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Abstract

Dimension reduction techniques are effective in dealing with high-volume data. Con-
sidering streaming data, in this study we introduce a dimension reduction algorithm when
non-linear relationships exist between variables. We propose a copula-based feature ex-
traction algorithm to extract streaming most informative components. Using a simulation
study we show that our proposed algorithm has a better performance compared to other
traditional feature extraction methods. We also use the extracted components to make a
prediction analysis. A real-time analysis of online Apple stock data has been provided to
illustrate the merits of our approach. Moreover, we carry out feature extraction as well as
a prediction analysis in the COVID-19 and Real-time Bitcoin dataset and show that our
method benefits the prediction accuracy.
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1. Introduction

Recent advancements in information technology have led to the generation of a large
volume of data that requires online analysis and intelligent processing to extract useful infor-
mation. One key concept that holds significant importance in this field is the data stream,
which is an endless collection of countable elements that enter the system continuously and
are analyzed by various processes to generate new results (c.f., Margara and Rabl (2019)).

The data stream has created various research challenges, especially yielding big data,
so, reducing the dimension of the data has received more attention. Generally, dimension
reduction refers to the process of reducing the number of random variables under considera-
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tion by obtaining a set of principal variables, and is commonly used in fields such as pattern
recognition, data mining, and machine learning. As some instances, we refer to van der
Maaten et al. (2009) and Sarveshwaran et al. (2019), Jia et al. (2022), Salem and Hussein
(2019).

In the context of the data stream, researchers have used dimension reduction methods
to simplify the analysis of complex streaming data sets, improve the performance of data
mining algorithms, and reduce storage and computational requirements. Yan et al. (2006)
have proposed an effective dimensionality reduction for a larger scale and streaming data;
Upadhyay et al. (2013) have investigated dimension reduction techniques in data stream
mining; Xie et al. (2020) have introduced an efficient dimension reduction for streaming
multi-view data and Zheng et al. (2022) have used graph diffusion for a streaming feature
selection. In this work we have we propose a feature extraction algorithm as a subcategory
of dimension reduction in the data stream. Bahri et al. (2020) have studied feature trans-
formation techniques for data streams. Park and Lee (2020) have studied a linear dimension
reduction method for streaming data. Moreover, since time series are the special case of
the data stream models, dimension reduction techniques have been carried out by the re-
searchers. For further study in this area, we refer to Wang and Megalooikonomou (2008)
and Park et al. (2010), Krawczak and Szkatu la (2014).

As another challenge of the data stream, the relationship between variables varies
over time by increasing the amount of data. The concept of dependence between variables
can be explained using copula functions which can address the linear and nonlinear depen-
dencies of the variables (c.f., Sheikhi et al. (2022a)). Houari et al. (2016) have introduced
a new technique for reducing the dimensionality of multi-dimensional data using Copulas.
Qu (2012) have refereed to the feature extraction using the copula function. Simard and
Remillard (2013) utilized the copula function to model time series model also presented a
prediction method for the time series using a copula function.

Also, nowadays, GPU graphics processors are used to perform complex calculations in
fields such as machine learning, scientific simulations, and image and video processing. These
processing units are very efficient due to the ability to perform a large number of operations
simultaneously and help improve graphics quality and processing speed (c.f., Misic et al.
(2012), Ram (2023)).

In this article, we propose our Stream Copula Feature Extraction (SCFE) algorithm
to reduce the dimensionality of data in data streams by extracting the main principal com-
ponents. Then, we apply the extracted components as new informative inputs for prediction
purposes several studies have been done in this context. Sheikhi et al. (2022b) have been
working on the topic of dimension reduction in neural networks using copula function, Zeng
and Wang (2022) have introduced a dimension reduction approach called Neural Copula.
Carrillo et al. (2021) have presented a machine learning prediction algorithm based on a
copula function. Toharudin et al. (2019) have used a combination of copula and neural
networks for forecasting. Qu (2012) in their article focuses on feature extraction using
Archimedes copula. However, those methods were inefficient in dealing with streaming data.
The structure of this work is as follows. Section 2 introduces a couple-based feature extrac-
tion algorithm and uses the extracted components to carry out a prediction analysis. Section
3 is devoted to providing numerical analysis of the proposed algorithm by simulated and real
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datasets, and finally, Section 4 brings some concluding remarks.

2. Stream copula feature extraction

One of the most important methods in dimensionality reduction is feature extraction.
Feature extraction leads to dimensionality reduction by combining the main features. From
this perspective, constructing a new set of components is usually more compact and has a
greater distinguishing property (c.f., Mutlag et al. (2020)). The main question here is what
to do if the variables are not necessarily related linearly? This question will become an
important issue when these non-linear connections vary over time.

Feature extraction methods may consider non-linear relationships but do not consider
the dependency between variables (c.f., Fukunaga and Short (1978), Zhu (2010)), so there
is a need for a method to consider the dependency between variables. On the other hand,
in the data stream, variables may show different behaviors at each moment, and exploring
these behaviors will help researchers extract the most informative components. In this study,
we attempt to copula function to study the dependency between variables in streaming data
and we present a method for feature extraction.

Consider a continuous random vector (X1, X2, ..., Xn). Let Fj be the marginal cu-
mulative distribution function (CDF) of Xj for j = 1, 2, ..., n, and F be the joint CDF. We
apply the probability integral transform and define Uj := Fj(Xj), j = 1, 2, ..., n. Since Xj

is assumed to be continuous, Uj ∼ U(0, 1) follows a uniform distribution. Then the CDF of
(U1, U2, ..., Un) is the copula of (X1, X2, ..., Xn) (c.f., Nelsen (2006)). Denoting this copula
function as C, we have

C(u1, u2, ..., un) = F (F1(x1), F2(x2), ..., Fn(xn))

Assume that at the time t, the vectors x
(t)
1 , x

(t)
2 , x

(t)
3 , ..., x(t)

n , are pairwise copula re-
lated random vectors. In this case, the Kendall’s association is as τ (t) = (τi,j)(t), i, j =
1, 2, ..., n, t = 1, 2, ..., where

(τi,j)(t) = τ
X

(t)
i ,X

(t)
j

= 4
∫ 1

0

∫ 1

0
C

X
(t)
i ,X

(t)
j

(u(t)
i , u

(t)
j )dC

X
(t)
i ,X

(t)
j

(u(t)
i , u

(t)
j ) − 1, i, j = 1, 2, ..., n.

It is known that the copula association measures such as Spearman’s ρ and Kendall’s τ
can better capture the non-linear dependencies in contrary to Pearson’s correlation (c.f., Zeng
and Wang (2022)). As a motivated example for implementing the time, consider z consist
of t = 25 observation from a normal distribution and z1, z2, z3, zf and ze are respectively,
linear, quadratic, cubic, cumulative normal, and an exponential transform of z. Figure 4-a
depicts the differences between the values of pairwise Pearson’s correlation and the values of
pairwise Kendall’s association of variables z, z1, z2, z3, zf and ze for the first five time points;
Figure 3-b shows this difference for the first 10 time points, and so on, Figure 3-f compares
these two measures for all 25 time points.

As Figure 3 reveals, due to the small number of observations, i.e., t = 5, there may be
a linear relationship between the variables, but with the passage of time and the increase of
observations, e.g., t = 25, the intensity of a linear relationship decreases while the Kendall’s
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Table 1: Pairwise Pearson’s and Kendall measures at time 1 (first five observa-
tions), time 2 (first ten observations),..., time 5 (all twenty five observations)

time Pearson’s correlation matrix Kendall’s association matrix

time1


1 0.867 0.870 0.934 0.910

0.867 1 0.995 0.636 0.993
0.870 0.995 1 0.638 0.995
0.934 0.636 0.638 1 0.704
0.910 0.993 0.995 0.704 1




1 0.800 1 1 1

0.800 1 0.800 0.800 0.800
1 0.800 1 1 1
1 0.800 1 1 1
1 0.800 1 1 1



time 2


1 0.731 0.819 0.950 0.864

0.731 1 0.968 0.498 0.968
0.819 0.968 1 0.601 0.993
0.950 0.498 0.601 1 0.668
0.864 0.968 0.993 0.668 1




1 0.280 1 1 1

0.280 1 0.280 0.280 0.280
1 0.280 1 1 1
1 0.280 1 1 1
1 0.280 1 1 1



time 3


1 0.523 0.782 0.959 0.807

0.523 1 0.871 0.305 0.907
0.782 0.871 1 0.577 0.987
0.959 0.305 0.577 1 0.619
0.807 0.907 0.987 0.619 1




1 0.270 1 1 1

0.270 1 0.270 0.270 0.270
1 0.270 1 1 1
1 0.270 1 1 1
1 0.270 1 1 1



time 4


1 0.519 0.770 0.961 0.805

0.519 1 0.865 0.310 0.903
0.770 0.865 1 0.566 0.984
0.961 0.310 0.566 1 0.623
0.805 0.903 0.984 0.623 1




1 0.400 1 1 1

0.400 1 0.400 0.400 0.400
1 0.400 1 1 1
1 0.400 1 1 1
1 0.400 1 1 1



time 5


1 0.400 0.752 0.967 0.783

0.400 1 0.810 0.206 0.859
0.752 0.810 1 0.562 0.982
0.967 0.206 0.562 1 0.704
0.783 0.859 0.982 0.613 1




1 0.013 1 1 1

0.013 1 0.013 0.013 0.013
1 0.013 1 1 1
1 0.013 1 1 1
1 0.013 1 1 1



association measure remains stable. Moreover, see Table 1 for the comparison of these two
pairwise measures at five time points.

The main aim of this section is carrying out a competitive feature extraction by
extracting more informative components of features when the features do not have necessarily
linear relationships. In this regard, inspired by (c.f., Witten et al. (2009)), we obtain the
ordered copula-based principal components by solving the following equation.

(τ (t) − λ̂(t)In)ĝ(t) = 0, t = 1, 2, ..., T, (1)

where In is an identity matrix of dimension n. Denote λ̂
(t)
1 , λ̂

(t)
2 , · · · , λ̂(t)

n are descending
ordered eigenvalues of the matrix τ (t) at time t and their corresponding eigenvectors are
ĝ

(t)
1 , ĝ

(t)
2 , · · · , ĝ(t)

n .

Let define the matrix of all observations at time t as X(t) = (x(t)
1 , x

(t)
2 , x

(t)
3 , ..., x(t)

n )
and matrix of all eigenvectors as Ĝ(t) = (ĝ(t)

1 , ĝ
(t)
2 , · · · , ĝ(t)

n ) then by multiplying these two
matrices we obtain the new set of observation as Q(t) = X(t)Ĝ(t). In the sequel, regarding to
extracting more informative principal component, we use the matrix Q(t). The first column
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of this matrix includes the a larger portion of the total variance, the second column stands
in the second rank, and so on. If we also want to calculate the cumulative explained variance
of these columns, we can evaluate the explained variance of the l-th columns as

P
(t)
l = λ̂

(t)
l

n∑
j=1

λ̂
(t)
j

, l = 1, 2, ..., n. (2)

Example 1: Suppose there are three variables at three times X
(t)
1 , X

(t)
2 and X

(t)
3 , t = 1, 2, 3

in which the relationship between these variables vary over time. Suppose at time 1, variables
X

(1)
1 and X

(1)
2 are related through the Clayton copula (c.f., Cuvelier and Noirhomme-Fraiture

(2005)) with θ1 = 0.5, and variables X
(1)
1 and X

(1)
3 are related through the Gumbel copula

(c.f., Wang et al. (2010)) with η1 = 0.8, and variables X
(1)
2 and X

(1)
3 are related through the

Gaussian copula with ρ1 = 0.3. Using the equation (1), we obtain τ (1) as the first row of
Table 2 and hence using 2 the cumulative explained variance as P

(1)
1 = 0.41, P

(1)
1 +P

(1)
2 = 0.80

and ∑3
l=1 P

(1)
l = 1. Similarly, see the second and the third row of this table for different

assumptions and results at times 2 and 3. As Table 2 reveals, as time moves forward, the
association measure shows stronger relationship. For example, the sum of the explained
variances of the first two extracted components at time 1 is 0.81, while for time 2 and 3 will
be 0.91 and 0.93 respectively.

Table 2: Pairwise Pearson’s and Kendall measures at time 1 (first five observa-
tions), time 2 (first ten observations),..., time 5 (all twenty observations)

Time Assumptions τ (t) ∑k
l=1 P

(t)
l

1
X

(1)
1 , X

(1)
2 ∼ Cl(θ(1) = 0.5) P

(1)
1 = 0.41

X
(1)
1 , X

(1)
3 ∼ G(η(1) = 0.8) τ (1) =

 1 0.20 −0.25
0.20 1 0.19

−0.25 0.19 1

 P
(1)
1 + P

(1)
2 = 0.80

X
(1)
2 , X

(1)
3 ∼ Ga(ρ(1) = 0.3) ∑3

l=1 P
(1)
l = 1

2
X

(2)
1 , X

(2)
2 ∼ Cl(θ(2) = 0.6) P

(2)
1 = 0.51

X
(2)
1 , X

(2)
3 ∼ G(η(2) = 0.7) τ (2) =

 1 0.23 −0.42
0.23 1 0.49

−0.42 0.49 1

 P
(2)
1 + P

(2)
2 = 0.91

X
(2)
2 , X

(2)
3 ∼ Ct(ζ(2)

1 = 0.7) ∑3
l=1 P

(2)
l = 1

3
X

(3)
3 , X

(3)
2 ∼ Cl(θ(3) = 0.6) P

(3)
1 = 0.68

X
(3)
1 , X

(3)
3 ∼ Ga(ρ(3)

1 = 0.8) τ (3) =

 1 0.23 0.59
0.23 1 0.71
0.59 0.71 1

 P
(3)
1 + P

(3)
2 = 0.93

X
(3)
2 , X

(3)
3 ∼ Ga(ρ(3)

2 = 0.9) ∑3
l=1 P

(3)
l = 1

The following theorem states that we reach faster to the higher levels of percentage
of the variance’s explanation by passage of the time.
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Theorem 1: Let λ
(t)
1 > λ

(t)
2 > · · · , > λ(t)

n be the eigenvalues of Kendall’s association matrix
of time t = 1, 2, 3... and define f(c)(t) = 1 −

k∑
j=1

P
(t+c)
j and f (t) = 1 −

k∑
j=1

P
(t)
j then f(c)(t) =

o(f (t)).

Proof: According to the definition of 2, ∃ k0 s.t k0 = argmax
u∈N

u∑
j=1

P
(t)
j and ∀k > k0 we

have 0 <
k∑

j=1
P

(t)
j <

k∑
j=1

P
(t+c)
j ≤ 1 and limt→∞

k∑
j=1

P
(t+c)
j = 1, therefore, it can be said that

0 < limt→∞ 1−
k∑

j=1
P

(t)
j < 1. Also, as limt→∞ 1−

k∑
j=1

P
(t)
j ̸= 0 the limit ratio can be considered

equal to the ratios and limt→∞ 1 −
k∑

j=1
P

(t+c)
j = 0 so we have

lim
t→∞

f(c)(t)

f (t) = lim
t→∞

1 −
k∑

j=1
P

(t+c)
j

1 −
k∑

j=1
P

(t)
j

= 0

One result of the above theorem is the following corollary.

Corollary 1: When faced with a data stream as time moves forward, limt→∞
k∑

j=1
P

(t+c)
j for

k0 < k ≤ n In such a way k0 = argmax
u∈N

u∑
j=1

P
(t)
j and c = 1, 2, 3, ... reaches one earlier than

previous times limt→∞
k∑

j=1
P

(t)
j .

Proof: Considering theorem 1 and the relationship f(c)(t) = o(f (t)), since limt→∞ 1 −
k∑

j=1
P

(t+c)
j approaches zero faster than limt→∞ 1−

k∑
j=1

P
(t)
j , it can be said that limt→∞

k∑
j=1

P
(t+c)
j

converges faster than limt→∞
k∑

j=1
P

(t)
j to one.

The above corollary indicates that over time, as the behaviors of variables become
clear, we can extract features more accurately using Kendall’s correlation matrix between
variables. This approach can explain a higher percentage of variance with fewer components.
After extracting the relevant components based on the explained variance percentage, they
can be used instead of the original features in the inputs of a prediction model such as neural
networks, regression, etc.

Regarding to a prediction task, we can use the primary components obtained at each
time as inputs of a neural network and update the weight matrix of the artificial neural
network to minimize the prediction error below a certain threshold δ. This process involves
obtaining the first hidden layer for each time t as follows

h
(t)
1 = f (t)

w (w(t)
huu

(t)
d + b

(t)
1 ) t = 1, 2, ..., (3)
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where w
(t)
hu stands for the weights between the input values and the nodes of the first hidden

layer at time t, f (t)
w is an activation function and b

(t)
1 is the bias term at time t. Also, in the

next layers
h

(t)
k = f (t)

w (w(t)
k,k−1h

(t)
k−1 + b

(t)
k ), t = 1, 2, ..., k = 2, 3, ..., (4)

in which, f (t)
w represents an activation function at time t, w

(t)
k,k−1, k = 2, 3, ..., are the con-

necting weights between the k-th and (k − 1)-th layers at time t, and b
(t)
k is the bias term

at time t. The subsequent equation in the neural network utilizes the final layer and certain
weights to generate the output ŷ(t) as

ŷ(t) = g(t)
w (w(t)

hy h
(t)
d + b(t)

y ) t = 1, 2, ..., (5)

where g(t)
w can be a nonlinear function and w

(t)
hy is the weight associated with the hidden

layers and outputs at time t. Additionally, b(t)
y represents the bias term at time t.

Based on the results of theorem 1, by passage of time, the values of ∑l
k=1 P

(t)
k will be

increased, so we may perform the algorithm 1 for initial values of time and increase t until∑l
k=1 P

(t)
k meets the threshold of minimum explained variance (α).
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3. Numerical study

In this Section we assess the performance of our approach using a simulation and
we apply our contribution to analyze two real world data sets. Two main approaches have
been used to optimize the model. First, to optimize the parameters of the copula function,
the Bicopselect command is used in the copula library in R software, this command uses
the MLE method, this method finds the best fit for the data and allows us to accurately
model the dependence between the variables. In the next step, a neural network is used
for more complex modeling, and a piece of code written in R software is used to optimize
the network parameters such as units, stepmax, number-layers using mean absolute error
(MAE) criterion. To evaluate and ensure the generalizability of the models, the 5-fold cross-
validation method has been used. The codes of the article have been implemented in Google
colab’s gpu1 space, the output of the results is given below.

3.1. Simulation study

In order to perform a simulation analysis, we consider Gaussian, t and Gumbel copulas
for generating data set. Assume that X1, X2, .., X5 ∼ G5(R1) and X6, ..., X10 ∼ t5(R2, ν),
where G5 and t5 are respectively five dimensional Gaussian and t copulas where

R1 =


1 0.5 0.6 0.65 0.8

0.4 1 0.5 0.4 0.5
0.6 0.5 1 0.5 0.6
0.65 0.4 0.5 1 0.6
0.8 0.5 0.6 0.6 1

 , R2 =


1 0.3 0.4 0.65 0.6

0.3 1 0.3 0.5 0.4
0.4 0.3 1 0.4 0.5
0.65 0.5 0.4 1 0.6
0.6 0.4 0.5 0.6 1


are respectively their correlation matrices. Also, we assume that X11, X12, .., X15 follow
Gumbel’s copula with θ = 15. We generate 1000 random samples from these 15 variables
considering their marginals come from a normal distribution.

In the interest of creating the target variable, y, assuming that ε is a white noise,
we employ the equation Y = ∑15

i=1 Xi + e
∑5

i=1 Xi + ε which provides linear and nonlinear
relations between inputs and output variables. Finally, suppose we have 5 time point, so,
we divide the observation into 5 overlapping segments., i.e., Segment 1: the first 200 cases,
Segment 2: the first 400 cases,..., Segment 5: all 1000 cases.

By estimating the pairwise connection between the variables in these five segments
(t = 1, 2, .., 5), and calculating the Kendall copula correlation matrix (Γ̂(t)) and the Pearson
correlation matrix (R̂(t)), we can reduce the dimension of the variables via implementing
algorithm 1. The results are summarized in Figure 4. As it can be seen from Figure 4, the
Kendall’s association matrix easily resolves non linear relationship between variables over
time.

To assess our SCFE-NN approach, we compare its results with the results of the other
traditional feature extraction methods. The cumulative percentage of explained variance by
our approach as well as other approaches such as Linear PCA, polynomial Kernel PCA,
Gaussian Kernel PCA, Laplacian Kernel PCA, and ANOVA Kernels PCA are provided in

1https://colab.research.google.com/drive/1xHgYWQxfIktNx6YU4CXEQSzaDoriYr8I?usp=sharing
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Table 3: The cumulative percentage of explained variance by six PCA methods
at different times

time 1 comp 1 comp 2 comp 3 comp 4 comp 5 comp 6 comp 7 comp 8 comp 9 comp 10 comp 11 comp 12 comp 13 comp 14 comp 15
polynomial Kernel PCA 0.65 0.94 0.96 0.97 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1
Gaussian Kernel PCA 0.24 0.41 0.52 0.60 0.67 0.72 0.76 0.81 0.84 0.87 0.90 0.93 0.95 0.97 1
Laplacian Kernel PCA 0.28 0.43 0.52 0.60 0.66 0.71 0.76 0.80 0.84 0.88 0.90 0.93 0.95 0.98 1
ANOVA Kernels PCA 0.27 0.44 0.54 0.61 0.68 0.73 0.77 0.81 0.84 0.87 0.90 0.93 0.95 0.97 1

Copula PCA 0.50 0.64 0.75 0.86 0.91 0.93 0.96 0.96 0.97 0.98 0.98 0.99 0.99 0.99 1
Linear PCA 0.60 0.73 0.83 0.88 0.92 0.96 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 1

time 2 comp 1 comp 2 comp 3 comp 4 comp 5 comp 6 comp 7 comp 8 comp 9 comp 10 comp 11 comp 12 comp 13 comp 14 comp 15
polynomial Kernel PCA 0.45 0.72 0.87 0.94 0.97 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 1
Gaussian Kernel PCA 0.26 0.44 0.55 0.63 0.70 0.75 0.80 0.83 0.87 0.90 0.93 0.95 0.96 0.98 1
Laplacian Kernel PCA 0.29 0.45 0.55 0.63 0.69 0.75 0.79 0.82 0.86 0.88 0.91 0.94 0.96 0.98 1
ANOVA Kernels PCA 0.29 0.48 0.58 0.66 0.72 0.77 0.81 0.84 0.87 0.90 0.93 0.95 0.96 0.98 1

Copula PCA 0.52 0.65 0.76 0.85 0.94 0.95 0.96 0.97 0.98 0.99 0.99 0.99 0.99 0.99 1
Linear PCA 0.57 0.70 0.79 0.86 0.93 0.95 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 1

time 3 comp 1 comp 2 comp 3 comp 4 comp 5 comp 6 comp 7 comp 8 comp 9 comp 10 comp 11 comp 12 comp 13 comp 14 comp 15
polynomial Kernel PCA 0.40 0.70 0.84 0.93 0.96 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 1
Gaussian Kernel PCA 0.26 0.45 0.55 0.63 0.70 0.75 0.80 0.83 0.87 0.90 0.93 0.95 0.96 0.98 1
Laplacian Kernel PCA 0.30 0.47 0.56 0.64 0.71 0.76 0.80 0.83 0.87 0.90 0.92 0.94 0.96 0.98 1
ANOVA Kernels PCA 0.29 0.48 0.58 0.66 0.73 0.77 0.81 0.85 0.88 0.91 0.93 0.95 0.97 0.98 1

Copula PCA 0.53 0.70 0.84 0.93 0.96 0.97 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 1
Linear PCA 0.57 0.70 0.79 0.86 0.91 0.95 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 1

time 4 comp 1 comp 2 comp 3 comp 4 comp 5 comp 6 comp 7 comp 8 comp 9 comp 10 comp 11 comp 12 comp 13 comp 14 comp 15
polynomial Kernel PCA 0.49 0.77 0.90 0.93 0.95 0.96 0.96 0.97 0.97 0.98 0.99 0.99 0.99 0.99 1
Gaussian Kernel PCA 0.25 0.45 0.56 0.64 0.71 0.76 0.80 0.84 0.87 0.90 0.93 0.95 0.96 0.98 1
Laplacian Kernel PCA 0.31 0.48 0.57 0.65 0.71 0.77 0.81 0.84 0.87 0.90 0.92 0.94 0.96 0.98 1
ANOVA Kernels PCA 0.29 0.49 0.59 0.67 0.73 0.78 0.82 0.85 0.88 0.91 0.93 0.95 0.97 0.98 1

Copula PCA 0.63 0.83 0.94 0.95 0.96 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1
Linear PCA 0.63 0.82 0.89 0.94 0.95 0.96 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 1

time 5 comp 1 comp 2 comp 3 comp 4 comp 5 comp 6 comp 7 comp 8 comp 9 comp 10 comp 11 comp 12 comp 13 comp 14 comp 15
polynomial Kernel PCA 0.72 0.86 0.91 0.94 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99 0.99 0.99 1
Gaussian Kernel PCA 0.32 0.45 0.56 0.64 0.71 0.75 0.80 0.83 0.87 0.90 0.93 0.95 0.96 0.98 1
Laplacian Kernel PCA 0.33 0.48 0.58 0.65 0.71 0.77 0.81 0.84 0.87 0.90 0.93 0.95 0.96 0.98 1
ANOVA Kernels PCA 0.29 0.48 0.59 0.67 0.73 0.78 0.81 0.85 0.88 0.91 0.94 0.95 0.97 0.98 1

Copula PCA 0.76 0.87 0.95 0.96 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1
Linear PCA 0.70 0.85 0.90 0.93 0.96 0.96 0.97 0.98 0.99 0.99 0.99 0.99 0.99 0.99 1

Table 3 for all 5 time points. As you can see, at the first time, the polynomial Kernel PCA
reduced the dimension of the variables better than the other methods, so that by considering
the first 4 components, it can explain (97%) of the total variance, but with the passage of
time and the behavior of the variables being determined, other methods perform better.
As you can see in time 5, the Copula PCA method explains (95%) of the total variance by
considering the first 5 components, and it performs much better than the other two methods.
See also, Figure 1, as a visualization representation.

In summary, it can be said that at the initial times when the behavior of the data
is not known, the polynomial Kernel PCA and Linear PCA dimension reduction methods
work well, but as time passes and the behavior of the variables becomes clear, the Copula
PCA method superforms the dimension reduction in contrast of other methods.

Next, to check the stated algorithm on the generated data set, suppose we want the
components to explain (95%) of the total variance (αt = 0.95, t = 1, 2, 3, 4, 5), in this case,
the results of dimension reduction on this data set are shown in Table 4.

As seen from Table 4 the best methods are Kernel PCA, Copula PCA, and Linear
PCA. More precisely, for the first time, using the polynomial Kernel PCA method, the first
3 components account for 95% of the total variance while the number of components for
this percentage are 7 and 6 respectively for Copula PCA and Linear PCA. However, with
the passage of time and the increase of data, for example at the 5th time, in the polynomial
Kernel PCA method, 5 components explain, 95% of the total variance, but the Copula PCA
method, explains 95% of the total variance by 3 components and, and the Linear PCA needs
5 components to explain 95% of the total variance.
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Figure 1: Percents of explained variance using six PCA methods at different
times

Table 4: The number of components that explain 95% of the total variance in
each method and at different times

time 1 2 3 4 5
polynomial Kernel PCA 3 5 5 5 5
Gaussian Kernel PCA 13 12 12 12 12
Laplacian Kernel PCA 13 13 13 13 12
ANOVA Kernels PCA 13 12 12 12 12

Copula PCA 7 6 5 4 3
Linear PCA 6 6 6 5 5
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To evaluate model performance across different time points, we can use two key
metrics: Reconstruction-Mean-Squared-Error (RMSE) (c.f. Milosevic et al. (2021)), and
Mean-Corr (mean of correlations). RMSE quantifies how well a model reconstructs its in-
put data, with lower values indicating better performance. It is calculated using the formula:

RMSE =
√√√√ 1

n

n∑
l=1

(xl − x̂l)2

where n is the number of values, xl is the original value, and x̂l is the reconstructed value.
Mean-Corr, on the other hand, assesses the relationship between original and reconstructed
data, where higher values (closer to 1) show that the model preserves the patterns in the
data well. It’s calculated as:

Mean-Corr = 1
n

n∑
l=1

Cor(xl, x̂l)

where Cor(xl, x̂l) is the Pearson correlation between original and reconstructed data for
each sample. By calculating these metrics for different models at various time intervals and
organizing them into a table, you can track changes in performance, identify trends, and
determine which model best maintains its effectiveness across time.

According to the output of Table 5, it can be said that Copula PCA has more RMSE
and less Mean-Corr in the early times, but as time increases and the volume of data increases,
it has a lower RMSE value than other models and Mean-Corr increases.

To examine the algorithm SCFE-NN in a prediction, we input variables of the neural
network by the principal components that explain 95% of the total variance at each time,
using the components obtained in the previous step using the Linear PCA, Copula PCA,
polynomial Kernel PCA method. The 5-Fold cross-validation method was used for unbiased
evaluation. In each fold, the parameters of the neural network were optimized separately
and the obtained results are given below.

The results of the comparisons conducted are presented in the table below, As men-
tioned, in this research.

As shown in Table 7, the SCFE-NN algorithm consistently exhibits less overfitting
compared to other methods. In fact, relying on the SCFE-NN algorithm is advisable as it
provides better predictions based on the number of components it selects at any given time.
It may initially select more components than other methods, but it delivers more accurate
predictions. As time progresses and the function behaviors change, the SCFE-NN algorithm
with fewer components offers better predictions.

3.2. Real data

We use our approach to carry out a feature extraction and make a prediction in online
Apple stock dataset as well as COVID-19 dataset and the Real-time Bitcoin dataset.
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Table 5: Output RMSE and Mean-Corr values for each method and at any time

time 1 RMSE Mean-Corr
polynomial Kernel PCA 1.09 0.08
Gaussian Kernel PCA 1.09 0.06
Laplacian Kernel PCA 1.09 0.04
ANOVA Kernels PCA 1.09 0.03

Copula PCA 1.11 0.13
Linear PCA 1.24 0.16

time 2 RMSE Mean-Corr
polynomial Kernel PCA 1.07 0.10
Gaussian Kernel PCA 1.07 0.08
Laplacian Kernel PCA 1.07 0.07
ANOVA Kernels PCA 1.07 0.05

Copula PCA 1.09 0.15
Linear PCA 1.18 0.14

time 3 RMSE Mean-Corr
polynomial Kernel PCA 1.05 0.12
Gaussian Kernel PCA 1.05 0.09
Laplacian Kernel PCA 1.05 0.09
ANOVA Kernels PCA 1.05 0.07

Copula PCA 1.04 0.17
Linear PCA 1.15 0.11

time 4 RMSE Mean-Corr
polynomial Kernel PCA 1.04 0.14
Gaussian Kernel PCA 1.04 0.11
Laplacian Kernel PCA 1.04 0.11
ANOVA Kernels PCA 1.04 0.11

Copula PCA 1.03 0.18
Linear PCA 1.13 0.11

time 5 RMSE Mean-Corr
polynomial Kernel PCA 1.03 0.15
Gaussian Kernel PCA 1.03 0.12
Laplacian Kernel PCA 1.03 0.12
ANOVA Kernels PCA 1.03 0.12

Copula PCA 1.00 0.19
Linear PCA 1.10 0.12
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Table 6: Values of optimized neural network parameters in each fold of each
method

time Method Fold units stepmax number-layers MAE
1 6 1e + 06 3 0.003
2 4 1e + 05 1 0.003

1 linear-PCA-NN 3 4 1e + 06 2 0.003
4 4 1e + 06 2 0.002
5 6 1e + 06 1 0.003
1 4 1e + 07 2 0.232
2 4 1e + 05 1 0.259

polynomial Kernel PCA-NN 3 4 1e + 07 1 0.263
4 6 1e + 07 1 0.295
5 4 1e + 07 2 0.232
1 4 1e + 05 2 0.003
2 6 1e + 05 1 0.002

SCFE-NN 3 4 1e + 05 1 0.003
4 4 1e + 06 2 0.003
5 4 1e + 07 1 0.003
1 8 1e + 06 1 0.001
2 6 1e + 05 3 0.001

2 linear-PCA-NN 3 4 1e + 05 1 0.002
4 8 1e + 06 3 0.002
5 4 1e + 06 2 0.002
1 4 1e + 05 3 0.66
2 4 1e + 05 1 0.57

polynomial Kernel PCA-NN 3 6 1e + 06 3 0.47
4 6 1e + 05 3 0.55
5 4 1e + 07 2 0.59
1 4 1e + 06 2 0.001
2 4 1e + 05 2 0.001

SCFE-NN 3 4 1e + 06 2 0.002
4 8 1e + 05 1 0.001
5 6 1e + 05 1 0.001
1 6 1e + 05 2 0.002
2 6 1e + 06 2 0.002

3 linear-PCA-NN 3 8 1e + 07 1 0.001
4 6 1e + 05 2 0.001
5 6 1e + 05 1 0.001
1 4 1e + 07 3 0.005
2 4 1e + 06 2 0.001

polynomial Kernel PCA-NN 3 6 1e + 05 3 0.003
4 4 1e + 07 3 0.013
5 6 1e + 07 3 0.0164
1 8 1e + 06 3 0.001
2 6 1e + 07 2 0.001

SCFE-NN 3 6 1e + 06 2 0.001
4 6 1e + 06 1 0.002
5 4 1e + 05 2 0.001
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time Method Fold units stepmax number-layers MAE
1 6 1e + 05 3 0.003
2 8 1e + 06 2 0.001

4 linear-PCA-NN 3 6 1e + 05 2 0.002
4 8 1e + 05 1 0.001
5 4 1e + 05 2 0.001
1 8 1e + 05 2 0.015
2 4 1e + 07 3 0.017

polynomial Kernel PCA-NN 3 6 1e + 07 2 0.001
4 4 1e + 06 1 0.001
5 6 1e + 05 2 0.003
1 8 1e + 06 3 0.001
2 8 1e + 05 2 0.002

SCFE-NN 3 8 1e + 05 2 0.003
4 8 1e + 06 2 0.003
5 6 1e + 07 2 0.002
1 6 1e + 05 2 0.004
2 4 1e + 06 2 0.003

5 linear-PCA-NN 3 8 1e + 05 1 0.003
4 4 1e + 05 2 0.002
5 6 1e + 05 1 0.002
1 8 1e + 06 3 0.015
2 8 1e + 05 2 0.016

polynomial Kernel PCA-NN 3 8 1e + 07 3 0.017
4 8 1e + 07 3 0.016
5 8 1e + 06 3 0.016
1 6 1e + 06 3 0.003
2 6 1e + 07 2 0.001

SCFE-NN 3 4 1e + 06 2 0.003
4 4 1e + 06 1 0.004
5 6 1e + 05 2 0.004

3.2.1. Apple stock dataset

A real-time streaming dataset for implementing our SCFE-NN algorithm is the stock
data of Apple Inc2. This dataset is updated daily. We consider 6 variables: “AAPL.Open”,
“AAPL.High”, “AAPL.Low”, “AAPL.Close”, “AAPL.Volume”, “AAPL.Adjusted” from this
dataset from the date of 1-4-2008 to 20-2-2024, and the data is segmented into 4 timeframes.
Assuming AAPL.Open, AAPL.High, AAPL.Low, AAPL.Volume and AAPL.Adjusted as
predictors and as the response variable, we implemented algorithm 1. We first extract the
most informative components from the predictor variables. Table 8 expresses the percentage
of explained variance using our algorithm as well as other alternative methods.

As shown in this table, Copula PCA gradually explains a higher percentage of variance
with fewer components over time.

2https://finance.yahoo.com/quote/AAPL/history
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Table 7: Comparison results of algorithm model SCFE-NN with other models
at different times

time Estimation linear-PCA-NN polynomial Kernel PCA-NN SCFE-NN PCR
1 mean of RMSE train 0.011 0.300 0.008 0.690

SD of RMSE train 0.001 0.016 0.001 0.070
mean of RMSE test 0.210 0.602 0.136 0.600
SD of RMSE test 0.197 0.500 0.164 0.150

2 mean of RMSE train 0.006 0.180 0.005 0.990
SD of RMSE train 0.001 0.027 0.000 0.050
mean of RMSE test 0.073 0.662 0.057 0.840
SD of RMSE test 0.120 0.429 0.066 0.180

3 mean of RMSE train 0.008 0.025 0.001 2.240
SD of RMSE train 0.004 0.022 0.043 0.600
mean of RMSE test 0.092 0.159 0.003 1.590
SD of RMSE test 0.045 0.378 0.044 0.710

4 mean of RMSE train 0.007 0.011 0.001 2.020
SD of RMSE train 0.009 0.000 0.003 0.620
mean of RMSE test 0.102 0.232 0.050 1.810
SD of RMSE test 0.097 0.078 0.042 0.950

5 mean of RMSE train 0.008 0.027 0.008 0.70
SD of RMSE train 0.003 0.002 0.001 0.280
mean of RMSE test 0.092 0.201 0.078 0.340
SD of RMSE test 0.064 0.039 0.061 0.170

For example, using the first extracted component, at time 1, the best method is Linear
PCA (83.3%), and the second rank is for Copula PCA (81.2%). However, as time moves
forward, the Copula PCA gradually will be better until at the final time, Copula PCA is
the superior (90.7%). Also, if we aim to explain 99.9% of the total variance, we can specify
the least number of needed components for each method. Table 11 summarizes the number
of components that we need to explain 99.9% of the total variance using polynomial Kernel
PCA, Gaussian Kernel PCA, Laplacian Kernel PCA, ANOVA Kernels PCA, Copula PCA
and Linear PCA. In a nutshell, at time 1, Linear PCA is the best while at times 3 and 4
Copula PCA is highly accomplished.

Finally, due to the close competition between Copula PCA, Linear-PCA, and poly-
nomial Kernel PCA, for the implementation of the SCFE-NN algorithm, we utilize the
components extracted by these 3 methods. We execute the algorithm SCFE-NN and pre-
dict the response variable AAPL.Close. The differences between the predicted values and
the true values will be our criterion to assess the algorithm. For this purpose, we split the
data into train and test sets with respectively 70% and 30% of cases. The prediction re-
sults are stated in Table 11. As can be realized from this table, the SCFE-NN algorithm
possesses less overfitting and provides better predictions with any number of components it
extracts. Also, the values of the optimized parameters of the neural network in each fold of
each method in this dataset are given in Table 10.
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Table 8: The results of the percentage of variance explained by six PCA methods
at different times in real dataset (Apple stock)

time 1 (2008/04/01-2012/03/30) comp 1 comp 2 comp 3 comp 4 comp 5
polynomial Kernel PCA 0.711 0.922 0.975 0.999 1
Gaussian Kernel PCA 0.554 0.775 0.887 0.956 1
Laplacian Kernel PCA 0.561 0.753 0.866 0.948 1
ANOVA Kernels PCA 0.503 0.732 0.854 0.932 1

Copula PCA 0.812 0.985 0.998 0.999 1
Linear PCA 0.833 0.994 0.999 0.999 1

time 2 (2008/04/01-2016/03/31) comp 1 comp 2 comp 3 comp 4 comp 5
polynomial Kernel PCA 0.644 0.932 0.977 0.999 1
Gaussian Kernel PCA 0.565 0.818 0.915 0.964 1
Laplacian Kernel PCA 0.588 0.774 0.886 0.957 1
ANOVA Kernels PCA 0.470 0.754 0.862 0.948 1

Copula PCA 0.857 0.997 0.998 0.999 1
Linear PCA 0.883 0.993 0.997 0.999 1

time 3 (2008/04/01-2020/03/31) comp 1 comp 2 comp 3 comp 4 comp 5
polynomial Kernel PCA 0.770 0.971 0.989 0.999 1
Gaussian Kernel PCA 0.544 0.817 0.903 0.964 1
Laplacian Kernel PCA 0.552 0.773 0.874 0.945 1
ANOVA Kernels PCA 0.463 0.764 0.866 0.944 1

Copula PCA 0.887 0.998 0.999 0.999 1
Linear PCA 0.893 0.995 0.996 0.999 1

time 4 (2008/04/01-2024/02/20) comp 1 comp 2 comp 3 comp 4 comp 5
polynomial Kernel PCA 0.688 0.981 0.996 0.999 1
Gaussian Kernel PCA 0.612 0.864 0.942 0.984 1
Laplacian Kernel PCA 0.582 0.814 0.900 0.965 1
ANOVA Kernels PCA 0.523 0.794 0.897 0.964 1

Copula PCA 0.907 0.998 0.999 0.999 1
Linear PCA 0.864 0.996 0.998 0.999 1

Table 9: The number of components that explain 99.9% of the total variance in
each method and at different times in the real data set (Apple stock)

time 1 2 3 4
polynomial Kernel PCA 4 4 4 4
Gaussian Kernel PCA 5 5 5 5
Laplacian Kernel PCA 5 5 5 5
ANOVA Kernels PCA 5 5 5 5

Copula PCA 4 4 3 3
Linear PCA 3 4 4 4
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Table 10: Values of the optimal parameters of the neural network in the Apple
stock dataset

time Method Fold units stepmax number-layers MAE
1 4 1e + 06 1 0.001
2 4 1e + 07 1 0.001

1 linear-PCA-NN 3 4 1e + 06 2 0.001
4 4 1e + 07 2 0.000
5 6 1e + 07 2 0.001
1 6 1e + 07 3 0.004
2 6 1e + 06 2 0.005

polynomial Kernel PCA-NN 3 6 1e + 05 2 0.004
4 6 1e + 05 2 0.004
5 8 1e + 05 2 0.005
1 4 1e + 07 3 0.001
2 8 1e + 06 3 0.001

SCFE-NN 3 8 1e + 05 1 0.001
4 6 1e + 05 3 0.000
5 4 1e + 07 2 0.001
1 6 1e + 06 2 0.001
2 4 1e + 05 1 0.001

2 linear-PCA-NN 3 4 1e + 06 1 0.001
4 8 1e + 05 3 0.001
5 6 1e + 05 2 0.001
1 6 1e + 05 2 0.003
2 6 1e + 07 2 0.003

polynomial Kernel PCA-NN 3 6 1e + 07 2 0.003
4 8 1e + 07 2 0.003
5 8 1e + 06 2 0.004
1 6 1e + 07 2 0.001
2 8 1e + 06 1 0.001

SCFE-NN 3 6 1e + 07 1 0.001
4 6 1e + 05 1 0.001
5 8 1e + 05 2 0.001
1 6 1e + 05 3 0.001
2 8 1e + 05 3 0.001

3 linear-PCA-NN 3 4 1e + 05 2 0.000
4 6 1e + 05 3 0.001
5 8 1e + 07 1 0.001
1 6 1e + 06 2 0.004
2 6 1e + 05 3 0.003

polynomial Kernel PCA-NN 3 8 1e + 05 2 0.003
4 6 1e + 05 2 0.003
5 8 1e + 05 2 0.004
1 6 1e + 06 1 0.001
2 8 1e + 06 2 0.000

SCFE-NN 3 8 1e + 05 2 0.000
4 8 1e + 05 2 0.001
5 6 1e + 05 2 0.001
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time Method Fold units stepmax number-layers MAE
1 8 1e + 05 3 0.002
2 8 1e + 07 3 0.001

4 linear-PCA-NN 3 6 1e + 07 2 0.000
4 8 1e + 06 1 0.001
5 6 1e + 06 2 0.002
1 6 1e + 06 2 0.003
2 6 1e + 05 3 0.003

polynomial Kernel PCA-NN 3 8 1e + 07 2 0.003
4 6 1e + 05 2 0.004
5 8 1e + 05 2 0.004
1 6 1e + 05 2 0.001
2 4 1e + 06 2 0.001

SCFE-NN 3 8 1e + 05 2 0.000
4 8 1e + 06 2 0.001
5 6 1e + 05 3 0.000

Table 11: Comparison results of algorithm model SCFE-NN with other models
at different times in real time (Apple stock)

time Estimation linear-PCA-NN polynomial Kernel PCA-NN SCFE-NN PCR
1 mean of RMSE train 0.003 0.007 0.003 4.98

SD of RMSE train 0.001 0.001 0.000 0.01
mean of RMSE test 0.003 0.014 0.003 4.92
SD of RMSE test 0.001 0.009 0.001 0.01

2 mean of RMSE train 0.002 0.007 0.002 6.3
SD of RMSE train 0.000 0.004 0.000 0.02
mean of RMSE test 0.001 0.012 0.002 6.3
SD of RMSE test 0.000 0.000 0.000 0.05

3 mean of RMSE train 0.002 0.009 0.001 25.44
SD of RMSE train 0.001 0.005 0.000 0.15
mean of RMSE test 0.003 0.011 0.001 25.13
SD of RMSE test 0.001 0.001 0.000 0.3

4 mean of RMSE train 0.004 0.010 0.002 27.77
SD of RMSE train 0.000 0.005 0.000 0.13
mean of RMSE test 0.003 0.014 0.002 27.64
SD of RMSE test 0.001 0.007 0.000 0.21
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3.2.2. COVID-19 dataset

The second dataset we considered and implemented our algorithm is the COVID-19
dataset. This dataset has been recorded daily from 27-7-2020 to 22-11-20203. In this exper-
iment, we considered 8 variables including “Confirmed”, “Deaths”, “Recovered”, “Active”,
“New.cases”, “New.recovered”, “Recovered/100.Cases”, “Deaths/100.Recovered”. Suppose
we aim to perform dimension reduction on this considered dataset. To express the method
described in this article well, we considered 3 times of 11 days from this data set and imple-
mented the described methods on them. The results are presented in Table 12 and Figure
2.

Table 12: The results of the percentage of variance explained by Linear PCA
and Copula PCA and PCA methods at different times in real dataset

time 1 (2020/01/22-2020/01/31) comp 1 comp 2 comp 3 comp 4 comp 5 comp 6 comp 7 comp 8
polynomial Kernel PCA 0.723 0.923 0.958 0.975 0.988 0.994 0.997 1
Gaussian Kernel PCA 0.432 0.718 0.848 0.911 0.947 0.976 0.994 1
Laplacian Kernel PCA 0.426 0.648 0.755 0.826 0.878 0.926 0.966 1
ANOVA Kernels PCA 0.407 0.684 0.824 0.890 0.928 0.962 0.989 1

Copula PCA 0.783 0.886 0.931 0.969 0.996 0.997 0.998 1
Linear PCA 0.768 0.940 0.975 0.995 0.995 0.998 0.999 1

time 2 (2020/01/22-2020/02/10) comp 1 comp 2 comp 3 comp 4 comp 5 comp 6 comp 7 comp 8
polynomial Kernel PCA 0.843 0.913 0.948 0.978 0.989 0.995 0.998 1
Gaussian Kernel PCA 0.503 0.750 0.864 0.932 0.957 0.979 0.992 1
Laplacian Kernel PCA 0.505 0.695 0.803 0.867 0.912 0.946 0.976 1
ANOVA Kernels PCA 0.473 0.716 0.837 0.915 0.947 0.971 0.988 1

Copula PCA 0.775 0.928 0.957 0.983 0.996 0.997 0.998 1
Linear PCA 0.827 0.953 0.985 0.994 0.999 0.999 0.999 1

time 3 (2020/01/22-2020/02/20) comp 1 comp 2 comp 3 comp 4 comp 5 comp 6 comp 7 comp 8
polynomial Kernel PCA 0.596 0.779 0.921 0.966 0.981 0.992 0.997 1
Gaussian Kernel PCA 0.469 0.697 0.779 0.847 0.901 0.950 0.981 1
Laplacian Kernel PCA 0.481 0.661 0.749 0.814 0.872 0.925 0.973 1
ANOVA Kernels PCA 0.452 0.691 0.773 0.836 0.892 0.936 0.976 1

Copula PCA 0.760 0.942 0.978 0.999 0.999 0.999 0.999 1
Linear PCA 0.769 0.914 0.958 0.987 0.999 0.999 0.999 1

As can be understood from Table 12, aiming to reach 99% of the explained variance in
the first time, polynomial Kernel PCA needs 6 components, Gaussian Kernel PCA method
needs 7 components, the Laplacian Kernel PCA, ANOVA Kernels PCA, Copula PCA, and
Linear PCA need respectively, 8, 8, 5 and 4 components. But at the last time, these numbers
changed into 6, 8, 8, 8, 8, 4, and 5 for polynomial Kernel PCA, Gaussian Kernel PCA,
Laplacian Kernel PCA, ANOVA Kernels PCA, Copula PCA, and Linear PCA respectively,
which shows a significance improvement of Copula PCA.

Regarding constructing the SCFE-NN algorithm in this dataset, we assume New.deaths
as the response variable and predict this variable using the principal components that ex-
plained 99% of the total variance in the previous best methods, i.e., polynomial Kernel
PCA, Linear PCA, and Copula PCA. We set the extracted components as inputs of a neural
network, and the results of comparing different models at the specified times are presented
in Table 15, Also, the values of the optimized parameters of the neural network in each fold

3https://www.kaggle.com/datasets/imdevskp/corona-virus-report
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Figure 2: Percents of explained variance using linear PCA, Copula PCA and
kernel PCA at different times in real-data (COVID-19)
Table 13: The number of components that explain 99% of the total variance in
each method and at different times in the real data set

time 1 2 3
polynomial Kernel PCA 6 6 6
Gaussian Kernel PCA 7 7 8
Laplacian Kernel PCA 8 8 8
ANOVA Kernels PCA 8 8 8

Copula PCA 5 5 4
Linear PCA 4 4 5

of each method in this dataset are given in Table 14. Based on this table, the SCFE-NN
algorithm consistently exhibits less overfitting compared to other methods and provides a
more accurate prediction.

3.2.3. Bitcoin dataset

The third data set that we implemented our algorithm on is the Bitcoin data set,
which in this study focuses on daily data from 1-1-2025 to 5-1-20254 and we have also
considered 5 variables“Bitcoin.Price”, “Bitcoin.Open”, “Bitcoin.High”, “Bitcoin.Low” and
“Bitcoin.Change” from this data set. In this regard, 3 time periods 4-1-2025 to 6-1-2025, 4-1-
2025 to 7-1-2025 and 4-1-2025 to 8-1-2025 have been considered for this research. The results
are presented in Table 16 and Figure 6. Considering that the purpose of presenting this
dataset is to implement the described method on daily data, for this reason, the bootstrap
method has been used to increase the volume of data for a more accurate analysis.

As can be understood from Table 16, aiming to reach 99% of the explained variance in
the first time, polynomial Kernel PCA needs 5 components, Gaussian Kernel PCA method
needs 5 components, the Laplacian Kernel PCA, ANOVA Kernels PCA, Copula PCA, and
Linear PCA need respectively, 5, 5, 3 and 2 components. But at the last time, these numbers
changed into 5, 5, 5, 5, 3, and 3 for polynomial Kernel PCA, Gaussian Kernel PCA, Laplacian

4https://www.investing.com/crypto/bitcoin/historical-data
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Table 14: Values of the optimal parameters of the neural network in the COVID-
19 dataset

time Method Fold units stepmax number-layers MAE
1 8 1e + 06 2 0.215
2 8 1e + 05 1 0.109

1 linear-PCA-NN 3 68 1e + 06 3 0.070
4 6 1e + 05 3 0.076
5 8 1e + 05 3 0.165
1 4 1e + 05 3 0.046
2 8 1e + 07 1 0.010

polynomial Kernel PCA-NN 3 8 1e + 05 2 0.008
4 4 1e + 07 3 0.005
5 4 1e + 05 1 0.001
1 6 1e + 07 2 0.347
2 4 1e + 05 1 0.492

SCFE-NN 3 6 1e + 06 1 0.507
4 4 1e + 05 1 0.362
5 8 1e + 06 2 0.140
1 8 1e + 06 3 0.677
2 8 1e + 06 1 0.650

2 linear-PCA-NN 3 8 1e + 07 1 0.705
4 6 1e + 06 2 0.641
5 8 1e + 07 1 0.558
1 4 1e + 06 3 0.027
2 8 1e + 07 1 0.022

polynomial Kernel PCA-NN 3 6 1e + 06 3 0.040
4 8 1e + 07 3 0.015
5 8 1e + 05 2 0.016
1 4 1e + 05 3 0.639
2 8 1e + 06 3 0.557

SCFE-NN 3 6 1e + 07 3 0.545
4 4 1e + 05 3 0.700
5 8 1e + 05 3 0.486
1 8 1e + 05 3 0.663
2 8 1e + 07 3 0.688

3 linear-PCA-NN 3 4 1e + 07 2 0.639
4 8 1e + 05 3 0.558
5 8 1e + 07 1 0.738
1 6 1e + 06 2 0.040
2 4 1e + 06 3 0.033

polynomial Kernel PCA-NN 3 8 1e + 07 3 0.178
4 4 1e + 05 2 0.160
5 8 1e + 05 2 0.125
1 4 1e + 06 1 0.506
2 8 1e + 06 2 0.527

SCFE-NN 3 8 1e + 05 2 0.491
4 8 1e + 05 2 0.523
5 8 1e + 07 3 0.440
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Table 15: Comparison results of algorithm model SCFE-NN with other models
at different times in real time

time Estimation linear-PCA-NN polynomial Kernel PCA-NN SCFE-NN PCR
1 mean of RMSE train 0.764 0.032 0.866 1.79

SD of RMSE train 0.270 0.021 0.120 0.33
mean of RMSE test 0.977 0.999 0.925 1.17
SD of RMSE test 0.502 0.703 0.180 0.97

2 mean of RMSE train 0.970 0.080 0.970 1.58
SD of RMSE train 0.028 0.026 0.127 0.14
mean of RMSE test 1.05 1.022 0.982 1.30
SD of RMSE test 0.140 1.437 0.136 0.64

3 mean of RMSE train 0.980 0.979 0.957 1.39
SD of RMSE train 0.068 0.251 0.071 0.17
mean of RMSE test 0.933 1.02 0.962 1.51
SD of RRMSE test 0.308 0.601 0.263 0.85

Table 16: The results of the percentage of variance explained by Linear PCA
and Copula PCA and PCA methods at different times in real dataset

time 1 (2025/01/04-2025/01/06) comp 1 comp 2 comp 3 comp 4 comp 5
polynomial Kernel PCA 0.522 0.721 0.845 0.965 1
Gaussian Kernel PCA 0.468 0.686 0.839 0.969 1
Laplacian Kernel PCA 0.401 0.607 0.774 0.926 1
ANOVA Kernels PCA 0.404 0.625 0.793 0.949 1

Copula PCA 0.861 0.970 0.996 0.998 1
Linear PCA 0.952 0.999 0.999 0.999 1

time 2 (2025/01/04-2025/01/07) comp 1 comp 2 comp 3 comp 4 comp 5
polynomial Kernel PCA 0.441 0.797 0.890 0.961 1
Gaussian Kernel PCA 0.308 0.576 0.792 0.918 1
Laplacian Kernel PCA 0.269 0.541 0.741 0.886 1
ANOVA Kernels PCA 0.304 0.530 0.744 0.890 1

Copula PCA 0.667 0.980 0.999 0.999 1
Linear PCA 0.714 0.996 0.999 0.999 1

time 3 (2025/01/04-2025/01/08) comp 1 comp 2 comp 3 comp 4 comp 5
polynomial Kernel PCA 0.416 0.643 0.815 0.932 1
Gaussian Kernel PCA 0.291 0.540 0.722 0.896 1
Laplacian Kernel PCA 0.270 0.519 0.697 0.866 1
ANOVA Kernels PCA 0.296 0.503 0.686 0.862 1

Copula PCA 0.636 0.957 0.995 0.998 1
Linear PCA 0.583 0.945 0.999 0.999 1
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Kernel PCA, ANOVA Kernels PCA, Copula PCA, and Linear PCA respectively, which shows
a significance improvement of Copula PCA.

Table 17: The number of components that explain 99% of the total variance in
each method and at different times in the real data set

time 1 2 3
polynomial Kernel PCA 5 5 5
Gaussian Kernel PCA 5 5 5
Laplacian Kernel PCA 5 5 5
ANOVA Kernels PCA 5 5 5

Copula PCA 3 3 3
Linear PCA 2 2 3

Regarding the construction of the SCFE-NN algorithm for this dataset, we consider
Volume as the response variable. This variable is predicted using the principal components
that account for 99% of the total variance, derived from the previously best-performing
methods: polynomial Kernel PCA, Linear PCA, and Copula PCA. The extracted compo-
nents are utilized as inputs for a neural network. The results comparing different models at
specified times are presented in Table 19. Additionally, the optimized parameters of the neu-
ral network for each fold of each method in this dataset are provided in Table 18. According
to this table, the SCFE-NN algorithm consistently demonstrates less overfitting compared
to other methods, resulting in more accurate predictions.

4. Conclusion

When dealing with streaming data, quick decision-making and data management
is of great importance because when faced with such data, the number of observations
is high and variables are often interdependent. Additionally, non-linear relationships may
become apparent over time with an increase in the number of observations in the variables.
Therefore, we were looking for a method that takes these issues into account and improves
prediction accuracy. Our proposed Stream Copula Feature Extraction (SCFE) algorithm
benefits using Kendall’s τ association measure to extract the best informative components.
We investigate the performance of our algorithm using a simulation dataset, the online
streaming real dataset of Apple Inc., and the recorded dataset of COVID-19. Compared
to other alternative feature extraction methods, we showed that our approach yields more
percentage of explained variance and our SCFE-NN approach provides good results in neural
network prediction analysis, also showed in the Bitcoin data set that when the amount of
data is small, the proposed algorithm is equal to previous methods such as PCA, and as
time goes on, the algorithm explains a higher percentage of variance with a smaller number
of components.

Our method can be extended in many fashions. In this study, the copula function
was used to extract features in data streams. It is recommended for future research to utilize
the copula function in other dimension reduction methods such as feature selection. Also,
although we have used a neural network algorithm in the prediction part, one may consider
using other machine learning methods such as a deep learning approach in the prediction
analysis, on the other hand, to increase the accuracy of the models, the number of layers,
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Table 18: Values of the optimal parameters of the neural network in the Bitcoin
dataset

time Method Fold units stepmax number-layers MAE
1 6 1e + 06 1 24.61
2 4 1e + 05 1 26.82

1 linear-PCA-NN 3 4 1e + 05 3 26.27
4 6 1e + 05 1 24.03
5 8 1e + 05 3 26.49
1 6 1e + 07 1 0.0014
2 6 1e + 07 3 0.0003

polynomial Kernel PCA-NN 3 6 1e + 06 2 0.000
4 6 1e + 05 3 0.001
5 6 1e + 07 3 0.003
1 4 1e + 05 1 26.82
2 6 1e + 06 2 22.87

SCFE-NN 3 4 1e + 05 1 25.95
4 4 1e + 05 2 21.32
5 6 1e + 07 2 21.32
1 8 1e + 05 1 25.80
2 8 1e + 06 2 29.97

2 linear-PCA-NN 3 8 1e + 06 1 28.61
4 6 1e + 07 2 12.36
5 8 1e + 05 1 25.78
1 8 1e + 06 3 0.000
2 4 1e + 06 1 0.011

polynomial Kernel PCA-NN 3 8 1e + 05 3 0.006
4 8 1e + 07 3 0.000
5 6 1e + 05 2 0.004
1 6 1e + 05 3 22.29
2 4 1e + 05 3 24.73

SCFE-NN 3 6 1e + 05 1 27.98
4 4 1e + 06 3 22.60
5 8 1e + 06 2 29.64
1 6 1e + 05 1 23.49
2 8 1e + 05 2 26.87

3 linear-PCA-NN 3 6 1e + 07 1 25.52
4 6 1e + 07 2 19.41
5 4 1e + 05 2 29.81
1 8 1e + 07 2 0.005
2 8 1e + 06 1 0.002

polynomial Kernel PCA-NN 3 6 1e + 05 1 0.013
4 8 1e + 06 1 0.003
5 6 1e + 07 3 0.004
1 8 1e + 07 1 13.22
2 4 1e + 07 1 22.00

SCFE-NN 3 6 1e + 07 1 26.72
4 8 1e + 07 3 22.98
5 6 1e + 06 3 27.94
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Table 19: Comparison results of algorithm model SCFE-NN with other models
at different times in real time

time Estimation linear-PCA-NN polynomial Kernel PCA-NN SCFE-NN PCR
1 mean of RMSE train 26.394 0.008 22.94 34.258

SD of RMSE train 0.554 0.012 2.37 2.752
mean of RMSE test 32.297 27.89 25.58 37.003
SD of RMSE test 3.225 11.727 3.021 3.985

2 mean of RMSE train 30.324 0.019 28.162 37.658
SD of RMSE train 1.205 0.052 1.632 2.702
mean of RMSE test 37.747 44.121 34.362 48.256
SD of RMSE test 5.643 13.910 5.323 9.602

3 mean of RMSE train 29.618 8.65 27.325 42.369
SD of RMSE train 1.401 12.43 1.39 2.963
mean of RMSE test 35.239 58.49 30.026 49.521
SD of RMSE test 3.168 24.725 3.125 10.325

units and stepmax of the neural network have been optimized.

Also, besides using Kendall’s τ association measures to extract components, one may
interested in extracting these components using other copula-based concordance measures
such as Spearman’s ρ, Spearman’s foorules ϕ and Gini’s γ, see e.g. Mesiar et al. (2024). We
aim to extend these results using a linear combination of concordance measures in our next
ongoing work but over on going work will be extending this result to sum predictive models
such as multiple regression or principal component regression (PCR).
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ANNEXURE

Figure 3: Heatmap plots: Left side) Pearson’s correlation from time one to time
five, Right side) Kendall’s association from time one to time five
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Figure 4: Heatmap plots: Left side) Pearson’s correlation from time one to time
five in simulated data, Right side) Kendall’s association from time one to time
five in simulated data
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Figure 5: Percents of explained variance using linear PCA, Copula PCA and
kernel PCA at different times in real-data (Apple stock)

Figure 6: Percents of explained variance using linear PCA, Copula PCA and
kernel PCA at different times in real-data (Bitcoin)
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