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Abstract
Model-based clustering techniques are based on the finite mixture models. In this pa-

per, an attempt is made to explore effect of the skewness in heterogeneous data using finite
mixture models to clustering. In particular, this paper deals with model-based clustering
using finite mixtures of multivariate lognormal distributions which can deal with skewness
effectively. The Expectation Maximization (EM) algorithm is used for computing maxi-
mum likelihood estimates for model parameters. To examine the performance of clustering
multivariate log normal mixtures models, some simulation studies are presented for hetero-
geneous data with asymmetric behavior. A real dataset is also used to illustrate the use of
finite mixtures of multivariate lognormal distributions to clustering.

Key words: Multivariate log normal distribution; Finite mixture model; Model based clus-
tering; EM algorithm.
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1. Introduction

Clustering is an unsupervised learning technique. Clustering is grouping of a set of data
objects into several clusters so that objects within a cluster have high level of similarity, but
they are dissimilar to the objects in other clusters. Clustering is also defined in a probabilistic
approach, where the notion of clusters is formalized through their probability distributions.
One of the main advantages of this probabilistic approach is that it can be interpreted from
a statistical point of view for the obtained clusters. In the model-based clustering methods,
the observations are generated from a mixture of probability distributions, in which each
component represents a different cluster. An extensive review of finite mixture models and
their clustering applications are given by Everitt and Hand (1981), Titterington et al. (1985)
and McLachlan and Peel (2000). Finite mixtures of multivariate Gaussian distribution are
widely used in model-based clustering. One may refer to McLachlan and Basford (1988),
McNicholas and Murphy (2008), Beak and McLachlan (2010) and among others. Melnykov
and Semhar (2016) have discussed about the challenges of model-based clustering such as
initialization techniques, dimension reduction and variable selection. However, clustering
based on Gaussian mixture models is not capable of reasonably fittings for heavy tails,
asymmetric and outliers to the heterogeneous data.
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Model-based clustering using finite mixture models with non-normal distributions have
received increasing attention and showed advantages in modeling heterogeneous data with
heavy tails, asymmetric and outliers. Non-normal finite mixture distribution plays an im-
portant role in clustering applications when the component densities are skewed and heavy
tailed. Karlis et al. (2002), Lin et al. (2007), Pyne et al. (2009), Soltyk and Gupta
(2011) have given application of univariate and multivariate finite mixtures of skew-normal
and skew-t distributions to clustering. Schnatter et al. (2010) have proposed Bayesian
approach for finite mixture models of univariate and multivariate skew-t and skew normal
distributions. The estimation of parameters in these mixture models is carried out by EM
algorithm. Lee and McLachlan (2013a) have provided finite mixture models with skew nor-
mal and skew-t distributions and it has increased importance in modeling data withequal
asymmetry and heavy tails simultaneously. Also, they have classified multivariate skew dis-
tributions into four types namely, ‘restricted’, ‘unrestricted’, ‘extended’ and ‘generalized’
forms. Lee and McLachlan (2013b) have compared the clustering performance of mixture
in multivariate skew normal and skew-t distributions with other non-normal mixture distri-
butions like generalized hyperbolic distributions, multivariate inverse-Gaussian distributions
and shifted asymmetric Laplace distributions. Lee and McLachlan (2014) have provided
some recent developments of mixtures in multivariate skew-t distributions. Also, they have
discussed about various characterizations of multivariate skew-t distribution. Further, they
have used existing EM algorithms for estimating the parameters of the restricted and unre-
stricted forms of multivariate skew-t mixture models. Sanjeena et al. (2014) have considered
univariate and multivariate normal inverse Gaussian distribution for model-based clustering
approach in finite mixture models and parameter estimation is carried out by the EM algo-
rithm. A shifted asymmetric Laplace distribution is considered for model-based clustering
by Franczak et al. (2014). A multivariate generalized hyperbolic mixture model was pro-
posed by Browne and McNicholas (2015). Adrian et al. (2016) proposed clustering using
multivariate normal inverse Gaussian distribution for heavy tails and asymmetric data. Mel-
nykov et al. (2018) have developed finite mixture modeling with components that can handle
skewness in matrix-valued data.

Although many non-symmetric distributions are available, model-based clustering us-
ing finite mixtures of multivariate lognormal distribution is considered in this paper. A finite
mixture of multivariate lognormal distribution is useful in modeling heterogeneous data with
asymmetric behaviour. In the present study, an attempt is made to obtain clusters for skewed
data based on model-based clustering using finite mixtures of multivariate lognormal dis-
tribution. A parsimonious family of finite mixtures of multivariate lognormal distribution
is also developed. Algorithms for model parameter estimation and initialization technique
are presented in this paper. Bayesian Information Criterion (BIC) and Akaike Information
Criterion (AIC) are used for model selection. The clustering performance is evaluated using
Adjusted Rand Index (ARI) and Misclassification Rate (MR). The performance of multi-
variate lognormal mixture models in clustering for real and simulated data are studied. The
proposed initialization method to determine the initial value for the component parameters
using EM algorithm is presented in the next section. The methodology for initialization
technique considered in this paper overcomes the issue of initial values in EM algorithm by
using K-means clustering with Mahalanobis distance measures.

The rest of this paper is organized as follows. Section 2 presents the initialization tech-
niques for model-based clustering approach. Section 3 describes the multivariate lognormal
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mixture models using EM algorithm. In Section 4 real and simulated datasets are applied for
multivariate lognormal mixture models to clustering and are compared to some well-known
existing methods in Section 5. In Section 6, some concluding remarks are given.

2. Initialization Technique for Multivariate Lognormal Mixture Models

The EM algorithm relies on the specified starting values for component parameters.
However, it is difficult to specify good starting values. Several research works have been
done for initialization for component parameters in EM algorithm. Mahalanobis distance
measure is used to capture the covariance structures of clusters. Mahalanobis distance
measure is used to identify and correctly classify non-spherical clusters for non-homogeneous
data. Mahalanobis distance measure overcomes the variable standardization by yielding
scale invariant classification. The proposed algorithm is presented below.

Algorithm

Input: Data X and the number of groups G

Output: Cluster Indicator z1, z2, ..., zn

1. Randomly select the mean vector according to G groups from the dataset X.

2. Compute Euclidean distance based on the mean vectors. Assigning each observation
nearest to the group mean vector. Compute the new mean vector ck; k = 1, 2, ..., G and
the covariance matrix Sk; k = 1, 2, ..., G based on the assignments.

3. While for 1, 2, ..., G do

4. Compute the Mahalanobis distance measure based on the new mean vector ck and the
covariance matrix Sk

D(xi, ck) =
√

(xi, c
(q)(t)

k )S−1(q)
k (xi, c

(q)
k )

5. Assignment: Assign each observation nearest to cluster center zik = 1 if D(xi, ck)

6. Update: Recalculate the mean and covariance matrix for (k = 1, 2, . . . , G) based on
the assignments.

c
(q+1)
k =

∑n
i=1 zikxi∑n

i=1 zik

S
(q+1)
k =

∑n
i=1 zik(xi, c

(q+1)
k )(xi, c

(q+1)
k )(t)∑n

i=1 zik

where, q is the iteration number and t represents the transpose.

7. end While

Based on the cluster indicators z1, z2, ..., zn the initial component parameter values
π

(0)
k , mu

(0)
k , Σ(0)

k . The initial values are used to initiate the EM algorithm for Multivariate
Lognormal (MLN) mixture models to clustering. The parameter estimation procedure is
derived in the following section.
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3. Parameter Estimation Procedure for Multivariate Lognormal Mixture Mod-
els

Let data X be a d-dimensional random variable which follows a multivariate lognormal
distribution with mean vector µ

k
and the covariance matrix Σk. The G-component finite

mixture model of multivariate lognormal distributions is given by

f(xi|Θ) =
G∑

k=1
πk

1
(2π)1/2|Σk|1/2|xi

e− 1
2 (ln(xi)−µ

k
)tΣ−1

k
(ln(xi)−µ

k
) (1)

where πk represents the mixing proportion with ∑G
k=1 πk = 1, 0 < πk < 1. The unknown

parameter Θ is {π1, π2, ..., πG−1, x1, x2, ..., xG, Σ1, Σ2, ..., ΣG}.

Consider the random sample of size n from multivariate Lognormal mixture models
defined the probability density function given in (1). EM algorithm [Dempster et al. 1977] is
used for the parameter estimation. The complete data in EM algorithm is written as (X, Z).
The observed data vector X = (x1, x2, ..., xn)T is viewed as incomplete. The component
label vector is defined as Z = z1, z2, ..., zn. The likelihood of complete data of multivariate
lognormal mixture model is given by

L(Θ; X, Z) =
n∏

i=1

G∏
k=1

[πkf(xi; µ
k
, Σk)]zik (2)

=
n∏

i=1

G∏
k=1

[πk
1

(2π)1/2|Σk|1/2|xi

e− 1
2 (ln(xi)−µ

k
)tΣ−1

k
(ln(xi)−µ

k
)]zik

The log-likelihood of complete data of multivariate lognormal mixture models is given by

l(Θ; X, Z) =
n∑

i=1

G∑
k=1

zik[logπk + log[ 1
(2π)1/2|Σk|1/2xi

] + −1
2(ln(xi) − µ

k
)tΣ−1

k (ln(xi) − µ
k
)]

(3)
The conditional expectation of the log-likelihood of multivariate lognormal mixture models
is given by

EZ|X l(Θ; X, Z) =
n∑

i=1

G∑
k=1

τik[logπk + f(xi; µ
k
, Σk)]

=
n∑

i=1

G∑
k=1

τik[logπk − nd

2 log(2π) + log(xi) − 1
2 log|Σk|−1 − 1

2[(ln(xi) − µ
k
)tΣ−1

k (ln(xi) − µ
k
)]]

E-step:

The expectation of l(Θ; X, Z) over Z|X based on current parameter choice Θs is
Q(Θ, Θ(s))

Q(Θ, Θ(s)) = EZ|X [l(Θ; X, Z); Θ(s)] (4)

=
n∑

i=1

G∑
k=1

τ̂iklogπk − nd

2 log(2π) +
n∑

i=1

G∑
k=1

τ̂iklog(xi) −
n∑

i=1

G∑
k=1

τ̂ik

2 log|Σk|−1

−
n∑

i=1

G∑
k=1

τ̂ik

2 [(ln(xi) − µ
k
)tΣ−1

k (ln(xi) − µ
k
)]
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where τ̂ik is the probability of observation i belonging to the group k based on the current
parameter choice Θ(s). It can be calculated by

τ̂
(s)
ik =

π
(s)
k f(xi; µ(s)

k
, Σ(s)

k )∑G
k=1 π

(s)
k f(xi; µ

(s)
k , Σ(s)

k )
(5)

M-step:

Find the estimate Θ̂, which maximizes Q(Θ, Θ(s)) for fixed Θ(s) subject to the equation∑G
k=1 πk = 1. Using Lagrangian method, we have

Ψ = Q(Θ, Θ(s)) + γ(1 −
G∑

k=1
) (6)

Maximizing the function Ψ with respect to πj and equation them zero, we get

π̂j =
∑n

i=1 τ̂ij

n
; j = 1, 2, ..., G (7)

Maximizing the function Q(Θ, Θ(s)) with respect to µ
j

and equating them zero, we get

∂(Θ, Θ(s))
∂µ

j

= 0

µ̂
j

=
∑n

i=1 τ̂ijln(xi)∑n
i=1 τ̂ij

(8)

To maximize the function Q(Θ, Θ(s)) with respect to Σj

= −1
2[

n∑
i=1

τ̂ijlog|Σj| + trΣ−1
j

n∑
i=1

[(ln(xi) − µ
k
)(ln(xi) − µ

k
)t]]

So, maximizing the function Q(Θ, Θ(s)) with respect to Σj is equivalent to maximizing
the above expression with respect to Σj. Here, Σ̂j is obtained by using the Lemma 3.2.2 of
Anderson (1984) and we get

Σ̂j =
∑n

i=1 τ̂ij[(ln(xi) − µ
k
)(ln(xi) − µ

k
)t]

τ̂ij

(9)

Another important objective of model-based clustering is to study the covariance struc-
tures. Fraley et al. (1998) have considered different covariance structures for Gaussian
mixture models to clustering techniques. Different covariance structures for multivariate
lognormal mixture models are developed in the following section.
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4. Estimation via Geometric Decomposition

To provide easy and simple interpretable models, Banfield et al. (1993) have param-
eterized the covariance matrices in terms of the eigen-value decompositions for Gaussian
mixture models. Fraley et al. (1998) considered an eigen-value decomposition of the cluster
covariance matrices to provide a wide range of parsimonious covariance structures. Fraley
et al. (2002) have provided an in-depth discussion of the eigen-value decomposition ap-
proach for finite mixture models to clustering. This work is implemented in the MCLUST
package. MCLUST package consists of 14 mixture models that arise from the imposition
of constraints upon the group of covariance matrix. MCLUST is the most well-established
package for model-based clustering technique using Gaussian mixture models. Details of the
constraints that can be imposed are summarized in Fraley et al. (2003, 2006) which is avail-
able in the R software. Fraley et al. (2012) summarized the covariance structures available
in the MCLUST package, corresponding to geometric characteristics such as shape, volume
and orientation. If the number of components is not specified, it assumes that the num-
ber of components lies between one to nine. Following this, EM algorithm is implemented
corresponding to each initial classification and estimates for parameters are obtained. Then
BIC is computed for each resulting mixture model. The model having highest BIC value is
identified as the best model.

Browne et al. (2014) have pointed out that the covariance technique of Celeux et al.
(1995) for the EVE and VVE models are computationally infeasible in higher dimensions.
They have proposed an alternative algorithm for these two models, based on an accelerated
line search on the orthogonal model. Browne et al. (2015) have developed another approach,
using fast maximization-minimization algorithms, for the EVE and VVE models. This ap-
proach is implemented in the mixture packages for R. Several other approaches have been
presented, and the excellent review of covariance structures is given by Bouveyron et al.
(2007).

From the above existing procedures, it is observed that different covariance structures
are important for multivariate non-normal mixture models. This paper considers the dif-
ferent covariance structures based on eigen-value decomposition techniques. Let us recall
the conditional expectation of the log-likelihood for multivariate lognormal finite mixture
models as given in the equation (4).

4.1. The Parsimonious MLN family of models

An eigen-value decomposition of the component covariance matrices is given by
Σk = λkDkAkDt

k (10)
where λk is a constant of proportionality, Dk is a orthogonal matrix of eigen vectors and Ak

is a orthogonal matrix of eigen vectors and det Ak = 1. Celeux et al. (1995) developed eight
eigen-value decomposition of a component covariance matrix. The volume of the cluster is
determined by λk. Dk determines the orientation of the clusters and Ak determines the shape
of the density contours. d is the number of dimensions in the datasets. The parsimonious
MLN mixture models, herein referred to as PMLN, whose density is given by

f(xi|Θ) =
G∑

k=1
πkf(xi; µ

k
, λkDkAkDt

k) (11)
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To fit the parsimonious MLN mixture models, EM algorithm is used. The details of pa-
rameter estimation methods are like those described in Section 3. To compute Σ̂k To fit
the parsimonious MLN mixture models, EM algorithm is used. The details of parameter
estimation methods are like those described in Section 3. For the most general MLN family
member (VVV model), the complete-data likelihood is given by

L(Θ; X, Z) =
n∏

i=1
[

G∏
k=1

[πk]zik [
G∏

k=1
f(xi; µ

k
, λkDkAkDt

k)]zik ]] (12)

where f(xi; µ
k
, λkDkAkDt

k) is the density of multivariate lognormal distribution with mean
vector µ

k
and covariance matrix Σk = λkDkAkDT

k .The conditional expectation of the com-
plete data log-likelihood Q is given by

Q(Θ, Θ(s)) = EZ|X [l(Θ; X, Z); Θ(s)] (13)

=
n∑

i=1

G∑
k=1

τ̂ik[logπk − nd

2 log(2π) + log(xi) − 1
2 log|Σk|−1 − 1

2[(ln(xi) − µ
k
)tΣ−1

k (ln(xi) − µ
k
)]]

The E-step of sth iteration consists of the component membership labels with their condi-
tional expected values is given by

τ̂
(s)
ik =

π
(s)
k f(xi; µ(s)

k
, λkDkAkDT

k
(s))∑G

k=1 π
(s)
k f(xi; µ

(s)
k , λkDkAkDT

k
(s))

To perform the decomposition for MLN mixture models, we follow the procedures outlined
in Celeux et al. (1995).

Sperical Family

In spherical family, the shape of the clusters is spherical. The shape of the covariance
matrix is always diag(1,1). Two spherical families are considered here.

(1) Fitting of EII model (Σ = λI )

First consider the simplest structure where every component has spherical shape and
equal volume. Substitute the Σk = Σ = λI in equation (13). The complete data log-
likelihood for the EII model is given by

l(λI) =
n∑

i=1

G∑
k=1

τ̂ik[logπk − nd

2 log(2π) + log(xi) − 1
2 log|λI|−1 − 1

2[(ln(xi) − µ
k
)tλI−1(ln(xi) − µ

k
)]]

(14)

= K −
n∑

i=1

G∑
k=1

τ̂ik

2 log det λI −
n∑

i=1

G∑
k=1

τ̂ik

2 [(ln(xi) − µ
k
)T (λI)−1(ln(xi) − µ

k
)]

= λ−1
G∑

k=1
tr(Wk) + dlog

G∑
k=1

n∑
i=1

τ̂ik
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= λ−1
G∑

k=1
tr(W ) + dlogλ

where K is the constant with respect to model parameters µ
k

and λ. Maximizing the equation
(13) with respect to λ, we get

Σ̂ = λ̂ = tr(W )
nd

=
∑G

k=1
∑n

i=1 τ̂ik[(ln(xi) − µ
k
)(ln(xi) − µ

k
)t]

nd

where n = ∑G
k=1

∑n
i=1 τ̂ik

(2) Fitting of VII model (Σk = λkI )

This is the second simplest model where the component has spherical shape and differ-
ent volume. Substitute in the equation (14) Σk = λkI in equation (13). The complete data
log-likelihood for the EII model is given by

l(λkI) =
n∑

i=1

G∑
k=1

τ̂ik[logπk − nd

2 log(2π) + log(xi) − 1
2 log|λkI|−1 − 1

2[(ln(xi) − µ
k
)tλkI−1(ln(xi) − µ

k
)]]

(15)

= K −
n∑

i=1

G∑
k=1

τ̂ik

2 log det λkI −
n∑

i=1

G∑
k=1

τ̂ik

2 [(ln(xi) − µ
k
)t(λkI)−1(ln(xi) − µ

k
)]

= λ−1
G∑

k=1
tr(Wk) + dlog

G∑
k=1

n∑
i=1

τ̂ik

= λ−1
G∑

k=1
tr(W ) + d

G∑
k=1

logλk

n∑
i=1

τ̂ik

where K is the constant with respect to model parameters µ
k

and λk. Maximizing the
equation (15) with respect to λk, we get

Σ̂k = λ̂k =
∑G

k=1
∑n

i=1 τ̂ik[(ln(xi) − µ
k
)(ln(xi) − µ

k
)t]

τkd
; k = 1, 2, ..., G

where τk = ∑n
i=1 τ̂ik

General Family

(3) Fitting an EVV model (Σk = λDkAkDT
k )

This is generalized model and the component has the same volume but different shape
and orientation. Substitute in the equation (13) Σk = λDkAkDT

k and Ck = DkAkDT
k ; Σk =

λCk. The complete data log-likelihood for the EVV model is given by

l(λCk) =
n∑

i=1

G∑
k=1

τ̂ik[logπk − nd

2 log(2π) + log(xi) − 1
2 log|λCk|−1

−1
2[(ln(xi) − µ

k
)tλC−1

k (ln(xi) − µ
k
)]]

(16)
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= K − 1
2

n∑
i=1

G∑
k=1

τ̂ik2log|λCk| +
G∑

k=1
tr(Wk)(λCk)−1

where K is the constant with respect to model parameters Ck and λ. The equation (16) is
maximizing with respect to Ck and λ and equating them zero. We get,

Ĉk =
∑n

i=1 τ̂ik(ln(xi) − µ
k
)(ln(xi) − µ

k
)T

| ∑n
i=1 τ̂ik(ln(xi) − µ

k
)(ln(xi) − µ

k
)t|

1
d

and

λ̂k =
| ∑n

i=1 τ̂ik(ln(xi) − µ
k
)(ln(xi) − µ

k
)t |

1
d

n

Σ̂k = λ̂Ĉk

(4) Fitting an EEE model (Σk = Σ = λDADt)

This model is a common model for all components and it considers same size, volume
and orientation. Substitute in the equation (13) Σk = Σ = λDADt. The complete data
log-likelihood for the EEE model is given by

l(λDADt) =
n∑

i=1

G∑
k=1

τ̂ik[logπk − nd

2 log(2π) + log(xi) − 1
2 log|(λDADt)|−1

−1
2[(ln(xi) − µ

k
)t(λDADT )−1(ln(xi) − µ

k
)]]

(17)

= K −
n∑

i=1

G∑
k=1

τ̂ik

2 log|λDADT | −
n∑

i=1

G∑
k=1

τ̂ik

2 [(ln(xi) − µ
k
)t(λDADt)−1(ln(xi) − µ

k
)]

= K − 1
2[tr(WΣ−1) + nlog|Σ|]

where k is the constant with respect to the model parameters µk, λ, DandA.

W =
G∑

k=1
Wk =

n∑
i=1

τ̂ik[(ln(xi) − µ
k
)(ln(xi) − µ

k
)t)]

and

n =
n∑

i=1

G∑
k=1

τ̂ik

EEE model is unconstrained model and it’s considered common covariance matrix.

Σ̂k = W

n
=

∑n
i=1

∑G
k=1 τ̂ik(ln(xi) − µ

k
)(ln(xi) − µ

k
)t

n
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(5) Fitting an VVV model (Σk = λkDkAkDt
k)

This is the most generalized model. This is the model where every component has
different shape, different volume and different orientation. VVV model is the unconstrained
model. Substitute in the equation (13) Σk = λkDkAkDt

k. The complete data log-likelihood
for the VVV model is given by

l(λkDkAkDt
k) =

n∑
i=1

G∑
k=1

τ̂ik[logπk − nd

2 log(2π) + log(xi) − 1
2 log|λkDkAkDt

k|−1

−1
2[(ln(xi) − µ

k
)t(λkDkAkDt

k)−1(ln(xi) − µ
k
)]]

(18)

= K − 1
2

n∑
i=1

G∑
k=1

τ̂ik2log|λkDkAkDt
k| +

G∑
k=1

tr(Wk)(λkDkAkDt
k)−1

where K is the constant with respect to model parameters µk, Dk, Ak and λk.

Σk =
∑G

k=1 Wk

n
=

∑n
i=1 τ̂ik[(ln(xi) − µ

k
)(ln(xi) − µ

k
)t)]

τk

; k = 1, 2, ..., G

where
τk =

n∑
i=1

τ̂ik

The summary of eigen-value decomposition covariance structures is given in the Table 1.

Table 1: Nomenclature, scale matrix structure and the number of free scale pa-
rameters for the eigen-decomposed family of models

Model λk Ak Dk Σk NumberofCovarianceParameters

EII Equal Spherical - λI 1
VII Variable Spherical - λkI G

EVV Equal Variable Variable λDkAkDT
k

Gd(d+1)
2 − (G − 1)d

EEE Equal Equal Equal λDADT d(d+1)
2

VVV Variable Variable Variable λkDkAkDT
k

Gd(d+1)
2

Covariance Estimation

An alternative estimation method for covariance matrix is presented in this paper.
The decomposed elements of the covariance matrix are updated according to the following
algorithm. τik represents the probability that observation i belongs to group k given the
current component parameters

nk = τik =
πkf(xi; µ

k
, Σk)∑G

j=1 πjf(xj; µ
j
, Σj)

; j ̸= k
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M-step involves the conditionally maximizing the parameters with respect to complete log-
likelihood. The estimated mixing proportion and sample cross-product matrix for the kth
component is given by

π̂k = nk

n
; k = 1, 2, ..., G

Wk =
n∑

i=1
nk(xi − µ

k
)(xi − µ

k
)t; k = 1, 2, ..., G

1. Iteration q = 1

2. Update

λk =
∑G

k=1 tr(nk.Wk)
nd

where n is the number of observations and d is the dimension.

3. Update
Ak = diag(nk.Wk)

|nk.Wk| 1
d

4. Update
Dk = nkWkak

Where ak is the largest eigen value of Wk

5. Update Ak, Dk, λk in Σk

6. Calculate Eq = 1
λ
tr(nkλkDkAkDT

k + n ∗ dlog(λ))

7. If t > 1, Eq − Eq − 1 > ϵ . If true t = t + 1 and return step 2 , or else end.

Five types of covariance structures are considered for finite mixtures of multivariate
lognormal distributions to clustering. All covariance models based on eigen-value decompo-
sition structures are used in the M-step of the EM algorithm. The description of the EM
algorithm for MLN mixture models is given below.

EM Algorithm

1. Initialization: The initial values of π
(0)
k , mu

(0)
k , Σ(0)

k are obtained using the algo-
rithm in Section 2.

2. E-step: The conditional Expectation (τ̂ik
(q)) of the group membership for each

observation is obtained using the equation (5).

3. Mstep: Update the parameters π̂j
(q) and µ̂j

(q) using the formula (7) and (8). Five
parsimonious covariance models for MLN mixtures which are derived in the Section 4.1 are
updated in the M-step.

4. Compute the log-likelihood l
(q)
j and l

(q+1)
j and Compare l

(q+1)
j and l

(q)
j . —— l

(q+1)
j −

l
(q)
j || < ϵ. STOP.
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5. E-step and M-step are repeated till the same log-likelihood values are met.

After the convergence is reached, the (τ̂ik
(q)) is the posterior probability of compo-

nent membership for each observation and it is used to cluster the observation into groups.
Predicated membership is obtained through Maximum A Posterior probability (MAP).

5. Experimental Results

In this section, the clustering performance of PLMN mixture models is assessed in
terms of BIC, AIC, ARI and misclassification rate through simulated as well as real datasets.
Numerical comparison of PMLN mixture models have been made with Multivariate Skew
Normal (MSN) and Multivariate Normal (MN) mixture models. All numerical computations
have been implemented through a program developed in R.

5.1. Simulation Experiment

Here, we consider a finite mixture of multivariate Lognormal distribution with three
components. Random sample of size n = 262, 270 and 268 are simulated with parame-
ters µ1 = (0.29, 0.685), µ2 = (1.68, 0.69), µ3 = (0.88, 1.71) with same covariance matrix

Σ =
[
0.1986 0.8876
0.8876 0.8876

]
. The mean vectors and covariance matrix are generated from the

clusterGeneration package which is available in R. Figure 1 displays the scatter plot of the
simulated dataset.

Figure 1: Scatter plot for simulated data

The initial component parameter values are obtained using the algorithm in Section
2. All the covariance models are initiated with the same initial values of the component
parameters. The initial values are obtained iteratively till the same cluster membership
labels are met. From the cluster membership labels, the initial mixing proportion, initial
mean vector and initial covariance matrix are calculated. The initial values are presented in
Table 2.
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Table 2: Initial parameter values of three-component MLN mixture models

Component 1 π1 = 0.5211 µ1 = (0.29, 0.685) Σ1 =
[
0.1986 0.8876
0.8876 0.8876

]

Component 2 π2 = 0.238 µ2 = (2.27, 0.57) Σ2 =
[
0.5392 1.0275
1.0275 6.2978

]

Component 3 π3 = 0.2409 µ3 = (1.24, 2.65) Σ3 =
[
0.9786 2.9376
2.9376 9.2136

]
Table 3: Clustering performance of various multivariate mixture models

Distributions Model BIC AIC MR ARI Log likelihood
MLN EII 3380.15 3279.15 0.10 0.7169 -1523.851
MLN VII 3256.14 3126.86 0.11 0.7328 -1503.132
MLN EEE 3178.23 2814.25 0.09 0.8354 -1523.57
MLN EVV 3445.76 3437.52 0.04 0.8369 -1529.57
MLN VVV 3045.28 3012.19 0.07 0.7425 -1496.09
MSN EEV 3389.461 3145.58 0.155 0.8269 -1467.04
MN EEE 3193.09 3436.29 0.133 0.7932 -1498.96

Figure 2: Scatter plot for five MLN mixture models

Different covariance structures in multivariate lognormal mixture models are consid-
ered. The clustering results of the simulated dataset are provided in Table 3. From Table
3, it is observed that EVV model gives lowest misclassification rate (0.04). The ARI is 83
% with BIC 3445.76 and AIC 3437.52. Among five covariance structures of MLN mixture
models, EVV model achieved the highest ARI. The best model (EVV) is compared with
other multivariate mixture models. The ARI value for MLN mixture model ranges from
0.71 to 0.83 which indicates that the dataset is classified with greater precision. EEV model
gives better clustering performance for multivariate skew normal mixture models and EEE
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Figure 3: Contour plot for the EVV model

model provides better clustering results for multivariate normal mixture models. The results
of both model are shown in Table 3. Table 4 provides the estimated parameter values of
EVV model in case of MLN mixture models.

Table 4: Estimated parameter values of three-component MLN mixture (EVV)
model

component 1 π1 = 0.5901 µ1 = (1.07, 0.974)t Σ1 =
[
0.09379 0.9396
0.9396 4.2789

]

Component 2 π2 = 0.111 µ2 = (2.005, 0.772)t Σ2 =
[
0.3327 2.0235
2.0235 5.1936

]

Component 3 π3 = 0.3989 µ3 = (1.984, 2.728)t Σ3 =
[
0.9726 2.9506
2.9506 8.9349

]

From the table, correctly classified samples are presented here. That is, Almost 81% of
samples are correctly classified for all models of MLN mixture models. The best model for
MLN mixture gives 95% correct classification of the simulated dataset. For multivariate skew
normal mixture, EEV model achieved 85 correct classification. Multivariate normal mixture
models EEE model gives 87% correct classification. Figure 2 depicts the estimation of the
cluster memberships into three clusters for the five models. In these figures, the clusters are
indicated by three different characters (+, o and D). The volume of the five models is:

i) λI : λ = 0.2996

ii) λkI : λ1 = 0.983, λ2 = 2.371, λ3 = 0.693

iii) λDADt : λ = 3.2996

iv) λDkAkDt
k : λ = 5.2996

v) λkDkAkDt
k : λ1 = 1.283, λ2 = 3.591andλ3 = 7.753
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The contour plot of the best (EVV) model is shown in Figure 3. The contour plot
shows the different volume, size and orientation of the three clusters. The best fitted model
is selected based on BIC and AIC value. It is also noticed that from the simulated dataset,
general models perform better than spherical models.

5.2. Real Data (Old Faithful Dataset)

In this section, old faithful dataset is used for the PMLN mixture models. This dataset
contains two variables (eruptions and waiting) and 275 observations. It is a bivariate dataset
measuring the length of eruption and time to eruption, both variables are in millimeters.
This dataset is available in R software. Many researchers have analyzed this dataset for
model-based clustering approach. This dataset does not have true class labels. The original
plot of the faithful dataset is shown in Figure4, where the observations are displayed into
two clusters very clearly.

Figure 4: The bivariate Old faithful dataset

Table 5: Initial parameter values of two-component faithful dataset

Component 1 π1 = 0.5389 µ1 = (3.457, 70.794)t Σ1 =
[

1.3899 14.3525
14.3525 182.461

]

Component 2 π2 = 0.4611 µ2 = (3.518, 71)t Σ2 =
[

1.2232 13.7003
13.7003 188.5333

]

We compare the clustering performance of MLN, MSN and MN mixture models. The
initial values of component parameters are calculated based on the algorithm as given in
Section 2. Initial values of faithful datasets are presented in the Table 5.

For MSN and MN mixture models the best results are given in Table 6. The classifica-
tion plot of each model for MLN mixture models are displayed in Figure 5. The clusters are
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Table 6: Clustering performance of various multivariate mixture models

Distributions Model BIC AIC Log likelihood
MLN EII 1876.912 1844.562 -796.53
MLN VII 1887.072 1854.825 -769.94
MLN EEE 1889.649 1883.544 -868.27
MLN EVV 1825.195 1852.052 -893.82
MLN VVV 1895.839 1869.302 -788.28
MSN EVV 1892.361 1825.427 -834.25
MN VVV 2371.702 2148.597 -919.29

Table 7: Estimated parameter values of two-component faithful dataset

Component 1 π1 = 0.653 µ1 = (3.093, 71.814)t Σ1 =
[

1.2903 14.1739
14.1739 181.281

]

Component 2 π2 = 0.347 µ2 = (2.948, 70.542)t Σ2 =
[

1.2232 13.8103
13.8103 187.4933

]

Figure 5: Scatter plot for five models using multivariate lognormal mixture mod-
els

represented by different symbols. VVV model gives good clustering results for multivariate
normal mixture models. The parsimonious family of multivariate lognormal distributions
shows that the clusters have different volume and size. The contour plot in Figure 6 shows
different volume and size of clusters. Estimated parameters of VVV models for MLN mix-
tures are given in the Table 7.

The number of observations in each cluster for MLN, MSN and MN mixture models
are presented in Table 8. The volume of the clusters is given below:

i) λI : λ = 197.17

ii) λkI : λ1 = 180, λ2 = 69

iii) λDADt : λ = 109.26
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Table 8: Clustering table for multivariate mixture models

MLN Mixture Model MSN MN
Clusters EII VII EEE EVV VVV EVV VVV
Cluster 1 177 99 174 170 178 175 168
Cluster 2 95 173 98 102 94 97 104

Figure 6: Contour plot for VVV model for multivariate lognormal mixture model

iv) λDkAkDt
k : λ = 166.1296

v) λkDkAkDt
k : λ1 = 170, λ2 = 110

6. Conclusion

In this paper, a family of parsimonious MLN mixture models is introduced through
an eigen-value decomposition of the components covariance matrix. From simulation exper-
iments, the general (EVV) covariance model provides best clustering results than spherical
models. The results of real dataset showed that all covariance model gives better clustering
results according to BIC and AIC criteria. Proposed initialization techniques plays impor-
tant role, because it gives reliable and true estimated parameter values for components. It is
noticed that among general covariance models from numerical experiments, VVV gives good
clustering results. VVV model allows with different size, volume, and orientation. Some
parsimonious models give good clustering results, because those covariance models are close
to the structure of the data.
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