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Abstract
In this paper, we extend the construction method of Srivastava for a linear trend-

free balanced incomplete block design of size k=2 into a linear trend-free group divisible
design. Another construction method for linear trend-free group divisible design has also
been developed.
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1. Introduction

In specific experiments where several treatments are compared in blocks and within
blocks, the treatments are applied to the experimental units sequentially over time or space;
there is a possibility that a systematic effect or trend effect influences the observations in
addition to the block and the treatment effects. In such a situation, a common polynomial
trend in one or more dimensions is assumed to exist over the plots in each block of a clas-
sical experimental design. One may think of a suitable design that is orthogonal to trend
effects, in the sense that the analysis of the design could be done in the usual manner as
if no trend effects were present. Bradley and Yeh (1980) have called such designs as Trend
Free Block (TFB) designs. The idea is that starting from a block design, a good design
is chosen by permuting the treatments to plot positions within blocks. For example, Latin
square and Youden square designs with blocks formed by their column are trend-free designs.
TFB design has been extensively studied in the literature by Yeh and Bradley (1983), Chai
and Majumdarn(1993), Lal et al. (2005), Gupta et al. (2020), Srivastava R. (accessed on
21.11.2023) gave on the construction of TFB designs.

2. Notation and preliminary results

We assume that within blocks there is a common polynomial trend of order p on
the k periods that can be expressed by the orthogonal polynomials ϕα(l), 1 ≤ α ≤ p, on
l = 1, 2, . . . , k, where ϕα(l) is a polynomial of degree α. The polynomials ϕ1(l), . . . , ϕp(l)
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satisfy
k∑

l=1
ϕα(l) = 0,

k∑
l=1

ϕα(l)ϕα′(l) = δαα′

where δαα′ denotes the Kronecker delta, α, α′ = 1, 2, . . . , p.

If the trend is linear then, p = 1.

Let a design d will be represented by a k × b array of symbols 1, . . . , ν, with columns
denoting blocks and row periods. Thus, if the entry in cell (l, j) of d is i, it means that
under d, treatment i, has to be applied in period l of block j. Let D(ν, b, k) be all connected
designs in b blocks, k periods based on ν treatments.

Let d ∈ D(ν, b, k) and Sdil denote the number of times treatment i appears in row
(period) l. It has been shown by Chai and Majumdar(1993) that a design is linear trend-free
block (LTFB) design iff

k∑
l=1

Sdilϕ1(l) = 0, i = 1, . . . , ν (1)

where ϕ1(l) is the orthogonal polynomials of degree 1, l = 1, 2, . . . , k and Sdil denotes the
number of times treatment i appears in row (period) l.

Condition (1) holds for binary as well as non-binary designs, and also irrespective of
whether k is large, equal or smaller than ν, see Lin and Dean (1991). The polynomials ϕ1(l)
satisfy the condition

ϕ1(l) = −ϕ1(k − l + 1) (2)

In addition,

ϕ1

(
k + 1

2

)
= 0, when k is odd.

3. Construction of linear trend-free group divisible (LTFGD) designs

3.1. Extension of Srivastava construction

Srivastava proposed a construction method of linear trend-free (LTF) balanced incom-
plete block design (BIBD) with parameters v∗ = 2q + 1, b∗ = v∗(v∗ − 1)/2, r∗ = v∗ − 1, k∗ =
2, λ∗ = 1 for q positive integer. Then, such designs can be converted into LTF group divisible
(GD) designs by augmenting some more treatments and blocks.

Theorem 1: The existence of an LTFBIBD with parameter v∗ = 2q + 1, b∗ = v∗(v∗ −
1)/2, r∗ = v∗ − 1, k∗ = 2, λ∗ = 1 implies that an LTFGD design with parameters v =
v∗m, b = b∗m, r = r∗, k = 2, λ1 = 1, λ2 = 0, m, n = v∗.

Proof: Let D be an LTFBIB design. Consider a group divisible association scheme (GDAS)
on m different groups each of n = v∗ different treatments.

By using all treatments of every group of the GDAS as the treatment of the design,
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then b∗m blocks are constructed, resulting in a new incomplete block design, d with v =
v∗m, b = b∗m.

Obviously, r = r∗, k = k∗, m, n = v∗.

As all the treatments in a group of the GDAS are treated as treatments of the given
BIBD, D, with λ∗ = 1 any two treatments in the same group of GDAS occur once in a block
of d, i.e., λ1 = 1.

By the construction method of LTFBIBD, no two treatments from different groups
can occur together in any block of d. It follows that λ2 = 0.

From (2), ϕ1(1) = −ϕ1(2)

By the construction method of LTFBIBD, ∑2
l=1 Sdilϕ1(l) = 0, i = 1, . . . , v∗.

Now,
2∑

l=1
Sdilϕ1(l) =

v∗m∑
i=1

[Sdilϕ1(1) + Sdilϕ1(2)]

As each period of the LTFBIB design are replicated m times by the construction
method of LTFGD design.

2∑
l=1

Sdilϕ1(l) = m
v∗m∑
i=1

[Sdilϕ1(1) + Sdilϕ1(2)] = 0

Hence, proof of the theorem is complete.

Starting from an LTFBIB design with the parameters v∗ = 5, b∗ = 10, r∗ = 4, k∗ =
2, λ∗ = 1 when every treatment occupies all the period (viz. 1st and 2nd) the same number
of times, i.e., twice, a LTFGD is constructed as an example of the theorem 1.

Example 1: Given a group divisible association scheme (m=2, n=5) as follows

1st group: 0, 1, 2, 3, 4;

2nd group: 5, 6, 7, 8, 9,

using the LTFBIB design with the parameters v∗ = 5, b∗ = 10, r∗ = 4, k∗ = 2, λ∗ = 1,

θ −1 1
B1 a b
B2 a c
B3 d a
B4 e a
B5 b c
B6 d e
B7 b d
B8 e b
B9 c d
B10 c e
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considering 0, 1, 2, 3, 4 and again 5, 6, 7, 8, 9, the elements in the 1st group and in the 2nd
group respectively as treatments of the LTFGD design, 20 blocks of LTFGD design with the
parameters v = 10, b = 20, r = 4, k = 2, λ1 = 1, λ2 = 0, m = 2, n = 5, and the first row
represent the orthogonal trend component of degree one without normalization,

θ −1 1
B1 0 1
B2 0 2
B3 3 0
B4 4 0
B5 1 2
B6 3 4
B7 1 3
B8 4 1
B9 2 3
B10 2 4
B11 5 6
B12 5 7
B13 8 5
B14 9 5
B15 6 7
B16 8 9
B17 6 8
B18 9 6
B19 7 8
B20 7 9

3.2. LTFGD designs for k ≥ 2

Consider a GDAS with m groups each of n elements where the ith group is given by

Gi = {(i − 1)n + 1, (i − 1)n + 2, · · · , in}

Consider m latin square arrays of the same order n (whether they are the same or not, but
the order should be the same).

Treating all the n elements of the ith group as the elements of the ith latin square
and considering each column of the resulting ith latin square array with elements from Gi,
as block for each group, n blocks are constructed as given by

B
(i)
j = l

(i)
j (3)

where l
(i)
j is the jth column of the ith resulting latin square array Li, say, with elements

(i − 1)n + 1, (i − 1)n + 2, . . . , in from the ith group Gi. Continuing the same process for i,
we have mn blocks.

Taking p (positive integer) copies of these mn blocks B
(i)
j where i = 1, 2, . . . , m; j =

1, 2, . . . , n, the configuration yields an LTFGD as shown in the following theorem.
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Theorem 2: A series of LTFGD design with parameters v = mn, b = mnp, r = np, k =
n; m, n, λ1 = r, λ2 = 0 for p positive integer can always be constructed.

Proof: As the GDAS under consideration is on m different groups, each of n different
elements, so v = mn.

By the construction method of blocks given in the relation (3), from each resulting
latin square array Li, n blocks l

(i)
j , are constructed. Counting the p copies of n blocks from

the resulting latin square array Li for all i; i = 1, 2, . . . , m, the configuration has mnp blocks.
Further, any treatment of the ith group Gi gets replicated once in each of the columns of the
resulting latin square array Li and gets replicated n times in those n blocks B

(i)
j given by

the relation (3); j = 1, 2, . . . , n. By the process of taking p copies of each block, r = np.
Since each column of these m latin square designs has n distinct treatments, then

k = n.
The construction method of blocks given in the relation (3), it can be seen that any

two treatments from the ith group of the GDAS occurs together exactly once in each column
of the latin square array, under consideration, i.e., the ith latin square array, as any element
in a latin square array occurs exactly once in each column of the latin square array. So,
from those n blocks constructed based on the ith latin square array, any two treatments from
the ith group of the GDAS occurs together in n blocks which have been constructed based
on that ith latin square array. Treating of p copies of each of the constructed blocks by the
construction method given in the relation (3) gives as λ1 = np = r.

From the construction method of blocks given in the relation (3), it is known that no
two treatments from different groups occur together in any block. Thus, λ2 = 0.

Since every treatment of the ith group appears n times in each position l.
Then,

Sdil = number of times treatment i appears in position l

= n
By, ϕ1(l) = −ϕ1(k − l + 1); where ϕ1(l) is the orthogonal polynomial of degree 1 and
ϕ1[(k + 1)/2] = 0; when k is odd,

We get, ϕ1(l) = −ϕ1(k); ϕ1(2) = −ϕ1(k − 1) and so on.
Now, for k = even

k∑
i=1

Sdilϕ1(l) = n
k∑

i=1
ϕ1(l)

= n

[
ϕ1(1) + ϕ1(2) + · · · + ϕ1

(
k

2 − 1
)

+ ϕ1

(
k

2

)
+ ϕ1

(
k

2 + 1
)

· · · + ϕ1(k − 1)

+ϕ1(k)]

= n

[
ϕ1(1) + ϕ1(2) + · · · + ϕ1

(
k

2

)
− ϕ1

(
k

2

)
− · · · − ϕ1(2) − ϕ1(1)

]
= n × 0
= 0
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Again, for k = odd
k∑

i=1
Sdilϕ1(l) = n

k∑
i=1

ϕ1(l)

= n

[
ϕ1(1) + ϕ1(2) + · · · + ϕ1

(
k + 1

2 − 1
)

+ ϕ1

(
k + 1

2

)

+ ϕ1

(
k + 1

2 + 1
)

+ · · · + ϕ1(k − 1) + ϕ1(k)
]

= n

[
ϕ1(1) + ϕ1(2) + · · · + ϕ1

(
k + 1

2 − 1
)

+ ϕ1

(
k + 1

2

)

− ϕ1

(
k + 1

2 − 1
)

− · · · − ϕ1(2) − ϕ1(1)
]

= n × 0
= 0

Hence, proof of the theorem is complete.
An example of Theorem 2 is shown as an illustration below,

Consider GDAS(m = 2, n = 3) such that G1 = (1, 2, 3); G2 = (4, 5, 6) and also
consider 2 latin square arrays of order 3.

L1 =

a b c
b c a
c a b

 , L2 =

β γ α
α β γ
γ α β


From these Latin squares L1 and L2, by the construction method given in the relation

(3), using the elements (1, 2, 3) and (4, 5, 6), respectively given below

L∗
1 = (l1

1, l1
2, l1

3) =

1 2 3
2 3 1
3 1 2

 ; L∗
2 = (l2

1, l2
2, l2

3) =

5 6 4
4 5 6
6 4 5


Considering each column of L∗

1 and L∗
2 as blocks for each group

B
(1)
1 = l1

1 =

1
2
3

 ; B
(1)
2 = l1

2 =

2
3
1

 ; B
(1)
3 = l1

3 =

3
1
2

 ;

B
(2)
1 = l2

1 =

4
5
6

 ; B
(2)
2 = l2

2 =

5
6
4

 ; B
(2)
3 = l2

3 =

6
4
5

 .

Taking 2 copies of these 6 blocks, the configuration yields an LTFGD design, as shown
in the example given below.

Example 2: Following is a plan of LTFGD design with the parameters v = 6, b = 12, r =
6, k = 3, m = 2, n = 3, λ1 = 6, λ2 = 0 and 1st row represents orthogonal trend component of
degree one without normalization.
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θ −1 0 1
B1 1 2 3
B2 2 3 1
B3 3 1 2
B4 4 5 6
B5 5 6 4
B6 6 4 5
B7 1 2 3
B8 2 3 1
B9 3 1 2
B10 4 5 6
B11 5 6 4
B12 6 4 5
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