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Abstract
Bayesian modeling of generalized distributions is currently highly appreciated due to

the impressive growth in computational capabilities and software accessibility. This work
attempts to fit the Bayesian inference methods for the generalized Burr X-G (GBX-G) family.
On the basis of the GBX-G family, three distributions— the generalized Burr X-Weibull, the
generalized Burr X-Exponential and the generalized Burr X-Lomax are analysed and fitted
to censored survival data of malignant glioma patients using the probabilistic programming
language STAN. In order to apply censored mechanisms throughout using STAN, codes
are developed. Finally, a comparison has been made between the models through the use of
Watanabe Akaike information criteria and leave one out cross-validation information criteria
and conclusion has been given regarding the Bayesian model fitting of the glioma dataset.

Key words: Generalized Burr X-G (GBX-G) family; Bayesian survival modelling; Censored
data; MCMC; LOOIC and WAIC methods.

1. Introduction

The time until an event occurs is the outcome variable of interest in a group of
statistical techniques for data analysis called survival analysis. In the literature, there are
many models that may be used to analyse lifetime data. Burr X (BX) distribution and
it’s generalization has been a part of research interest for survival data analysis for a long
period of time. Burr (1942) introduced the Burr X (BX) distribution and later Yousof et al.
(2017) defined Burr X-G (BX-G) family of distributions and also discussed it’s application
in analysing lifetime data. Also several other extended forms of the Burr X-G family were
studied such as the transmuted Burr X-G (TBX-G) family and the truncated Burr X-G
family of distributions that have been proposed and discussed by Al-Babtain et al. (2021) and
Bantan et al. (2021) respectively. Apart from this Akhtar and Khan (2014) has conducted
Bayesian analysis of generalized log-Burr family using R.

Based on the Burr X (BX) distribution, Aldahlan et al. (2021) created a new class
of continuous distributions known as the generalised Burr X-G (GBX-G) family, studied its
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mathematical properties, such as explicit expressions for the quantile and generating func-
tions, ordinary and incomplete moments, order statistics, etc., and provided its applications
to real data sets. The GBX-G family’s versatility in accommodating various forms of the
hazard rate function (for details see Aldahlan et al. (2021)) turns into the driving force
behind our work. The three GBX-G family-based models have been taken into considera-
tion namely generalized Burr X-Exponential (GBXEx) Model, generalized Burr X-Weibull
(GBXW) Model, and generalized Burr X-Lomax (GBXLx) Model in order to fit a real cen-
sored survival data named glioma which was initially discussed by Grana et al. (2002),
under the Bayesian setup.

The comprehensive Bayesian inference-supporting probabilistic programming lan-
guage STAN Carpenter et al. (2017) in R R Core Team (2021) is used to fit the aforemen-
tioned models. In Bayesian analysis, the computer language STAN is most typically used
as a Hamiltonian Monte Carlo (HMC) sampler Duane et al. (1987); Brooks et al. (2011).
Statistical models are defined using STAN. For Bayesian analysis, STAN predominantly
uses the No-U-Turn sampler (NUTS) Hoffman et al. (2014) to obtain posterior simulation.
We have also assessed and chosen the most appropriate model for the glioma data using the
Watanabe-Akaike information criteria, or widely applicable information criteria (WAIC) and
the Leave-One-Out information criteria (LOOIC). LOOIC and WAIC are two techniques for
assessing the accuracy of pointwise out-of-sample predictions using a fitted Bayesian model
and the log-likelihood evaluated at the posterior simulations of the parameter values, see
Vehtari et al. (2017).
The article is structured as follows:
1. Explanation of PDF, CDF and hazard function for GBX-G family and all three models
GBXEx, GBXW, and GBXLx of it (Section 2).
2. Explanation of the glioma data set and it’s structure for STAN (Section 3).
3. Analysis under Bayesian approach by providing Likelihood, prior and posterior for all
three models (Section 4).
4. Implementation and model fitting using STAN (Section 4.5).
5. Numeric as well as graphic results and interpretation of Bayesian analysis for the glioma
data set (Section 4.8 - Section 4.12).
6. Bayesian Model comparison for the glioma data set (Section 5).
7. Conclusion (Section 6).

2. Generalized Burr X-G (GBX-G) family

A continuous random variable T is said to have the GBX-G family that is T ∼ GBX-
G(α, β, η), if it has following probability density function (PDF), cumulative distribution
function (CDF), survival function, and hazard function respectively, see (Aldahlan et al.,
2021)-

fT (t, α, β, η) = 2αβg(t, η)G(t, η)2α−1

[1 − G(t, η)α]3 exp(−[ G(t, η)α

1 − G(t, η)α
]2)

×(1 − exp(−[ G(t, η)α

1 − G(t, η)α
]2))β−1

(1)

FT (t, α, β, η) = (1 − exp(−[ G(t, η)α

1 − G(t, η)α
]2))β (2)
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ST (t, α, β, η) = 1 − (1 − exp(−[ G(t, η)α

1 − G(t, η)α
]2))β (3)

hT (t, α, β, η) = fT (t, α, β, η)
ST (t, α, β, η) (4)

Where α and β are positive shape parameters and η is parameter vector.

2.1. Generalized Burr X-exponential (GBXEx) model

Let the PDF g(t) = λe–λt, for t > 0, of the exponential distribution with scale
parameter λ, λ>0. Then, the probability density function (PDF), cumulative distribution
function (CDF), survival function of the GBXEx model becomes

f(t) = 2αβλe–λt(1 − e–λt)2α−1

[1 − (1 − e–λt)α]3 exp(−[ (1 − e–λt)α

1 − (1 − e–λt)α
]2)

×(1 − exp(−[ (1 − e–λt)α

1 − (1 − e–λt)α
]2))β−1

(5)

F (t) = (1 − exp(−[ (1 − e–λt)α

1 − (1 − e–λt)α
]2))β (6)

S(t) = 1 − (1 − exp(−[ (1 − e–λt)α

1 − (1 − e–λt)α
]2))β (7)

Also, using above expressions the hazard function can be obtained as-

h(t) = f(t)
S(t) (8)

Here the random variable T will be denoted as T ∼ GBXEx(α, β, λ).

Random number generation - For random number generation of time variable
from any survival model we will equate Survival function, S(t) to u, where U is a Uniform(0,1)
variate and solve this equation for the value of t. Gelman et al. (2013) explained this method
to generate the random numbers. Farhin et al. (2022) used this method recently.
The random number generation from GBXEx model is obtained by -

t = −1
λ

log(1 − ( (−log(1 − (1 − u)1/β))1/2

1 + (−log(1 − (1 − u)1/β))1/2 )1/α) (9)

2.2. Generalized Burr X-Weibull (GBXW) model

Let the PDF g(t) = aλxλ−1e−axλ , for t > 0, of the Weibull distribution with pa-
rameters λ and a, λ>0, a>0. Thus, the probability density function (PDF), cumulative
distribution function (CDF), survival function of the GBXW model becomes

f(t) = 2αβaλtλ−1e−atλ(1 − e−atλ)2α−1

[1 − (1 − e−atλ)α]3 exp(−[ (1 − e−atλ)α

1 − (1 − e−atλ)α
]2)

×(1 − exp(−[ (1 − e−atλ)α

1 − (1 − e−atλ)α
]2))β−1

(10)
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F (t) = (1 − exp(−[ (1 − e−atλ)α

1 − (1 − e−atλ)α
]2))β (11)

S(t) = 1 − (1 − exp(−[ (1 − e−atλ)α

1 − (1 − e−atλ)α
]2))β (12)

Also, using above expressions the hazard function can be obtained as-

h(t) = f(t)
S(t) (13)

Here the random variable T will be denoted as T ∼ GBXW(α, β, a, λ).

Also, the generation of random numbers from GBXW model is obtained by -

t = λ × (−log(1 − ( (−log(1 − (1 − u)1/β))1/2

1 + (−log(1 − (1 − u)1/β))1/2 )1/α))1/a (14)

2.3. Generalized Burr X-Lomax (GBXLx) model

Let the PDF g(t) = a/λ[1 + t/λ]−a−1, for t > 0, of the Lomax distribution with
parameters λ and a, λ>0, a>0. Thus, the probability density function (PDF), cumulative
distribution function (CDF), survival function of the GBXLx model is given by

f(t) = 2αβa/λ[1 + t/λ]−a−1(1 − [1 + t/λ]−a)2α−1

[1 − (1 − [1 + t/λ]−a)α]3 exp(−[ (1 − [1 + t/λ]−a)α

1 − (1 − [1 + t/λ]−a)α
]2)

×(1 − exp(−[ (1 − [1 + t/λ]−a)α

1 − (1 − [1 + t/λ]−a)α
]2))β−1

(15)

F (t) = (1 − exp(−[ (1 − [1 + t/λ]−a)α

1 − (1 − [1 + t/λ]−a)α
]2))β (16)

S(t) = 1 − (1 − exp(−[ (1 − [1 + t/λ]−a)α

1 − (1 − [1 + t/λ]−a)α
]2))β (17)

Also, using above expressions the hazard function can be obtained as-

h(t) = f(t)
S(t) (18)

Here the random variable T will be denoted as T ∼ GBXLx(α, β, a, λ). The generation of
random numbers from GBXLx model is obtained by-

t = λ × ((1 − ( ((1 − (1 − u)1/β))1/2

1 + (−log(1 − (1 − u)1/β))1/2 )1/α)−1/a − 1) (19)
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3. Data: malignant glioma pilot study

On malignant glioma patients receiving pretargeted adjuvant radioimmunotherapy
with yttrium-90-biotin, Grana et al. (2002) did a non-randomized pilot research and evalu-
ated overall survival and the time to relapse. In this study, 37 high-grade glioma patients,
17 with grade III glioma and 20 with glioblastoma (GBM) were enrolled in a controlled
open non-randomized study. Among them, 19 patients were treated with adjuvant radioim-
munotherapy (RIT) and 18 were represented as the Control group. The survival time for
each patient alongwith other helpful information such as gender, histology, age, etc. had
been recorded. There are 14 censored observations out of 37 in the dataset.
This complete data set can be accessed through the R R Core Team (2021) package coin
Zeileis et al. (2008) with the name glioma.
The discription of variables of glioma data set are given below:
no.: patient number.
age: patient age in years.
sex: a factor indicating patient’s gender with levels ”M” for Male and ”F” for Female.
histology: a factor with levels ”Grade3” (grade III glioma) and ”GBM” (grade IV or
glioblastoma).
group: a factor with levels ”RIT”(radioimmunotherapy) and ”Control”.
event: censoring status indicator: FALSE for right-censored values and TRUE otherwise.
time: survival time in months.

3.1. Data creation for computation in stan

The model matrix x, a number of predictors M, and details of the censoring and
response variable are needed for data production. N is the number of observations that are
stated. Censoring is considered, with 0 being censored values and 1 denoting uncensored
values. Finally, a listed form of data named ’datg’ is created by combining all of these
operations.

library(coin)
library(survival)
data("glioma")
glioma
help(glioma)
head(glioma)
y=glioma$time
x1=glioma$age
x2=as.numeric(glioma$sex)
#0=Female, 1=Male
x2=as.numeric(x2==2)
x3=as.numeric(glioma$histology)
#0=GBM, 1=Grade3
x3=as.numeric(x3==2)
x4=as.numeric(glioma$group)
#0=Control, 1=RIT
x4=as.numeric(x4==2)
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#0=censored, 1=observed
censor=as.numeric(glioma$event)
x=cbind(1,x1,x2,x3,x4)
N=nrow(x)
M=ncol(x)
datg=list(y=y,censor=censor,x=x,N=N,M=M)

4. Analysis using Bayesian mechanism

In Bayesian analysis, in accordance with Bayes Theorem, we look for the posterior
distribution which is the exact parameter distribution, by combining likelihood or data with
the prior distribution of the parameter. The likelihood of the data and the prior distribution
or the prior belief about the model’s parameters must be established before the Bayesian
regression model can be built.

4.1. Likelihood

Following Collett (2015), The right censored data can be formulated using the fol-
lowing joint likelihood function-

L =
n∏

i=1
h(ti)γiS(ti) (20)

And, the log-likelihood can be re-written as an alternative to the above form as-

logL =
n∑

i=1
(γi(logh(ti) + logS(ti))) (21)

Here γi is the censoring indicator such that γ = 1 if the observation is not censored and γ
= 0 if the observation is censored. To obtain the likelihood of GBXEx, GBXW and GBXLx
survival models, the survival function S(ti) and the hazard function h(ti) of GBXEx, GBXW
and GBXLx models respectively can be sustituted in the equation 20.

4.2. Modeling information

Following Lawless (2011), We have introduced covariates using the log link function
in order to construct a regression model.

log(λi) = b1 + b2xi1 + b3xi2 + b4xi3 + b5xi4 (22)

λi = exp(b1 + b2xi1 + b3xi2 + b4xi3 + b5xi4) (23)
λi = exp(xib) (24)

Here b = [b1, b2, b3, b4, b5] are regression coefficients and xi’s are covariates of the data set
discussed in Section 3. In particular, b1 is the intercept, b2 is the coefficient of covariate (x1)
of Age, b3 is the coefficient of covariate (x2) of Sex, b4 is the coefficient of covariate (x3) of
Histology and b5 is the coefficient of covariate (x4) of Group.
In STAN the transformed parameter block of the stan model code contains above regression
model. These stan codes are discussed in Section 4.5.
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4.3. Prior

A prior probability distribution for parameters of the model needs to be specified be-
fore building the Bayesian regression model. In this article, for shape and scale parameters,
we have chosen a half-Cauchy prior, and for the regression coefficient, a regularizing prior.
We have opted for the Normal prior with mean 0, and standard deviation 5 for regression
coefficient as a regularizing prior. Regularizing prior reduces the rate of learning from the
data and prevents a model from becoming overexcited by it. Notably, it reduces the over-
fitting of the model to the data.
The half-Cauchy distribution with scale parameter 25, used as a noninformative prior distri-
bution for shape parameter. Taking 25 as the value of the scale parameter, the half-Cauchy
distribution becomes almost flat. Gelman (2006) support the use of half-Cauchy or uniform
prior for the regression coefficents. Khan and Khan (2018) and Farhin and Khan (2023)
explained the use of Gaussian prior for the regression coefficient and half-Cauchy prior for
the shape as well as the scale in detail.

4.4. Posterior

Here the Bayes Theorem is used to obtain the joint posterior distribution of parameter
θ = (α, β, a, b) = (α, β, a, b0, b1, ..., bp) given the data as

P (θ|t, X) ∝ L(t|θ, X)P (θ) (25)

Taking X as the matrix of covariates and assuming the parameters as independent, we have

P (α, β, a, b|t, X) ∝ P (t|α, β, a, b, X)P (α)P (β)P (a)P (b) (26)

Hence the joint posterior distribution of GBXEx Model, GBXW Model and GBXLx Model
can be obtained by sustituting priors and the likelihood of the corresponding models in
Equation 26.

4.4.1. Posterior density of GBXEx model

P (α, β, b|t, X) ∝ P (t|α, β, b, X)P (α)P (β)P (b)

∝
n∏

i=1

{
2αβexibe–exibt(1 − e–exibti)2α−1

[1 − (1 − e–exibti)α]3
exp(−[ (1 − e–exibti)α

1 − (1 − e–exibti)α
]2)

}γi

×
{

(1 − exp(−[ (1 − e–exibti)α

1 − (1 − e–exibti)α
]2))β−1

}γi

×
{

1 − (1 − exp(−[ (1 − e–exibti)α

1 − (1 − e–exibti)α
]2))β

}1−γi

× 2 × 25
π(α2 + 252) × 2 × 25

π(β2 + 252) ×
J∏

j=0

1
5
√

2π
exp

(
− 1

2 × 25b2
j

)
(27)
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4.4.2. Posterior density of GBXW model

P (α, β, a, b|t, X) ∝ P (t|α, β, a, b, X)P (α)P (β)P (a)P (b)

∝
n∏

i=1

2αβaexibti
exib−1e−ati

exib

(1 − e−ati
exib

)2α−1

[1 − (1 − e−ati
exib

)α]3
exp(−[ (1 − e−ati

exib

)α

1 − (1 − e−ati
exib

)α
]2)


γi

×

(1 − exp(−[ (1 − e−ati
exib

)α

1 − (1 − e−ati
exib

)α
]2))β−1


γi

×

1 − (1 − exp(−[ (1 − e−ati
exib

)α

1 − (1 − e−ati
exib

)α
]2))β


1−γi

× 2 × 25
π(α2 + 252) × 2 × 25

π(β2 + 252) × 2 × 25
π(a2 + 252) ×

J∏
j=0

1
5
√

2π
exp

(
− 1

2 × 25b2
j

)
(28)

4.4.3. Posterior density of GBXLx model

P (α, β, a, b|t, X) ∝ P (t|α, β, a, b, X)P (α)P (β)P (a)P (b)

∝
n∏

i=1

{
2αβa/exib[1 + ti/exib]−a−1(1 − [1 + ti/exib]−a)2α−1

[1 − (1 − [1 + ti/exib]−a)α]3

}γi

×
{

exp(−[ (1 − [1 + ti/exib]−a)α

1 − (1 − [1 + ti/exib]−a)α
]2) × (1 − exp(−[ (1 − [1 + ti/exib]−a)α

1 − (1 − [1 + ti/exib]−a)α
]2))β−1

}γi

×
{

1 − (1 − exp(−[ (1 − [1 + ti/exib]−a)α

1 − (1 − [1 + ti/exib]−a)α
]2))β

}1−γi

× 2 × 25
π(α2 + 252) × 2 × 25

π(β2 + 252) × 2 × 25
π(a2 + 252) ×

J∏
j=0

1
5
√

2π
exp

(
− 1

2 × 25b2
j

)
(29)

Now, to find marginal posterior distribution we need to solve a a high-dimensional
integral over all model parameters. Since it is difficult to derive the normalised joint posterior
distribution and the marginal distributions of the parameters analytically, we approximate
these integrals using Markov chain Monte Carlo (MCMC) methods. Thus, the estimates and
other pertinent findings are achieved using the MCMC simulation approach with the aid of
STAN.

4.5. Implementation using stan

STAN incorporates the use of the no-U-turn sampler (NUTS), an adaptive variant
of Hamiltonian Monte Carlo (HMC) sampling, to efficiently simulate from the posterior
distribution. HMC, which extends the capabilities of the Metropolis algorithm, is particularly
advantageous in high-dimensional models due to its improved effectiveness and speed. While
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Bayesian inference using Gibbs sampling (BUGS) is a commonly used approach, it often
faces challenges when confronted with large datasets or complex models, leading to lengthy
computation times or even failure to provide solutions. STAN, on the other hand, excels
in handling such scenarios, offering faster computations and requiring a reduced number of
iterations to achieve convergence when compared to BUGS (See Ashraf-Ul-Alam and Khan
(2021) and Gelman et al. (2013)).
In R, to execute the STAN code, the package rstan is necessary. A Stan programme has
six code blocks that are used for Bayesian modelling. Each block accommodates a list of
instructions for distinct tasks. These blocks are - Data block, Transformed data block,
Parameter block, Transformed parameter block, Model block, and Generated quantities
block. In the Appendix, the stan codes with all these blocks for GBXEx, GBXW, and
GBXLx models are provided.

4.6. Fitting the model using stan

The package rstan has a function named stan which is used to fit all the models based
on GBX-G family. STAN uses C++ compiler for sampling from the posterior distrbution of
the model parameters. All necessory codes for the numeric and graphical illustrations are
provided in upcoming sub sections.

4.6.1. Bayesian data visualization: key plots for analysis

Graphical summary is an improtant part for analysis to assess the model convergence
and communicate posterior related findings effectively. In this study, four plots are used
namely- Traceplot, Caterpiller plot, Posterior predictive density plot and Posterior density
plot. The traceplot provides a visual assessment of Markov Chain Monte Carlo (MCMC)
convergence and it can be seen by comparing several Markov chains in a single plot. The
Caterpiller plot shows the credible intervals or the quantiles for various parameters of the
model and can be used to see the statistical significance of various coeffcients of the model.
Posterior predictive checks (PPD plots) allow us to evaluate how well the model fits the
observed data by comparing the density of the predicted values produced using the posterior
predictive distribution of the specified model to the observed data. The posterior density plot
is a graphical representation of the posterior distribution of a parameter and is constructed
using simulated draws of the parameter from the posterior distribution. The R packages
Bayesplot Gabry et al. (2019) and ggplot2 Wickham and Wickham (2016) with rstan are
used to create these plots in this paper.

4.7. Running the GBXEx model using stan

#calling rstan package
require(rstan)
#fitting the model
GBXE=stan(model_code = MGXE,data=datg,iter=4000,chains = 4)
print(GBXE)
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4.8. Output summary and interpretaion

The results of Bayesian model fitting of GBXEx model are provided in Table 1. Also
graphs are provided for summaries of posterior density and model convergence. The coeff-
cients b[2] of age (x1) and b[3] of sex (x2) are negative which shows that the older patients
tends to have less survival probability then younger ones and the chances of survival for
female are greater than male. The coeffcient b[5] of group is positive which indicates the
chances of survival for patients who recieved the radioimmunotherapy (RIT) are greater than
patients of control group which is a clear indication of positive impact of radioimmunother-
apy on glioma patients. We can also see that the coeffcient b[4] of histology is positive which
indicates patients with Grade 3 glioma have higher survival rates than those with glioblas-
toma (GBM). Also, after observing the estimates summary, it can be observed that the 95%
credible intervals of b[4] and b[5] do not contain a value of zero, so the effect of coefficients
of histology (GBM and Grade3) and group (Control and RIT) is statistically significant.
Additionally, the summary table conatins the posterior estimates mean and se mean, the
standard deviation (sd), and the credible interval. Apart from this, the numerical summary
table also contain the n eff that is the effective number of samples which is a measure of the
number of independent samples from the posterior distribution and the Rhat or the potential
scale reduction factor, see (Gelman et al., 2013), which is a quantitative criterion to assess
convergence to the target distribution. In general n eff > 100 and Rhat < 1.1 is accept-
able for appropriate parameter estimates and model convergence, see (Gelman et al., 2013).
We can discern that the Rhat values for all parameters of the GBXEx model fall within
an acceptable range, signifying successful convergence of the Markov chains to the desired
distribution. The effective sample size is also reasonable. Using the Bayesplot package
Gabry et al. (2019) , posterior predictive density (PPD) charts are created to visually assess
the model. Posterior predictive density charts (Figure 2) depicts that the GBXEx model is
consistent with the current data. Trace plots are also provided (Figure 1) to indicate the
convergence of MCMC algorithm. Also, Figure 1 displays the caterpillar plot, wherein a
vertical line appears at the value zero. Notably, the credible intervals of coefficients b[4] and
b[5] lie on the right-hand side of the line, indicating that these intervals do not encompass the
value of zero. This finding serves as evidence of the statistical significance of these coefficients.

Table 1: Posterior estimates results of GBXEx model parameters

Parameters mean se mean sd 2.5% 25% 50% 97.5% n eff Rhat
b[1] 3.691 0.057 1.203 2.246 2.882 3.354 6.925 439 1.005
b[2] -0.013 0.000 0.009 -0.031 -0.019 -0.013 0.006 899 1.002
b[3] -0.284 0.008 0.245 -0.759 -0.444 -0.291 0.227 875 1.000
b[4] 0.962 0.010 0.307 0.431 0.758 0.940 1.627 967 1.003
b[5] 1.209 0.007 0.247 0.789 1.039 1.183 1.756 1418 1.001
alpha 4.652 0.155 4.223 0.122 0.972 3.576 14.582 747 1.004
beta 1.255 0.133 2.628 0.105 0.183 0.303 10.175 391 1.009
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Figure 1: (i) Traceplot for GBXEx model, four chains were displayed in two sepa-
rate runs; combining the two chains successfully indicates that MCMC algorithm has
converged to the target joint posterior distribution. (ii) Caterpillar plot for GBXEx
model.
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Figure 2: (i) Posterior density plot for GBXEx model. (ii) Posterior predictive density
plot of the GBXEx model to assess the convergence of model. The GBXEx’s posterior
predictive density adequately fits the data, according to the PPD plot.

4.9. Running the GBXW model using stan

GBXW=stan(model_code = MGXW,data=datg,iter=4000,chains = 4, init = "random")
print(GBXW)

4.10. Output summary and interpretaion

The results of Bayesian model fitting of GBXW model are provided in Table 2. The
Rhat values for model parameters are < 1.1, which depicts that the Markov chain converges
to the desired distribution. And, the n eff is more than 100 for all parameters of the model.
The PPD chart (Figure 4) of the GBXW model indicates a good fit of the posterior predic-
tive density with the data. It can also be seen that the coeffcients b[2] of age (x1) and b[3]
of sex (x2) are negative and the coeffcients b[4] of histology (x3) and b[5] of group (x4) are
positive. From the numeric summary of posterior estimates (Table 2) and the caterpillar
plot (Figure 3), it is observed that the 95% credible intervals do not encompass the value
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of zero for the coefficients of histology and group, which serves as evidence of the statistical
significance of these coefficients.

Table 2: Posterior estimates results of GBXW model parameters

Parameters mean se mean sd 2.5% 25% 50% 97.5% n eff Rhat
b[1] 0.500 0.112 3.827 -7.926 -1.967 0.971 6.993 1177 1.007
b[2] -0.013 0.000 0.010 -0.032 -0.019 -0.013 0.007 2105 1.000
b[3] -0.162 0.007 0.277 -0.696 -0.348 -0.166 0.372 1781 1.001
b[4] 0.966 0.006 0.302 0.417 0.763 0.948 1.612 2861 1.000
b[5] 1.208 0.005 0.254 0.756 1.036 1.190 1.760 2775 1.001
alpha 12.997 0.948 41.793 0.057 1.319 4.608 69.750 1945 1.003
beta 7.361 0.567 20.603 0.134 0.470 1.461 53.536 1319 1.003
a 0.859 0.072 1.671 0.086 0.168 0.292 6.352 539 1.010
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Figure 3: (i) Traceplot for GBXW model, four chains were displayed in two sepa-
rate runs; combining the two chains successfully indicates that MCMC algorithm has
converged to the target joint posterior distribution. (ii) Caterpillar plot for GBXW
model.
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Figure 4: (i) Posterior density plot for GBXW model. (ii) Posterior predictive density
plot of the GBXW model to assess the convergence of model. The GBXW’s posterior
predictive density adequately fits the data, according to the PPD plot.
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4.11. Running the GBXLx model using stan

GBXL=stan(model_code = MGXL,data=datg,iter=4000,chains = 4)
print(GBXL)

4.12. Output summary and interpretaion

The results of Bayesian model fitting of GBXLx model are provided in Table 3. The
Rhat values for model parameters are < 1.1, which depicts that the Markov chain converges
to the desired distribution. And, the n eff is more than 100 for all parameters of the model.
The PPD chart (Figure 6) for the GBXLx model indicates a good fit of the posterior pre-
dictive density with the data. It can also be seen that the coeffcients b[2] of age (x1) and
b[3] of sex (x2) are negative and the coeffcients b[4] of histology (x3) and b[5] of group (x4)
are positive. From the numeric summary of posterior estimates (Table 3) and the caterpillar
plot (Figure 5), it is observed that the 95% credible intervals do not encompass the value
of zero for the coefficients of histology and group, which serves as evidence of the statistical
significance of these coefficients.

Table 3: Posterior estimates results of GBXLx model parameters

Parameters mean se mean sd 2.5% 25% 50% 97.5% n eff Rhat
b[1] 3.916 0.251 4.042 -4.775 1.203 5.100 9.957 259 1.016
b[2] -0.013 0.000 0.009 -0.031 -0.019 -0.014 0.004 1453 1.002
b[3] -0.203 0.009 0.254 -0.692 -0.372 -0.204 0.304 815 1.004
b[4] 0.966 0.007 0.286 0.459 0.770 0.951 1.594 1541 1.005
b[5] 1.194 0.006 0.241 0.773 1.034 1.173 1.723 1655 1.002
alpha 12.687 1.891 45.047 0.129 1.830 5.370 63.206 568 1.007
beta 2.067 0.228 5.376 0.118 0.221 0.440 15.137 556 1.004
a 26.023 2.067 95.486 0.274 1.062 6.787 152.409 2134 1.001
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Figure 5: (i) Traceplot for GBXLx model, four chains were displayed in two sepa-
rate runs; combining the two chains successfully indicates that MCMC algorithm has
converged to the target joint posterior distribution. (ii) Caterpillar plot for GBXLx
model.
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Figure 6: (i) Posterior density plot for GBXLx model. (ii) Posterior predictive density
plot of the GBXLx model to assess the convergence of model. The GBXLx’s posterior
predictive density adequately fits the data, according to the PPD plot.

5. Model comparison with Bayesian criteria

For the purpose of comparing the fitted models, we use criteria for model evaluation
and selection like the Leave One Out cross-validation Information Criteria (LOOIC) and the
Watanabe Akaike Information Criteria (WAIC) both of which are methods for estimating
pointwise out-of-sample prediction accuracy from a fitted Bayesian model Watanabe and
Opper (2010); Vehtari et al. (2018). There are simpler estimates of predictive accuracy
such as Akaike Information Criterion (AIC) and Deviance Information Criterion (DIC) but
LOOIC and WAIC are better as instead of using only point estimates both LOOIC and WAIC
use the pointwise log-likelihood of the full Bayesian posterior distribution. LOOIC and WAIC
are more advantageous as they account for model complexity more effectively and offer fully
Bayesian model comparison (See Vehtari et al. (2017)). LOOIC and WAIC quantifies the
predictive accuracy of a model by estimating the expected log pointwise predictive density
and in Stan, the generated quantities block computes these values. After fitting the model
through STAN, the LOOIC and WAIC values are obtained by utilizing an R package loo (see
Vehtari et al. (2018)) by calculating the log-likelihood assessed using posterior simulations of
the parameters. A better model fit is indicated by a lower value for these selection criterias.
Recently Ashraf-Ul-Alam and Khan (2021) and AbuJarad et al. (2022) used LOOIC and
WAIC as the basis of comparision of the Bayesian survival models.

Table 4: LOOIC and WAIC values for GBXEx, GBXLx, and GBXW models

Model LOOIC WAIC
GBXEx 190.9 190.2
GBXLx 191.8 191.2
GBXW 192.8 192.4

We can observe from Table 4 that the GBXEx model’s LOOIC and WAIC values are
the lowest of the three, demonstrating that it exhibits superior performance as a survival
model when compared to the other models applied to the glioma data.
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6. Conclusion

In present study, Bayesian paradigm was applied to the analysis of a censored survival
data using the GBXG family. The Rstan package of R is used to implement the simulation
and analytical approximation techniques. The covariates Histology and Group are signifi-
cant, and Markov chains for all models converge to the target distribution. The GBXEx
model stands out as the most suitable option for fitting the glioma data, as evidenced by
thorough comparisons of posterior predictive density plots, LOOIC, and WAIC. Additionally,
patients who received radioimmunotherapy (RIT) had higher survival rates than individuals
in the control group. Compared to patients with glioblastoma (GBM), patients with Grade
3 glioma had higher survival chances.

Acknowledgements

We sincerely appreciate the Editors’ advice and support. We are very appreciative of
the reviewer’s insightful remarks and recommendations to generously add numerous helpful
references.

References

AbuJarad, M. H., AbuJarad, E. S., and Khan, A. A. (2022). Bayesian survival analysis of
type I general exponential distributions. Annals of Data Science, 9, 347–367.

Akhtar, M. T. and Khan, A. A. (2014). Bayesian analysis of generalized log-Burr family
with R. SpringerPlus, 3, 1–10.

Al-Babtain, A. A., Elbatal, I., Al-Mofleh, H., Gemeay, A. M., Afify, A. Z., and Sarg, A. M.
(2021). The flexible Burr XG family: properties, inference, and applications in engi-
neering science. Symmetry, 13, 474.

Aldahlan, M. A., Khalil, M. G., and Afify, A. Z. (2021). A new generalized family of
distributions for lifetime data. Journal of Modern Applied Statistical Methods, 19, 6.

Ashraf-Ul-Alam, M. and Khan, A. A. (2021). Generalized Topp-Leone-Weibull AFT mod-
elling: a Bayesian analysis with MCMC tools using R and stan. Austrian Journal of
Statistics, 50, 52–76.

Bantan, R. A., Chesneau, C., Jamal, F., Elbatal, I., and Elgarhy, M. (2021). The truncated
burr XG family of distributions: properties and applications to actuarial and financial
data. Entropy, 23, 1088.

Brooks, S., Gelman, A., Jones, G., and Meng, X.-L. (2011). Handbook of Markov Chain
Monte Carlo. CRC press.

Burr, I. W. (1942). Cumulative frequency functions. The Annals of Mathematical Statistics,
13, 215–232.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M.,
Brubaker, M. A., Guo, J., Li, P., and Riddell, A. (2017). Stan: a probabilistic
programming language. Journal of Statistical Software, 76.

Collett, D. (2015). Modelling Survival Data in Medical Research. CRC press, third edition.
Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987). Hybrid monte carlo.

Physics Letters B, 195, 216–222.



256 DEVASHISH, SHAZIA FARHIN AND ATHAR ALI KHAN [Vol. 22, No. 1

Farhin, S. and Khan, A. A. (2023). Bayesian survival analysis of Rayleigh-X family with
time varying covariate. Applied Mathematics E-Notes, 23, 124–145.

Farhin, S., Yousuf, F., and Khan, A. A. (2022). Bayesian survival modeling of Marshal Olkin
generalized-G family with random effects using R and stan. Reliability: Theory &
Applications, 17, 422–440.

Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., and Gelman, A. (2019). Visualization
in Bayesian workflow. Journal of the Royal Statistical Society Series A: Statistics in
Society, 182, 389–402.

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (com-
ment on article by browne and draper). Bayesian Analysis, 1, 515–534.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013).
Bayesian Data Analysis. CRC press.

Grana, C., Chinol, M., Robertson, C., Mazzetta, C., Bartolomei, M., De Cicco, C., Fiorenza,
M., Gatti, M., Caliceti, P., and Paganelli, G. (2002). Pretargeted adjuvant radioim-
munotherapy with yttrium-90-biotin in malignant glioma patients: a pilot study.
British Journal of Cancer, 86, 207–212.

Hoffman, M. D., Gelman, A., et al. (2014). The no-u-turn sampler: adaptively setting
path lengths in hamiltonian monte carlo. Journal of Machine Learning Research, 15,
1593–1623.

Khan, N. and Khan, A. A. (2018). Bayesian analysis of Topp-Leone generalized exponential
distribution. Austrian Journal of Statistics, 47, 1–15.

Lawless, J. F. (2011). Statistical Models and Methods for Lifetime Data. John Wiley & Sons.
R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing, Vienna, Austria.
Vehtari, A., Gabry, J., Yao, Y., and Gelman, A. (2018). loo: Efficient leave-one-out cross-

validation and WAIC for Bayesian models. R Package Version, 2, 1003.
Vehtari, A., Gelman, A., and Gabry, J. (2017). Practical bayesian model evaluation using

leave-one-out cross-validation and waic. Statistics and Computing, 27, 1413–1432.
Watanabe, S. and Opper, M. (2010). Asymptotic equivalence of Bayes cross validation

and widely applicable information criterion in singular learning theory. Journal of
Machine Learning Research, 11.

Wickham, H. and Wickham, H. (2016). Data Analysis. Springer.
Yousof, H. M., Afify, A. Z., Hamedani, G., and Aryal, G. R. (2017). The burr X generator

of distributions for lifetime data. Journal of Statistical Theory and Applications, 16,
288–305.

Zeileis, A., Wiel, M. A., Hornik, K., and Hothorn, T. (2008). Implementing a class of
permutation tests: the coin package. Journal of Statistical Software, 28, 1–23.



2024] BAYESIAN INFERENCE FOR GBXG FAMILY 257

APPENDIX

A. Stan code for GBXE model

MGXE="functions{
real gbxe_lpdf(real t, real alpha, real beta, real lambda){
real log_fe;
log_fe=log(2)+log(alpha)+log(beta)+exponential_lpdf(t|lambda)+
(2*alpha-1)*exponential_lcdf(t|lambda)-3*log
(1-(exponential_cdf(t,lambda))ˆalpha)-
((exponential_cdf(t,lambda))ˆalpha/(1-(exponential_cdf(t,lambda))
ˆalpha))ˆ2 + (beta-1)*log(1-exp(-((exponential_cdf(t,lambda))ˆalpha
/(1-(exponential_cdf(t,lambda))ˆalpha))ˆ2));
return log_fe;

}
real gbxe_lccdf(real t, real alpha, real beta, real lambda){
real log_ccfe;
log_ccfe=log(1-(1-exp(-((exponential_cdf(t,lambda))ˆalpha/
(1-(exponential_cdf(t,lambda))ˆalpha))ˆ2))ˆbeta);
return log_ccfe;

}
real surv_gbxe_lpdf(vector t, vector d, real alpha,
real beta, vector lambda){vector[num_elements(t)] llk_gbxe;
real prob;
for(i in 1:num_elements(t)){
llk_gbxe[i]=log_mix(d[i],gbxe_lpdf(t[i]|alpha,beta,lambda[i]),
gbxe_lccdf(t[i]|alpha,beta,lambda[i]));

}
prob=sum(llk_gbxe);
return prob;

}
}
data{
int N;
vector<lower=0>[N] y;
vector<lower=0,upper=1>[N] censor;
int M;
matrix[N,M] x;

}
parameters{
vector[M] b;
real<lower=0> alpha;
real<lower=0> beta;

}
transformed parameters{
vector[N] linpred;
vector<lower=0>[N] lambda;
linpred=x*b;
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for(i in 1:N){
lambda[i]=exp(-linpred[i]);

}
}
model{
//priors
target+=cauchy_lpdf(alpha|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=cauchy_lpdf(beta|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=normal_lpdf(b|0,5);
//liklihood
target+=surv_gbxe_lpdf(y|censor,alpha,beta,lambda);

}
generated quantities{
vector[N] log_lik;
vector[N] yrepgbxe;
for(n in 1:N) log_lik[n]=log_mix(censor[n],
gbxe_lpdf(y[n]|alpha,beta,lambda[n]),
gbxe_lccdf(y[n]|alpha,beta,lambda[n]));
{real u;
u=uniform_rng(0,1);
for(n in 1:N) yrepgbxe[n]=-1/lambda[n]*
log(1-(((-log(1-(1-u)ˆ(1/beta)))ˆ(1/2))/
(1+(-log(1-(1-u)ˆ(1/beta)))ˆ(1/2)))ˆ(1/alpha));

}
}"

B. Stan code for GBXW model

MGXW="functions{
real gbxw_lpdf(real t, real alpha, real beta,real a, real lambda){
real log_fw;
log_fw=log(2)+log(alpha)+log(beta)+weibull_lpdf(t|a,lambda)+(2*alpha-1)
*weibull_lcdf(t|a,lambda)-3*log(1-(weibull_cdf(t,a,lambda))ˆalpha)-
((weibull_cdf(t,a,lambda))ˆalpha/(1-(weibull_cdf(t,a,lambda))ˆalpha))ˆ2
+(beta-1)*log(1-exp(-((weibull_cdf(t,a,lambda))ˆalpha/
(1-(weibull_cdf(t,a,lambda))ˆalpha))ˆ2));
return log_fw;

}
real gbxw_lccdf(real t, real alpha, real beta,real a, real lambda){
real log_ccfw;
log_ccfw=log(1-(1-exp(-((weibull_cdf(t,a,lambda))ˆalpha/
(1-(weibull_cdf(t,a,lambda))ˆalpha))ˆ2))ˆbeta);
return log_ccfw;

}
real surv_gbxw_lpdf(vector t, vector d, real alpha, real beta,real a,
vector lambda){vector[num_elements(t)] llk_gbxw;
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real prob;
for(i in 1:num_elements(t)){
llk_gbxw[i]=log_mix(d[i],gbxw_lpdf(t[i]|alpha,beta,a,lambda[i]),
gbxw_lccdf(t[i]|alpha,beta,a,lambda[i]));

}
prob=sum(llk_gbxw);
return prob;

}
}
data{
int N;
vector<lower=0>[N] y;
vector<lower=0,upper=1>[N] censor;
int M;
matrix[N,M] x;

}
parameters{
vector[M] b;
real<lower=0> alpha;
real<lower=0> beta;
real<lower=0> a;

}
transformed parameters{
vector[N] linpred;
vector<lower=0>[N] lambda;
linpred=x*b;
for(i in 1:N){
lambda[i]=exp(linpred[i]);

}
}
model{
//priors
target+=cauchy_lpdf(alpha|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=cauchy_lpdf(beta|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=cauchy_lpdf(a|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=normal_lpdf(b|0,5);
//liklihood
target+=surv_gbxw_lpdf(y|censor,alpha,beta,a,lambda);

}
generated quantities{
vector[N] log_lik;
vector[N] yrepgbxw;
for(n in 1:N) log_lik[n]=log_mix(censor[n],
gbxw_lpdf(y[n]|alpha,beta,a,lambda[n]),
gbxw_lccdf(y[n]|alpha,beta,a,lambda[n]));
{real u;
u=uniform_rng(0,1);
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for(n in 1:N) yrepgbxw[n]=lambda[n]*
(-log(1-(((-log(1-(1-u)ˆ(1/beta)))ˆ(1/2))/
(1+(-log(1-(1-u)ˆ(1/beta)))ˆ(1/2)))ˆ(1/alpha)))ˆ(1/a);

}
}"

C. Stan code for GBXLx model

MGXL="functions{
real gbxl_lpdf(real t, real alpha, real beta,real a, real lambda){
real log_fl;
log_fl=log(2)+log(alpha)+log(beta)+pareto_type_2_lpdf(t|0,lambda,a)
+(2*alpha-1)*pareto_type_2_lcdf(t|0,lambda,a)-
3*log(1-(pareto_type_2_cdf(t,0,lambda,a))ˆalpha)-
((pareto_type_2_cdf(t,0,lambda,a))ˆalpha/
(1-(pareto_type_2_cdf(t,0,lambda,a))ˆalpha))ˆ2+(beta-1)*
log(1-exp(-((pareto_type_2_cdf(t,0,lambda,a))ˆalpha/
(1-(pareto_type_2_cdf(t,0,lambda,a))ˆalpha))ˆ2));
return log_fl;

}
real gbxl_lccdf(real t, real alpha, real beta,real a, real lambda){
real log_ccfl;
log_ccfl=log(1-(1-exp(-((pareto_type_2_cdf(t,0,lambda,a))ˆalpha/
(1-(pareto_type_2_cdf(t,0,lambda,a))ˆalpha))ˆ2))ˆbeta);
return log_ccfl;

}
real surv_gbxl_lpdf(vector t, vector d, real alpha, real beta,
real a, vector lambda){
vector[num_elements(t)] llk_gbxl;
real prob;
for(i in 1:num_elements(t)){
llk_gbxl[i]=log_mix(d[i],gbxl_lpdf(t[i]|alpha,beta,a,lambda[i]),
gbxl_lccdf(t[i]|alpha,beta,a,lambda[i]));

}
prob=sum(llk_gbxl);
return prob;

}
}
data{
int N;
vector<lower=0>[N] y;
vector<lower=0,upper=1>[N] censor;
int M;
matrix[N,M] x;

}
parameters{
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vector[M] b;
real<lower=0> alpha;
real<lower=0> beta;
real<lower=0> a;

}
transformed parameters{
vector[N] linpred;
vector<lower=0>[N] lambda;
linpred=x*b;
for(i in 1:N){
lambda[i]=exp(linpred[i]);

}
}
model{
//priors
target+=cauchy_lpdf(alpha|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=cauchy_lpdf(beta|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=cauchy_lpdf(a|0,25)- 1 * cauchy_lccdf(0|0,25);
target+=normal_lpdf(b|0,5);
//liklihood
target+=surv_gbxl_lpdf(y|censor,alpha,beta,a,lambda);

}
generated quantities{
vector[N] log_lik;
vector[N] yrepgbxl;
for(n in 1:N) log_lik[n]=log_mix(censor[n],
gbxl_lpdf(y[n]|alpha,beta,a,lambda[n]),
gbxl_lccdf(y[n]|alpha,beta,a,lambda[n]));
{real u;
u=uniform_rng(0,1);
for(n in 1:N) yrepgbxl[n]=lambda[n]*((1-
(((-log(1-(1-u)ˆ(1/beta)))ˆ(1/2))/
(1+(-log(1-(1-u)ˆ(1/beta)))ˆ(1/2)))ˆ(1/alpha))ˆ(-1/a)-1);

}
}"
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