher (2007) applied Hawkes type model in financial econometrics for the first
time. He presented a continuous time, bivariate point process model ((4.4) with K=2) of the timing
of trades and mid-quote changes for a New York Stock Exchange stock. Estimation was performed
using maximum likelihood method as analytic likelihoods were available. Since then, there has
been various developments in finance related to applications of Hawkes process. Bacry et al. (2012)
introduced a non-parametric estimation method for multivariate Hawkes processes based on the
spectral factorization of the co-variance matrix and then applied it to tick-by-tick trades data of
a futures contract for a total period of 3.5 months. Da Fonseca and Zaatour (2014) proposed an
estimation strategy using the method of moments that can be solved almost instantaneously as against
the maximum likelihood estimates, and applied to trade arrival times of major stocks for observations
of 2 years. Fauth and Tudor (2012) used multivariate marked point processes in order to describe the
fluctuation in tick-by-tick data corresponding to trades in currency exchange (EUR,GBP,CHF,JPY).
Hawkes (2018), Bacry et al. (2015) and Bauwens and Galli (2009) gave excellent reviews of applications
of point process in finance. In spite of various applications after Bowsher (2007), there has been no
Bayesian study of point processes in finance. Bayesian methods can be advantageous while obtaining
the uncertainty about the intensity using the spread of the posterior distribution.

5. Concluding Remarks

In this paper, we have discussed the financial point process associated with the high frequency fi-
nancial data. With the nonhomogeneous assumption of the count process associated with the durations,
it is appropriate to estimate the intensity function A(¢) using a nonparametric functional approach. We
have addressed the problem using a nonparametric Bayesian method. This review paper is just a first
step towards the description of the problem and the associated research. An extensive computational
exercise needs to be undertaken by considering different basis combinations for intra-day periodicity
adjustment. We also plan to extend this study by investigating various theoretical as well as computa-
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tional aspects of Bayesian nonparametric approach of modeling the HFD using Hawkes-type models.
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