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Abstract 
 

There has been substantial interest worldwide in understanding the current status of Corona Virus 
Disease (COVID-19) epidemic and prediction of the future path through the pandemic. Many groups 
are attempting to provide the description of spread and modeling the transmission processes for short 
and long term projections. Since the epidemic is in its early stage, there is paucity of data for predicting 
the future course of the disease. The back-calculation approach is one of the methods used in such a 
situation. The back-calculation reconstructs the past pattern of the infection and predicts the future 
number of cases with the present infection curve. Lack of information about incubation distribution, 
effect of intervention on incubation period and errors in reporting the cases lead to uncertainties 
associated with modeling. This paper attempts to formulate the problem of estimating future COVID-
19 cases as estimation of parameters in a multinomial likelihood with unknown sample size by EM 
algorithm. Illustrations are provided using reported cases in India and discussed. 
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1. Introduction  

 
The extensive world-wide spread of COVID-19, which started in late 2019 in China, has 

become the first modern pandemic in less than six months (Korean Society for Infectious 
Diseases, 2020; Li et al., 2020; Liu et al., 2020, Sun and Vibound 2020). Given the need to 
develop a better understanding of the levels and trends in the epidemic and the limited 
information on which to base these estimates, the use of modeling approaches can make a 
valuable contribution has seen in other epidemics (e.g. Solomon et al., 2003, Ravanan and 
Venkatesan 2008). The goal of any modeling exercise is to extract as much information as 
possible from the available data in order to provide an accurate representation of both the 
knowledge and uncertainty about the epidemic. 

 
A range of different types of models have been developed and applied to the estimation 

of epidemics in variety of settings. (One major tradition in modeling infectious diseases like  
HIV and COVID-19 epidemic  is the use of back-calculation of back projection techniques 
which provides statistical solutions convolution equations relating the number of cases 
diagnosed over time and incubation period distributions (Anderson, 1988; Venkatesan, 2006; 
Liu et al., 2020; Nishiura, 2020) The objective of this paper is to highlight areas in which 
further methodological developments are needed given currently available data sources. In 
general, epidemic modeling is categorized in to four broad categories, but not mutually 
exclusive ones. 
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(a) Deterministic models: In this type of modeling the parameters such as number of 
susceptible, infected and disease individuals are assumed to deterministic. These models 
are described by a system of differential or integral equations. The progression of the 
epidemic is studied using these equations. Many such models were developed in the past 
for diseases such as HIV/AIDS (Anderson et al., 1989; Hyman and Stanley, 1988; 
Anderson and May, 1992). 

 
(b) Stochastic models: Stochastic models assume that some of the key parameters are random 

variables. It is assumed that is a continuous time stochastic process. The stochastic 
models are considered to be more realistic than deterministic models and with some 
special assumptions the results of the deterministic models can be approximated through 
stochastic models. Several studies showed that stochastic models gave a better 
interpretation of epidemics than deterministic models (Tan, 2000; Mode et al., 1988; 
Isham, 1991). 

 
(c) Statistical models: The statistical models are based on epidemiology of the disease and 

survey/surveillance data. These models make full use of the available data compared to 
deterministic and stochastic models. In this type of modeling the disease mechanism and 
prior information are usually not considered. The back-calculation approach for 
projection of disease epidemics can be categorized in to this type of modeling (Jewel et 
al., 1992; Bacchetti et al., 1993; Venkatesan, 2006; Ravanan and Venkatesan, 2008; Egan 
and Hall, 2015). 

 
(d)  State-Space models: The state-space models have been introduced by Wu and Tan (1995) 

for modeling HIV/AIDS epidemic, which takes advantages of both stochastic and 
statistical models. The state-space models were originally proposed for engineering 
control and communication. This model was also used for projections and detailed 
description is given by Tan (2000).  

 
2. Back-Calculation Methodology 
 

Brookmeyer and Gail (1986, 1988) introduced back calculation method for short-term 
projection of HIV/AIDS epidemic.  This method uses a form of infection curve, either 
parametric or non-parametric, for the number of past HIV infections or equivalently a density 
function for infections as noted by Ding (1995, 1996).  The time between infection and the 
diagnosis of disease is known as incubation time and it is modelled by a known distribution. 
Many distributions are used for the incubation curve depending on the length (Lawless and 
Sun, 1992; Ravanan and Venkatesan, 2008; Venkatesan et al., 2012). The next section presents 
some of the useful distributions for modeling the COVID-19 infection curve. The formulation 
of back-calculation for discrete and continuous cases are considered here. 
 
2.1. Discrete back-calculation formulation 

 
The number of reported COVID-19 cases is available during the calendar time T0 to TL. 

Here T0 denotes the start of the epidemic and TL denotes the time up to which the data on 
reported COVID-19 cases are available. The back-calculation method to reconstruct the 
COVID-19 infection and projection of future COVID-19 cases can be described in the 
following sections.  
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Let Xj denotes the number of COVID-19 cases reported in the interval 

. Let , then (X1,X2,…XL) can be assumed to follow 

multinomial distribution . Here  denotes the probability that a person 

infected at time T0 is diagnosed with COVID-19 in the jth interval. This probability  may 
be estimated using the equation 

 

        (1) 

 
where F(t) denotes the discrete time formulation of incubation period distribution and Ij denotes 
the number of infected individuals at the beginning of the jth  interval.  

 
Let   fj-I = F (j+1–i) – F(j–i)        (2) 

 
then equation (1) can be modified as  

                      (3) 

 
If pj’s values are known then Npj denotes the expected number of COVID-19 cases in the 
interval [Tj-1, Tj). Estimation of pj is done by using various approaches. Let us consider the 
multinomial likelihood method of estimation of pj , where a form of infection curve is given by 
Ij = Ij(q1,q2,…,qk) which is assumed to be known except  the  k  parameters. Therefore, pj is a 
function of k unknown parameters, assuming F(t) is completely specified. The unknown 
parameters pj can be obtained using the multinomial likelihood as 
 

                   (4)                                           

 

Then           (5)  

 
Fisher’s scoring algorithm can be used to estimate the unknown parameters qi’s and hence pj 
can be estimated. The above formulation has been used by Taylor (1989). Future COVID-19 
cases in the kth time point following TL can be obtained using the equation  
 

              

                                         (6) 

where is the minimum number of COVID-19 cases in the interval TL+K. 
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2.2. Continuous time formulation of back-calculation 
 

In the discrete time formulation the incubation time was treated as a discrete random 
variable. If the incubation time is treated as a continuous random variable, then the probability 
of infection in the jth interval given in equation (1) can be rewritten as  

 

                                            (7)

  

Now  is assumed to be a smooth function of t. Brookmeyer and Gail (1986) modified 
(7) by assuming  to be the density function of infection times of N individuals. 

Therefore  and the equation (7) can be written as  

                                               (8) 

Thus a model for infection curve is  and a model for infection density are related by 

 where N =  

Hence we now work in the formulation of pj as given in equation (8). The parameter in 
pj can be estimated using the Fisher’s scoring algorithm assuming a multinomial likelihood.  
Brookmeyer and Gail (1988) formulated the problem of estimation of future cases in short 
interval of time as the problem of estimation of parameters in multinomial likelihood with 
unknown sample size and the method as explained in in the next section. 

 

2.3. EM algorithm approach 
  

The Expectation-Maximization (EM) algorithm was first proposed by Dempster et al. 
(1977) for the analysis of incomplete data. The algorithm is formulated as follows: 

XL+1 denote the number of individuals infected before the time TL who have not become 
COVID-19 cases by time TL. The problem is to estimate the total number of infections before 
the time TL. This number N is the minimum size of the COVID-19 epidemic, because even if 
the infections after the time TL could be prevented, the cumulative number of COVID-19 cases 
would eventually reach N. The minimum size is the sum of all cases already diagnosed, called 

 and all the susceptible individuals infected before TL but not yet diagnosed, called 

XL+1=N-n. It can be noted that, in this formulation both N and XL+1 are unknown. Therefore an 
estimate of the minimum cumulative incidence of COVID-19 that can be anticipated in some 
future time point TL+1 is 
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                        (9) 

where is the estimate of N and is the probability of becoming COVID -19 in the future 
interval [TL,TL+1). 

Assuming  as step function, Brookmeyer and Gail (1988) gave the following EM 
algorithm for the estimation of the parameter. 
 

Suppose  =  for t in . denote the time point 

defining the ith step. Let Xij denote the number of COVID-19 cases who were infected in the ith 
step  and    diagnosed in   the jth interval . Note that , since 

Xij is not defined if .  

 
For a fixed N,  

                                                                  (10) 

where  is the estimated probability that individual infected in the ith step is diagnosed as 
COVID-19 in the jth interval. These estimates are obtained using the current estimate of the  

values at the mth iteration i.e., , then the updated estimates are obtained using the equation  

                                                                                   (11) 

where  is the width of the ith step. The numeration in equation (11) is an estimate of the 
number of individuals N infected during the ith step. Further detail of the algorithm for a step 
function  is given by Brookmeyer and Gail (1988). 

 
3. Statistical Models for Incubation Period 

 
The incubation period models are similar to survival models based on non-negative 

random variables and can be fitted using either parametric or semi-parametric approach. A 
detailed description can be found in Lawless (2011).  Here we restrict our attention to only 
parametric models for incubation period as described in our earlier work (Ravanan and 
Venkatesan, 2008). The common distributions used for the incubation distribution are given in 
Table 1 and the infection densities used for prevalence are given in Table 2. Two other 
important distributions used are the staging model mode and change point model which are 
described below:  
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3.1. Staging model 
 

Under staging models the incubation period is considered to be comprised of stages 
(Brookmeyer and Liao 1990). Different models for these two stages can be assumed. Let  

and  denote the hazard functions of the two stages. The convolution equation for the 
incubation period comprising of these two stages 

 

             (12) 

where                                      (13) 

and                                          (14)  

 Suitable changes should be made in the above formulations to account for calendar 
time of infection 
 

Table 1: Incubation period distributions 
 

Model Distribution Function 
Weibull  
Gamma  

Lognormal , 

 
Log-logistic  
Gen. Exponential  
Gen.  Log-logistic 

 

Gen. Gamma 

,         

Mixed Weibull 
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3.2. Change point model 
 

Estimates of the population parameters are obtained in the case of subpopulations are 
exponentially distributed and sampling is censored at a predetermined test termination time 
was first introduced by Mendenhall and Hader (1958). The change point model considered here 
is briefly presented below. 
 
Suppose the hazard before and after the change point is constant, then h(t) is given by 
 

                                                                              (15) 

 
The distribution function is given by  
 

                                            (16) 

  
The median of the incubation period is given by  
 

                         (17)  

 
  Table 2:  Infection densities 
 

Model Infection Density 
Logistic Prevalence  

Logistic Incidence  

Double Exponential 
incidence 

 

Log-logistic incidence  

Exponential incidence  

Root exponential 
incidence 

 

       

4. An Illustration Using Indian Data 
 

The basic data required for back-calculation methodology is the number of COVID-19 
cases over a period of time (Brookmeyer and Gail, 1986, 1988, 1990; Ding, 1995, 1996). The 
Ministry of Health publishes daily updates of the reported COVID-19 cases for the past few 
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months. The updates of the recent days also suffer reporting delays and under reporting and 
therefore pooled weekly reported cases may be more reliable. In this illustration only weekly 
reported cases were considered. The period is from 1st March 2020 to 30th May 2020 (13 weeks) 
(https://www.coronatracker.com/country/india/). It is also reported that level of under reporting 
may vary from 50-90%. For this work, it is assumed that the level of under reporting is around 
90% in early March 2020 and gradually decreased to 50% exponentially in the end of May 
2020. The exponential decay model 

 
 P(t) = 0. 90 e –0.05t       (18) 

 
gives a better  approximation of the above assumption. The upward adjustments for the weeks 
are carried out. Table 3 gives the actual number of reported and adjusted COVID-19 cases 
along with 3-week moving averages. The reported cases are smoothed using a three week 
moving averages as a first step. The linear and quadratic models are fitted to find the best fit 
liner model for the trend for the moving average cases which serves as a bench mark for 
comparisons. The results are given in Table 4. From the table it is seen that the quadratic trend 
model seems to be a better fit for moving averages and the corresponding model is  
 

Cases = 1114.9 – 1205.7 Time + 373.2 Time2     (19) 
 
Table 3: Weekly confirmed COVID-19 cases in India 
 

 
Week 

Weekly 
Confirmed 

COVI-19 Cases 

3week 
Moving 
Average 

Cumulative 
COVID-19 

Cases 

 Adjusted  
weekly  
Cases 

March 1-7 31 - 31 63 
March 8-14 50 104 81 93 
March 15-21 231 294 312 419 
March 22-29 601 995 913 1067 
March29-April 4 2154 2407 3067 3741 
April 5-11 4467 4628 7534 7581 
April 12-18 7263 7460 14797 12105 
April 19-25 10650 10319 25447 17404 
April 26-May 2 13044 15193 38491 20913 
May 3-9 21886 20924 60377 34446 
May 10-16 27842 30168 88219 43040 
May17-23 40775 39797 128994 61948 
May24-30 50404 - 179398 75300 

   
  Table 4:  Trend lines based on the moving averages 
 

Trend Variable B Se(B) Z Sig R2 

Linear Constant 
Time 

–8742.3 
3333.0 

2500.8 
368.7 

–3.496 
9.039 

0.01 
8.24e-05 

 
0.889 

Quadratic Constant 
Time 
Time2 

879.0 
–1107.6 

370.1 

1314.0 
519.2 
49.9 

1.505 
–4.655 
7.413 

0.163 
0.0009 

7.54e-05 

 
0.984 
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4.1. Estimation of parameters 
 

Based on the availability of data, the starting point of the epidemic T0 is taken as March 
2020. The incubation distributions discussed in the previous section are used in this section to 
illustrate projection of COVID-19 in India. The estimates of minimum size of the epidemic and 
future COVID-19 cases are obtained assuming a median incubation period of two weeks. For 
the incubation period models Weibull, gamma, log-logistic, log-normal and generalized 
exponential distribution prior estimates of their parameters are obtained methods described in 
Venkatesan (2006). All these models have two parameters and one parameter is fixed based on 
the estimates reported (Table 1). The other parameter was determined such that the median 
distribution period is known. The parameters of the generalized log-logistic, generalized 
gamma, mixed Weibull and change point models are not available. The parameters of these 
models are decided based on the simulation study as described in our earlier work (Ravanan 
and Venkatesan, 2009). For the infection density, the exponential, root exponential, double 
exponential, logistic and log-logistic are commonly used (Table 2). In this work only logistic 
density incidence based projections are given for illustrative purpose. The projections based on 
logistic infection density under various incubation period distributions are presented in Table 
5. 

Table 5: Projection of COVID-19 prevalence under logistic infection density and  
   total expected confirmed cases (Median incubation = 2 weeks) 

 
Incubation period 

Model 
Projection of COVID-19 cases (‘000) 

Up to June 6  Up to June 13 Up to June 20 
Weibull 240.5 318.8 408.1 

Gamma 242.8 321.9 411.8 

Log-logistic 248.5 327.7 419.2 

Log-normal 244.8 327.0 419.7 

Gen. Exponential 249.6 328.7 420.9 

Gen. Log-logistic 248.0 326.9 418.4 

 Gen. Gamma 249.3 327.1 417.8 

Mixed Weibull 241.5 322.1 414.4 

Change point 247.7 326.1 418.1 

Quadratic 246.9 324.8 413.8 

Observed 236.2 321.6 411.8 

 

From Table 5 we see that the projections obtained for the next three weeks under different 
models do not differ widely. This may be due to the behaviour of the epidemic in the early 
stage.  However, the projections based on Weibull, gamma, lognormal and mixed Weibull are 
close the observed cases.  The quadratic model also gives results close to the observed cases. 
The projections based on exponentially adjusted cases for under reporting resulted higher cases 
and are not reported here. We also considered the other infection densities for incidence given 
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in Table 2. They resulted in higher cases than the logistic prevalence. Hence only the results 
pertaining to the logistic prevalence infection density are given to illustrate the use of the 
models. After obtaining sufficient data in the infection curve, the comparisons will provide 
valid estimates. 

 

5. Discussion 
 

There has been research showing that on average, each infected person spreads the 
infection to more than two persons. Therefore the majority of the population is at risk of 
infection if no intervention measures were undertaken. The true size of the COVID- 19 
epidemic remains unknown, as a significant proportion of infected individuals only exhibit 
mild symptoms or are even asymptomatic.  Timely assessment of the evolving epidemic size 
is crucial for resource allocation and plan strategies. In this article, we used the back-calculation 
algorithm to obtain a lower bound estimate of the numbers of COVID-19 infected confirmed 
cases in India using the available data. Since the data source is limited and suffers from under 
reporting, under diagnosis and delay in reporting, adjustments are needed before making any 
modeling and projections. 

 
One of the critical issues in infectious disease epidemiology is that the time of infection 

event is seldom directly observable. For this reason, the time of infection needs to be 
statistically estimated, employing a back-calculation method. It is observed that the short-term 
projection of three weeks do not vary much across various incubation period distributions.  
Further the estimates vary widely for different infection densities.  The projected COVID-19 
cases for three weeks under Weibull, gamma, lognormal and mixed Weibull are similar and 
close to the confirmed cases. One reason could be that they are related models and the do not 
differ in the initial stages.  We also considered projections under the logistic, exponential 
double exponential and root exponential infection densities with varying median incubation 
periods. But the estimates vary significantly particularly under exponential infection density. 
Since the infection curve is at its early sage, we have reported only the logistic infection density 
estimates as an illustration. Once sufficient size data is available, the comparisons are reliable. 
This paper provides a methodology based on the back-calculation for short-term projections 
which ae widely used in diseases like HIV/AIDS. 
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