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Abstract
In this article, we present a new univariate probability distribution containing three

parameters named exponentiated exponential power distribution. The density function and
failure rate function of this new distribution accommodate broad varieties of shapes. Some
mathematical and statistical properties of the proposed model are provided. Also, we have
performed a full Bayesian analysis of the proposed model. Using Stan software whose Markov
chain Monte Carlo (MCMC) techniques are based on a No-U-Turn sampler (NUTS) which is
an adaptive variant of Hamiltonian Monte Carlo (HMC); a more robust and efficient sampler.
We have presented the numerical as well as graphical analysis of the EEP model and found
that all chains are well mixed and conversed. Further, we have estimated the parameters of
the model and performed posterior predictive checks, and found that the underlying model
can be used to generate reliable samples. The developed techniques are applied to a real
data set, thus we can apply for full Bayesian analysis for the proposed model using these
Bayesian techniques. Hence it is expected that the EEP model will be a choice in the fields
of the theory of probability, applied statistics, bayesian inferences, and survival analysis.
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1. Introduction

Lifetime distributions are typically adapted to study the length of the lifetime of parts
of a system, or a device, and usually, we conduct the survival and reliability analysis. Gener-
ally, lifetime models are extensively employed in fields like bioscience, medicine, demography,
engineering, biology, insurance, etc. Several continuous probability distributions like expo-
nential, Weibull, Cauchy, gamma, etc. are generally found in the literature of probability
and applied statistics to study real-life data. Since the last decade, most scientists have been
paying attention to the family of exponential models for their capability to model real-life
data, and it has been observed that this model has performed well in several applications
because of the bearing of closed-type solutions to several survival analyses. It will simply be
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even underneath the assumption of a constant failure rate however in practice, the failure
rates don’t seem to be continuously constant. Hence, the chaotic use of the exponential
model appears to be insufficient and inappropriate. In this paper, we have presented a new
model by extending the exponential power (EP) distribution defined by (Smith and Bain,
1975). The shape of the hazard function of this distribution depends on the value of the
shape parameter α. For α ≥ 1, the hazard function is increasing and for α < 1, it has a U-
shape and exponentially increasing (towards the right) hazard function (Chen, 1999; Barriga
et al., 2011). The distribution and density function of EP distribution having parameters α
and λ are as follows

FEP (x) = 1 − exp
{
1 − e(λ x)α

}
; (α, λ) > 0, x ≥ 0. (1)

fEP (x) = α λα xα−1 e(λ x)α

exp
{
1 − e(λ x)α

}
; (α, λ) > 0, x ≥ 0. (2)

Using the EP distribution (Barriga et al., 2011) has defined a flexible lifetime model named
complementary exponential power (CEP) distribution. The CDF of CEP is

F (t; α, β, θ) =
[
1 − exp

(
1 − exp

{(
t

α

)β
})]θ

; t > 0.

To define the proposed new lifetime distribution we have used the technique presented by
(Gupta and Kundu, 1999). They defined the generalized exponential (GE) distribution by in-
serting a shape parameter to the exponential distribution and it is superior to an exponential
distribution, having decreasing and increasing failure rate hazard function. The cumulative
density function (CDF) and its probability density function (PDF) of GE distribution are

FGE (x; α, λ) =
{
1 − e−λ x

}α
; (α, λ) > 0, x > 0.

fGE (x; α, λ) = α λ e−λ x
{
1 − e−λ x

}α−1
(α, λ) > 0, x > 0.

Using the same technique (Mudholkar and Srivastava, 1993) developed a three-parameter
exponentiated Weibull (EW) distribution by inserting one additional shape parameter to the
Weibull distribution. The CDF of EW is

F (x) =
{
1 − exp

(
−αxβ

)}λ
; x > 0.

Another extension of exponential distribution has been developed by (Nadarajah and Haghighi,
2011) which can be taken alternative to exponentiated exponential, Weibull, and gamma dis-
tributions. Similarly exponentiated Chen (EC) distribution was defined by (Chaubey and
Zhang, 2015) with either unimodel or decreasing density shape and decreasing or bathtub
hazard shape. Dey et al. (2017) have redefined the exponentiated Chen distribution and ex-
tensively investigated the properties, and estimated the parameters using different methods.
The CDF of EC is

FEC (x; α, δ, λ) =
{
1 − exp

[
λ
(
1 − exδ

)]}α
; (α, δ, λ) > 0, x > 0.

The exponentiated exponential Poisson (EEP) was introduced by (Ristić and Nadarajah,
2014) with a flexible hazard function. Using the same technique (Ashour and Eltehiwy,
2015) has defined the exponentiated power Lindley having CDF as

F (t; α, β, θ) =
[
1 −

(
1 + θtβ

θ + 1

)
e−θtβ

]α

; t > 0.
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Another extension of exponential distribution has been defined by (Almarashi et al., 2019)
whose hazard function can have a variety of shapes. Similarly, EP distribution is also used
by (Joshi et al., 2020) and generated a flexible model named logistic-exponential power dis-
tribution that can have decreasing or increasing or bathtub-shaped hazard function. Sapkota
(2020) has defined exponentiated exponential logistic distribution and introduced a flexible
hazard function. Hence we are motivated to generalize the EP distribution to get a versatile
model by inserting only one shape parameter.

Further in this study, we have analyzed the suggested new model under the Bayesian
approach. It is a fundamental framework for reasoning about uncertainty in statistical
modeling and decision-making. It is a flexible and coherent approach that can handle vari-
ous statistical problems, ranging from simple parameter estimation to complex hierarchical
modeling and machine learning tasks. It provides a principled way to incorporate prior
knowledge, update beliefs based on data, and quantify uncertainty in the results (Lambert,
2018; McElreath, 2020). Under this approach, we have used the HMC algorithm which is
a powerful MCMC algorithm used to sample from complex probability distributions, espe-
cially in Bayesian statistics and machine learning. Unlike traditional MCMC methods, which
often suffer from slow exploration of high-dimensional spaces, HMC leverages the concept
of Hamiltonian dynamics from physics to efficiently explore the target distribution. HMC
treats the probability distribution as a potential energy surface, and the Markov chain as
a particle moving through this surface (Neal, 2011; Sapkota, 2022). HMC is more efficient
than traditional MCMC methods because it generates less correlated samples and requires
fewer evaluations of the target distribution’s gradient (Carpenter et al., 2017).

The remaining sections of this article are structured as follows: In the second section,
we introduce the new distribution and examine its statistical characteristics. Moving on to
the third section, we present some statistical properties of the EEP model. Section 4 is
dedicated to discussing the application of the suggested model under the classical approach.
Under the Bayesian approach, we formulate the proposed model, and its posterior analysis
is presented in sections 5, 6, and 7, respectively. In section 8, we showcase the compatibility
of the model, while section 9 delves into concluding remarks.

2. Exponentiated exponential power (EEP) distribution

Let X ∼ EEP (α, λ, θ) then the CDF of EEP distribution can be obtained by using
Equation (1) and written as

F (x) = [1 − exp {1 − exp (λxα)}]θ ; x > 0, (α, λ, θ) > 0. (3)

The PDF of EEP is obtained using Equation (2) as

f(x) = αλθxα−1 exp
{
1 + λxα − eλxα

} [
1 − exp

(
1 − eλxα

)]θ−1
; x > 0. (4)

Different shapes of PDF curves of EEP (α, λ, θ) distribution are presented in Figure 1.

2.1. Some special cases

• When θ = 1, obviously EEP distribution reduces to EP distribution (Smith and Bain,
1975).
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• When λ = 1, the EEP distribution reduces to EC distribution (Chaubey and Zhang,
2015).

• When λ = 1 and θ = 1, the EEP distribution reduces to Chen distribution (Chen,
2000).

• If λ = 1
αβ , then the EEP distribution reduces to CEP distribution (Barriga et al.,

2011).

2.2. Survival function of EEP distribution

The survival function for the time t is

S (t) = F (t) = 1 − [1 − exp {1 − exp (λtα)}]θ ; t > 0. (5)

2.3. The hazard function of EEP distribution

Suppose t be the time of an item or component or an event that will survive and we
would like to compute the probability of failing at time t + ∆t then the hazard function can
be defined as

h(t) = αλθtα−1 exp
{
1 + λtα − eλtα

} [
1 − exp

(
1 − eλtα

)]θ−1

1 − [1 − exp {1 − exp (λtα)}]θ
; t > 0. (6)

2.4. Reverse hazard function of EEP distribution

The reverse hazard function of EEP distribution is

Prev(x) = f (x; α, λ, θ)
F (x; α, λ, θ)

= αλθxα−1 exp
{
1 + λxα − eλxα

} [
1 − exp

(
1 − eλxα

)]θ−1
, x > 0.

2.5. Quantile function

Suppose X be a non-negative continuous random variable with a CDF FX(x) and
U ∈ (0, 1), then the uth quantile of X is,

Q (u) =
[1
λ

ln
{
1 − ln

(
1 − u1/θ

)}]1/α

; 0 < u < 1. (7)

We can also calculate the median through Equation (7) as

Median =
[1
λ

ln
{
1 − ln

(
1 − 2−1/θ

)}]1/α

To generate the random numbers for EEP distribution we can use

x =
[1
λ

ln
{
1 − ln

(
1 − v1/θ

)}]1/α

; 0 < v < 1. (8)
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2.6. Skewness of EEP distribution

Using quartiles, Bowley’s coefficient of skewness can be computed as,

Sk (B) = Q (1/4) − 2Q (1/2) + Q (3/4)
Q (0.75) − Q (0.25) .

2.7. Kurtosis of EEP distribution

The coefficient of kurtosis using octiles (Moors, 1988) is

Ku (M) = Q (0.875) + Q (0.375) − Q (0.625) − Q (0.125)
Q (0.75) − Q (0.25) .
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Figure 1: Graphs of PDF (left panel) and HRF (right panel) for different values
of α and θ and fixed λ = 1

3. Some statistical properties of EEP distribution

3.1. Moments

The Kth moment about origin using the quantile function see for details (Balakrishnan
and Cohen, 2014) and (Dey et al., 2017) can be computed as

µraw
k = E(Xr) =

∞�

0

xkf (x) dx =
1�

0

[Q (v)]kdv

=
1�

0

λ−k/α
[
log

{
1 − log

(
1 − v1/θ

)}]k/α
dv

= λ−k/α
∞∑

p=0

∞∑
q=0

Wp(k)Wq

(
k

α
+ p

)
(−1)

2k
α +p

1�

0

v
1
θ ( k

α
+p)+qdv.

(9)
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∴ µraw
k = λ−k/α

∞∑
p=0

∞∑
q=0

Wp(k)Wq

(
k

α
+ p

)
(−1)

2k
α +p

(Cpq)−1. (10)

here Wp(k) is the coefficient of log
(
1 − v1/θ

)
after the expansion of

[
log

{
1 − log

(
1 − v1/θ

)}]k/α
,

Wq

(
k
α

+ p
)

is the coefficient of vq after the expansion of
[
log

(
1 − v1/θ

)]k/α
and Cpq =

1
θ

(
k
α

+ p
)

+ q + 1.

Remark: Mean(µ1) and V ariance(µ2) of EEP distribution can be computed as

µ1 = λ−1/α
∞∑

p=0

∞∑
q=0

Wp(1)Wq

( 1
α

+ p
)

(−1)
2
α +p

(1
θ

( 1
α

+ p
)

+ q + 1
)−1

.

µ2 = λ−2/α
∞∑

p=0

∞∑
q=0

Wp(2)Wq

( 2
α

+ p
)

(−1)
4
α +p

(1
θ

( 2
α

+ p
)

+ q + 1
)−1

− (µ1)2 .

3.2. Moment generating function (MGF)

The expression for MGF of EEP distribution can be obtained by using the Equation
(10) as

MX(t) =
∞∑

s=0

ts

s!µ
raw
k = λ−k/α

∞∑
p=0

∞∑
q=0

∞∑
s=0

Wp(k)Wq

(
k

α
+ p

)
(−1)

2k
α +p ts

s! (Cpq)−1. (11)

3.3. Conditional moments (CM)

Let Y be a random variable from the EEP distribution, and then the CM for Y can
be expressed as

E
(
Y k/Y > y

)
= 1

S (y)

∞�
x

ykf (y) dy

= 1
S (y)

1�
v

Qk (v)dv

= 1
S (y)λ−k/α

∞∑
p=0

∞∑
q=0

∞∑
s=0

Wp(k)Wq

(
k

α
+ p

)
(−1)

2k
α +p 1 − F (y)Cpq

Cpq

,

(12)

here S (y) and F (y) are survival functions and CDF of EEC distribution.

3.4. Average residual life (ARL) function

ARL function of a component using quantile function can be calculated by

µARL (x) = 1
S (x)λ−1/α

∞∑
p=0

∞∑
q=0

Wp(1)Wq

( 1
α

+ p
)

(−1)
2
α +p 1 − F ( 1

θ ( 1
α

+p)+q+1) (x)(
1
θ

(
1
α

+ p
)

+ q + 1
) − x.
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3.5. Mean deviation (MD)

Let µ and F (.) denote the mean and CDF of EEP distribution then MD can be
expressed as

µMD Mean (x) = 2µF (µ) − 2µ + 2
1�

µ

Qk (v)dv. (13)

= 2µF (µ) − 2µ + 2λ−1/α
∞∑

p=0

∞∑
q=0

Wp(1)Wq

( 1
α

+ p
)

× (−1)
2
α +p 1 − F ( 1

θ ( 1
α

+p)+q+1) (µ)(
1
θ

(
1
α

+ p
)

+ q + 1
) .

4. Classical analysis of the proposed model

4.1. Parameter estimation

In this subsection, we have used the maximum likelihood estimation (MLE) method
which is the most frequently used method for the point and interval estimation of the pa-
rameters of the model. Let x = (x1, . . . , xn) be a non-negative observed sample of size ‘n’
following the EEP (α, λ, θ) then we can define the likelihood function for the parameter
vector χ = (α, λ, θ )T as

L(χ) = (αλθ)n
n∏

i=1
xα−1

i exp
{
1 + λxα

i − eλxα
i

} [
1 − exp

(
1 − eλxα

i

)]θ−1
. (14)

Taking the logarithm to (14) we get the log-likelihood function as

ℓ (χ) = n ln (αλθ)+(α − 1)
n∑

i=1
ln xi +n+λ

n∑
i=1

xα
i −

n∑
i=1

eλxα
i +(θ − 1)

n∑
i=1

ln [1 − K (xi)]. (15)

Differentiating (15) with respect to parameters α, λ and θ, we get

∂ℓ

∂α
= n

α
+

n∑
i=1

ln xi + λ
n∑

i=1

[
xα

i ln xi

{
1 − ln xi

{
1 − (θ − 1)K (xi) {1 − K (xi)}−1

}}]
,

∂ℓ

∂λ
= n

λ
+

n∑
i=1

xα
i −

n∑
i=1

xα
i eλxα

i

{
1 − (θ − 1) {1 − K (xi)}−1 K (xi)

}
,

∂ℓ

∂θ
= n

θ
+

n∑
i=1

ln [1 − K (xi)],

where K (xi) = exp
(
1 − eλxα

i

)
. Manually it is quite difficult to solve these equations for

the parameters α, λ and θ. Using the appropriate software like R, Python, Matlab, etc. we
can solve them manually. Let χ = (α, λ, θ )T be the parameter vector and MLEs of χ is
χ̂ = (α̂, λ̂, θ̂), then (χ̂ − χ) → N3

[
0, (M (χ))−1

]
distributed as the normal distribution, here
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M (χ) is known as Fisher’s information matrix computed as,

M =

M11 M12 M13
M21 M22 M23
M31 M32 M33

 ,

where,
M11 = ∂2l

∂α2 , M12 = ∂2l

∂α∂λ
, M13 = ∂2l

∂α∂θ
,

M21 = ∂2l

∂λ∂α
, M22 = ∂2l

∂λ2 , M23 = ∂2l

∂θ∂λ
,

M31 = ∂2l

∂λ∂α
, M32 = ∂2l

∂θ∂λ
, M33 = ∂2l

∂θ2 ,

which can be calculated as,
∂2ℓ

∂α2 = − n

α2 + λ
n∑

i=1

{
xα

i (ln xi)2
}

− (θ − 1)
n∑

i=1
[1 + λ ln xi + αxi]

(
λxα

i eλxα
i ln xi

)2

K (xi) {1 − K (xi)}−1
[
1 + K (xi) {1 − K (xi)}−1

]
.

∂2ℓ

∂λ2 = − n

λ2 −
n∑

i=1
x2α

i eλxα
i (θ − 1) K (xi)

{
{1 − K (xi)}−1 K (xi) − {1 − K (xi)}−2 K (xi) eλxα

i

}
.

∂2ℓ

∂θ2 = − n

θ2 .

∂2ℓ

∂θ∂α
= λ

n∑
i=1

[
xα

i eλxα
i ln (xi) K (xi) {1 − K (xi)}−1

]
.

∂2ℓ

∂θ∂λ
=

n∑
i=1

[
xα

i eλxα
i {1 − K (xi)}−1 K (xi)

]
.

∂2ℓ

∂α∂λ
= −

n∑
i=1

xα
i ln xie

λxα
i

{
(1 + λxα

i )
{
1 − (θ − 1) {1 − K (xi)}−1 K (xi)

}
+ Zi

}
,

where
Zi = (θ − 1) λxα

i eλxα
i K (xi) {1 − K (xi)}−1 {1 + K (xi)} .

Now the observed information matrix can be calculated through algorithms like Newton-
Raphson and can be computed as,

[M (χ)]−1 =

 V (α̂) cov(α̂, λ̂) cov(α̂, θ̂)
cov(λ̂, α̂) V (λ̂) cov(λ̂, θ̂)
cov(θ̂, α̂) cov(θ̂, λ̂) V (θ̂)

 .

Hence, estimated 100(1 − δ)% CI for α, λ and θ can be created as, α̂ ± zδ/2SE(α̂), λ̂ ±
zδ/2SE(λ̂), and θ̂ ± zδ/2SE(θ̂).
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4.2. Illustration with real dataset

In this section, we examine a real dataset previously utilized by various researchers
to showcase the capabilities and applicability of the EEP distribution. Additionally, we
present the EEP distribution alongside several competing distributions, listed below, to offer
a comprehensive comparison.

• Exponential power (EP) distribution by (Smith and Bain, 1975).

• Power Lindley distribution (PL) by (Ghitany et al., 2015).

• Generalized Rayleigh (GR) distribution by (Kundu and Raqab, 2005).

• Marshall-Olkin Extended Exponential (MOEE) distribution by (Marshall and Olkin,
1997).

To compare the proposed distribution with the distributions as mentioned above we have
computed the Bayesian information criterion (BIC), Akaike information criterion (AIC),
negative log-likelihood (-LL), Hannan-Quinn information criterion (HQIC), and Corrected
Akaike Information criterion (CAIC) statistic. These statistics are obtained by using the
following expressions

AIC = −2ℓ(χ̂) + 2d.

BIC = −2ℓ(χ̂) + d log(n).

CAIC = 2d(d + 1)
n − d − 1 + AIC.

HQIC = −2ℓ(χ̂) + 2d log[log(n)].

Here χ̂ denotes estimated parameter space, n is the size of the sample and d is the number
of parameters of the model under study. In addition, to judge the goodness-of-fit of EEP
distribution Cramer-Von Mises (A2) , Kolmogorov-Smirnov (KS), and Anderson-Darling
(W ) statistics are presented and calculated as

KS = max
1≤j≤n

(
dj − j − 1

n
,

j

n
− dj

)
.

W = −n − 1
n

n∑
j=1

(2j − 1) [ln dj + ln (1 − dn+1−j)] .

A2 = 1
12n

+
n∑

j=1

[2j − 1
2n

− dj

]2
.

where the dj’s are the ordered observations, and dj = CDF (xj) .

4.2.1. Dataset

The dataset represents the waiting time (in minutes) of 100 clients (Ghitany et al.,
2008) before the client received service in a bank. The data set is,
“0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6, 4.0, 4.1, 4.2, 4.2, 4.3,
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4.3, 4.4, 4.4, 4.6, 4.7, 4.7, 4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3, 6.7, 6.9,
7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8.0, 8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6, 9.7, 9.8, 10.7,
10.9, 11.0, 11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4, 12.5, 12.9, 13.0, 13.1, 13.3, 13.6, 13.7, 13.9,
14.1, 15.4, 15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 21.4, 21.9, 23.0, 27.0,
31.6, 33.1, 38.5”

4.2.2. Exploratory study of the dataset

The main aim of the exploratory data analysis is to explore more information about
the data. The latest statistical tools for data analysis incorporate exploratory data analysis.
The descriptive statistics of the dataset are presented in Table 1. The basic exploratory

Table 1: Summary statistics of the dataset

Minimum Q1 Median Mean Q3 Maximum Skewness Kurtosis
0.800 4.675 8.100 9.877 13.025 38.500 1.451 2.430

data analysis technique is applied to study the data and results are displayed respectively in
Table 1. Efficient modeling requires an excellent understanding of the properties of different
types of models. The parameters of the proposed model are estimated using the maximum
likelihood (ML) estimation method. To evaluate the validity of the model, we calculate the
Kolmogorov-Smirnov (KS) distance between the fitted distribution function and empirical
distribution function where the parameters are estimated by the ML estimation method.
The probability–probability (PP) plot and quantile-quantile (QQ) plot are used to check the
suitability of the proposed model.

4.2.3. Computation of MLE

The MLEs of EEP distribution are calculated with the help of R programming soft-
ware using maxLik() an R package developed by (Henningsen and Toomet, 2011) and they
are uniquely determined (see Figure 2). In Table 2, the MLEs with 95% confidence interval
(CI) and standard errors (SE) are presented.

Table 2: MLE and SE for α, λ, and θ of EEP distribution

Parameter MLE SE 95% CI
α 0.3407 0.0590 (0.2252, 0.4562)
λ 0.6068 0.1259 (0.3600, 0.8535)
θ 7.6150 2.6998 (2.3234, 12.9065)

4.2.4. Model validation

To check the validity of the proposed model we performed the Kolmogorov-Smirnov
(KS) test and we found that KS = 0.0358 and p-value = 0.9995 which indicates that the
proposed model can fit the data well. Further, we have presented the K-S plot (right panel)
and quantile-quantile (Q-Q) plot (left panel) to evaluate the validity of the model in Figure
3 and it also verifies the validity of the model.
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Figure 2: The graph of profile log-likelihood for α, λ, and θ
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Figure 3: The graph of Q-Q (left side) and K-S (right side) of the EEP distribu-
tion

4.2.5. Model selection

To select a good model we have computed the AIC, CAIC, BIC, and HQIC for
the proposed model as well as the other four models taken for comparison, and it is ob-
served that the EEP distribution has the highest value of LL and lowest values of AIC,
CAIC, BIC, and HQIC, hence we confirmed that the proposed distribution is better than
the competing distribution (Table 3) for more detail see (Lambert, 2018). To evaluate the fit
attained by EEP distribution among challenging distributions, the Anderson-Darling (W ),
Kolmogorov-Smirnov (KS), and the Cramer-Von Mises (A2) tests are conducted and results
are reported in Table 4. We have seen that the EEP distribution gets the smallest test statis-
tic with a higher p-value which indicates the EEP distribution gets consistently better fit
than those models taken under consideration. We have also presented the graphs to evaluate
the goodness-of-fit of EEP distribution with distributions that are taken for comparison in
Figure 4 (left panel) and the Kaplan-Meier (KM) estimate which is used to estimate the
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reliability function of EEP distribution in Figure 4 (right panel) and exhibits good fit.

Table 3: AIC, CAIC, BIC, and HQIC, Log-likelihood (LL) statistics

Model AIC CAIC BIC HQIC LL
EEP 639.9793 640.2293 647.7948 643.1420 -316.9897
PL 640.6372 640.7609 645.8475 642.7460 -318.3186
MOEE 645.4241 645.5453 650.6344 647.5330 -320.7120
GR 647.0364 647.1601 652.2467 649.1450 -321.5182
EP 654.0395 654.1607 659.2499 656.1480 -325.0198

Table 4: Value of W, KS and A2 statistics with p-value

Model W(p-value) KS(p-value) A2(p-value)
EEP 0.0173(0.9990) 0.0358(0.9995) 0.1274(0.9997)
PL 0.0458(0.9025) 0.0520(0.9498) 0.3028(0.9359)
MOEE 0.0760(0.7164) 0.0596(0.8690) 0.6351(0.6150)
GR 0.2043(0.2595) 0.0945(0.3337) 1.0911(0.3126)
EP 0.2549(0.1822) 0.0930(0.3532) 1.6490(0.1447)
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Figure 4: PDF plot with a histogram of fitted distributions (left side) and KM
estimate with fitted quantiles (right side) of EEP distribution

5. Model formulation under the Bayesian approach

We usually assume the parameters Θ = (α, λ, θ) (for our study) as a constant in
the classical approach and the goal is to investigate the distribution of the observed data
set given Θ using the likelihood of the data sample. But the parameter Θ is considered
as a random variable whereas the observed data set is taken as constant in the Bayesian
approach (Lambert, 2018). In this type of modeling, prior information is used to support
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our assumption about the parameters of the distribution (Gelman et al., 2013). In Bayesian
modeling, the posterior distribution function is obtained by multiplying the prior distribution
function and the likelihood function of the model under consideration for more detail see
(McElreath, 2020). For Bayesian inference, we need the following elements

• The probability distribution function:f (x/Θ)
• Prior distribution: p (Θ)
• Likelihood: p (Data/Θ)
• Data:(x1, ..., xn)

5.1. Prior distribution p (Θ)

In Bayesian inference, a prior distribution (simply called prior) is the unconditional
probability distribution that is used to express our beliefs about the true value of the pa-
rameters before the data is taken into account. The term p (Θ) denotes the probability
distribution which represents our pre-data beliefs depending upon the different values of
the parameters Θ = (α, λ, θ) of our model. In this study, we have taken the weakly infor-
mative Gamma prior for the parameters Θ = (α, λ, θ) as α ∼ G (a1, b1), λ ∼ G (a2, b2) and
θ ∼ G (a3, b3). Particularly we have chosen (a1 = 0.001, b1 = 0.001), (a2 = 0.001, b2 = 0.001),
and (a3 = 0, b3 = 0.001) respectively for Gamma prior and most commonly used as weak prior
on variance which is nearly flat as in Figure (5). The prior distributions can be written as

p (α) = ba1
1

Γ(a1)
αa1−1 exp (−b1α) ; α > 0, (a1, b1) > 0.

p (λ) = ba2
2

Γ (a2)
λa2−1 exp (−b2λ) ; λ > 0, (a2, b2) > 0.

p (θ) = ba3
3

Γ(a3)
θa3−1 exp (−b3θ) ; θ > 0, (a3, b3) > 0.

5.2. Likelihood p (Data/Θ)

Given a set of data (x1, ..., xn), the likelihood function of EEP distribution can be
computed as

L (x) = (αλθ)n
n∏

i=1
xα−1

i exp
(
1 + λxα

i − eλxα
i

) [
1 − exp

(
1 − eλxα

i

)]θ−1
. (16)

5.3. Posterior distribution p (Θ/Data)

Let p (α, λ, θ/x) denote the posterior distribution and it can be obtained by using
Bayes’ rule as

p (α, λ, θ/x) ∝ L (α, λ, θ/x) × p (α, λ, θ) .

In the Bayesian inference technique, we use Bayes’ rule to estimate probability distribution
called posterior distribution which can be obtained as

p (Θ/data) ∝ p (data/Θ) p (Θ) .
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p (α, λ, θ/x) ∝ αn+a1−1θn+a3−1λn+a2−1
n∏

i=1
e−b1α−b2λ−b3θxα−1

i ×

exp
(
1 + λxα

i − eλxα
i

) [
1 − exp

(
1 − eλxα

i

)]θ−1
.

(17)

All the information needed for Bayesian analyses is contained in the posterior distribution
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Figure 5: Graph of Gamma prior for various values of the parameters

and the aim is to compute the numeric as well as graphic summaries of it through integra-
tion. But the posterior distribution is quite complicated and could not draw any inferences.
Hence we propose an alternative technique known as the simulation technique. This tech-
nique is based on the Markov Chain Monte Carlo (MCMC) method. MCMC draws samples
by running a cleverly constructed Markov Chain that eventually converges to the target
distribution i.e. posterior distribution p

(
α, λ, θ/x−

)
(Brooks, 1998).

There are many different techniques to construct such chains some of them are, Gibbs
sampler (Geman and Geman, 1984; Gelfand and Smith, 1990) are special cases of the general
framework of (Metropolis et al., 1953) and (Hastings, 1970). In this article, we implement
MCMC algorithms through Stan (a probabilistic programming language) (Stan Development
Team, 2022), the HMC algorithm, and its adaptive variant the NUTS for more detail see
(Hoffman et al., 2014; Carpenter et al., 2017). Also Chaudhary and Kumar (2020) presented
the Bayesian estimate of Gompertz extension distribution having three parameters. Also,
Alizadeh et al. (2020) discussed the technique for estimating the model parameters of the
odd log-logistic Lindley-G family of distribution.

6. MCMC method

6.1. HMC method

HMC is computationally a bit costly as compared to Metropolis and Gibbs sampling
but its proposals are much more efficient (Gelman et al., 2015). As a result, HMC doesn’t
require as many samples to explore the posterior distribution. For more detail about the
HMC algorithm see (Beskos et al., 2013).
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6.1.1. No-U-Turn Sampler (NUTS)

NUTS engine routinely selects a suitable value for leapfrog step L in every iteration
to maximize the distance at every L and control the random walk behavior. Let ω1 and
ω0 be the current position and initial position of a particle and D be half of the distance
between the positions ω1 and ω0 at each leapfrog step. The aim is to run leapfrog steps until
ω1 starts to move backward towards ω0, which is achieved using the following algorithm,
where leapfrog steps are run until the derivative of D with respect to time becomes less than
0.

∂D

∂t
= ∂

∂t

[1
2 (ω1 − ω0)T (ω1 − ω0)

]
= (ω1 − ω0)T p < 0.

However, this algorithm doesn’t assure convergence or reversibility to the target distribution.
The NUTS solves this type of problem by performing a doubling method for slice sampling
(Neal, 2003). To generate the samples using NUTS, see (Hoffman et al., 2014). For more
details about NUTS, readers can go through (Nishio and Arakawa, 2019) and Devlin et al.
(2021).

6.1.2. Defining the model in STAN

For the Bayesian analysis of the EEP model, we have used the latest Bayesian analysis
software called Stan a high-level programming language that uses NUTS which is a variant of
HMC simulation (Hoffman et al., 2014). We have used the Rstan package (Stan Development
Team, 2020) to run STAN in R software (R Core Team, 2022). The Stan scripts in R for
the EEP model for the Bayesian analysis are presented in the appendix. We run the Stan
using the algorithm HMC and engine NUTS having 4 chains for 2000 iterations. By default,
Stan generates 1000 warm-up samples and 1000 real samples for a chain which are used for
inferences.

6.2. Convergence and efficiency diagnostics for NUTS/ HMC and Markov
chains

In the convergence diagnostic, we monitor the performance of NUTS/ HMC and
MCMC sampling as
NUTS/ HMC: Here we study the information about divergence, energy, tree-depth,
step-size, and acceptance statistic. Figure 6 (left panel) is the plot of the overlaid his-
tograms of the marginal energy distribution πE and the energy transition distribution π∆E

for all 4 chains. The plot shows the histograms that look well-matched and indicate that
the Hamiltonian Monte Carlo has performed robustly and Figure 6 (right panel) indicates
that there are no divergent transitions. In Figure 7 we have displayed the performance of
the NUTS sampling algorithm and Figure 8 are plots of the histogram of Rhat statistic, the
ratio of effective sample size and sample size, and the ratio of Monte Carlo Standard Error
(MCSE) and posterior SD. These plots show the good efficiency of the sampling algorithm
NUTS for detail see Betancourt (2017).
MCMC: The MCMC draws can be monitored by plotting the following graphs autocorre-
lation plots, rank plots, trace plots, ergodic mean plots, and pairs plots.
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Figure 6: Histograms of πE and π∆E for all 4 chains (left panel) and the divergent
transition status (x-axis) against the log-posterior and the acceptance statistic
(right panel) of the sampling algorithm for all chains
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Figure 9: Autocorrelation plots of the parameters α, λ, and θ for all chains

These are autocorrelation plots for all chains and indicate that the samples of a Monte
Carlo simulation are independent (Figure, 9). In Figure 10 we have displayed the histogram
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θ and log posterior
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sample size, and the ratio of MCSE and posterior SD

of rank plots of α, λ, and θ for all four chains. Rank histograms visualize how the values
from the chains mix in terms of ranking. An ideal plot would show the rankings mixing or
overlapping in a uniform distribution. See (Vehtari et al., 2021) for details. In general, we
look for three possessions in the trace plots good mixing, stationarity, and convergence.

Good mixing implies that the chain quickly explores the full posterior region. It
doesn’t slowly wander, but rather rapidly zig-zags around, as a good Hamiltonian chain
should. Stationarity indicates the path of each chain staying within the same high probability
portion of the posterior distribution. Another way to imagine this is that the average value
of the chain is relatively stable from start to end. Convergence represents that independent,
multiple chains attach around the same area of high probability. Figure 11 shows the trace
plots for alpha, theta, and lambda are well mixing and convergent for all chains.

The Ergodic mean is computed as the average of all values of the samples for all chains
corresponding iterations. Figure 12 indicates that all chains converged smoothly around the
mean value. Figure 13 is a pairs plot of MCMC draws of α, λ, and θ. Univariate marginal
posteriors are shown along the diagonal as histograms. Bivariate plots are displayed above
and below the diagonal as scatter plots. The red colored draws represent, if present, the
divergent transitions. Divergent transitions can indicate problems with the validity of the
results. A good plot would show no divergent transitions. A bad plot would show divergent
transitions in a systematic pattern. We have also presented a detailed numerical summary
of the HMC and NUTS algorithm in Table 5 and statistics related to the posterior summary
are presented in Table 6.

Table 5: Informational statistic of NUTS/HMC for convergence of chains

accept stat stepsize treedepth n leapfrog divergent energy
All chains 0.9419 0.0446 3.9813 36.2755 0 319.991
chain1 0.9443 0.0574 3.8890 33.0920 0 319.913
chain2 0.9294 0.0505 3.9140 32.6420 0 320.035
chain3 0.9536 0.0468 4.0110 36.7580 0 320.111
chain4 0.9403 0.0235 4.1110 42.6100 0 319.907
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Figure 10: Rank histograms of α, λ, and θ

7. Posterior analysis

7.1. Numerical summary

Using the stan() function in R-Software we have estimated the posterior density of
the fitted EEP model. The numerical summaries of the posterior distribution after fitting the
EEP model for the data taken under study for all merged chains are reported in Table 6. The
MCMC estimate for α is 0.36±0.109 which is statistically significant. Similarly, the estimate
for λ is 0.62 ± 0.233, which is statistically significant. The estimate for θ is 10.926 ± 12.646
which is also statistically significant. No parameters have an effective sample size (n eff)
for estimating the posterior mean less than 10 % of the total sample size indicating that the
samples are efficient and Rhat(R̂) (estimated potential scale reduction statistic) provides the
analysis of sampling and its efficiency. Here Rhat is less than 1.01 indicating convergence of
all chains. Also, we have depicted the highest posterior density (HPD) credible interval and
credible interval in Table 7.

Table 6: Output summary of posterior samples for the EEP model

Parameters mean se mean sd 2.50% 50% 97.50% n eff Rhat
alpha 0.3553 0.0048 0.1094 0.1716 0.3454 0.6085 520 1.0039
lambda 0.6212 0.0109 0.2334 0.2339 0.5966 1.1632 458 1.0055
theta 10.9263 0.6267 12.6463 2.4253 7.2978 45.8048 407 1.0059
Log-posterior -318.4981 0.0410 1.2386 -321.6890 -318.1700 -317.1100 911 1.0033
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Figure 11: Trace plot of the parameters α, λ, and θ for all chains

7.2. Visual summary

Various graphical representations can be employed to visually summarize the poste-
rior distribution, such as histograms, boxplots, caterpillar plots, and density plots. In this
study, we utilized Gamma priors to plot histograms and kernel density estimates for α, λ,
and θ (Figure, 14), based on a total of 4000 posterior samples. These graphical presenta-
tions offer comprehensive insights into the parameters’ posterior distribution. Histograms
are particularly useful for understanding the distribution’s tail behavior, skewness, kurtosis,
the presence of outliers, and whether multi-modal behavior exists. Our analysis reveals that
α and λ exhibit almost symmetrical distributions, whereas θ demonstrates positive skewness
under Gamma prior. Furthermore, in Figure (15), we present histograms of posterior pa-
rameters using a Uniform prior. It is evident that the choice of prior significantly impacts
the resulting posterior distribution.
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Figure 13: Pairs plot of α, λ, θ and log-posterior

8. Model compatibility

8.1. Posterior predictive checks (PPCs)

A usual way to access the fit of a Bayesian model is to observe how well the predictions
can be made from the model that agrees with the observed data (Gelman, 2003; Gelman
et al., 2004). If our model is capable of fitting the data then it should generate data that
are quite similar to the observed data. The data that are used for posterior predictive
checks (PPCs) we can generate them by simulating the posterior predictive distribution.
The R package bayesplot presents different plotting functions for visual posterior predictive
checking; using observed data and simulated data from the posterior predictive distribution,
we can generate these graphical displays (Gabry et al., 2017).
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Table 7: HPD interval and credible interval for model parameters α, λ, and θ

Parameters HPD interval Credible Interval
alpha ( 0.141, 0.554) (0.1716, 0.6085)
lambda (0.168, 1.070) (0.2339, 1.1632)
theta (1.650, 31.20) (2.4253, 45.8048)
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Figure 14: Histogram with kernel density estimates of posterior samples for the
parameters α, λ, and θ respectively under a gamma prior
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Figure 16: CDF plot of the observed dataset y (blue), with 40 simulated datasets
yrep (left panel) and kernel density estimate of the observed dataset y (blue),
with density estimates for 40 simulated datasets yrep drawn from the posterior
predictive distribution (left panel)

The posterior predictive distribution is the distribution of the outcome variable im-
plied by a model after using the observed data y (a vector of length N = 100) to update
our beliefs about unknown parameters Θ = (α, λ, θ) of the model. The posterior predictive
distribution for observation yrep can be written as,

p (ỹ/y) =
�

p (ỹ/Θ) p (Θ/y)dΘ.

For every simulation (draw) s = 1, ..., S of the parameters from the posterior distribution
Θ(s) ∼ p(Θ|y), we generate a vector of N outcomes ỹ(s) using the posterior predictive
distribution by simulating from the data model conditional on parameters Θ(s).

The result is an S × N(4000 × 100) matrix of draws ỹ. We have denoted the resulting
simulation matrix by yrep, this matrix is the replication of the observed data y rather than
predictions for future observations. To attain further clarity on our decision for the study
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of the posterior predictive checks we have taken the smallest, middle, and largest, i.e. (
yrep[1], yrep[50] and yrep[100]) replicated observations. We have presented a wide variety of
graphical model checks based on comparing observed data to draws from the posterior (or
prior) predictive distribution. To Compare the empirical distribution of the data y to the
distributions of simulated/replicated data yrep from the posterior predictive distribution an
empirical CDF estimate of each dataset (row) in yrep are overlaid with the distribution of
y (blue curve) is displayed in (Figure, 16, left panel) and kernel density estimate of the
observed dataset y (blue), with density estimates for 40 simulated datasets yrep drawn from
the posterior predictive distribution (Figure, 16, right panel). To analyze the predicting
capacity of posterior samples we have presented the visual summaries such as a histogram
with kernel density plot for observed data y and simulated data yrep[1], yrep[50] and yrep[100]
(Figure 17).

8.2. Model selection

The WAIC (Widely Applicable Information Criterion) is used to compare different
statistical models based on their out-of-sample predictive accuracy. The lower the WAIC
value, the better the model’s predictive performance. Hence EEP model is better than the
EP model see (Table, 8). Where elpd waic is the estimated log pointwise predictive density
using the WAIC. It represents the model’s fit to the data and is measured in terms of log-
likelihood. p waic is the effective number of parameters computed from the WAIC. It takes
into account both the actual number of parameters in the model and the model’s complexity
and waic is the value of the WAIC itself, which is a combination of the model fit (elpd waic)
and the effective number of parameters p waic. A lower WAIC indicates better predictive
performance.

Table 8: Model selection statistics

Estimate EEP distribution EP distribution
elpd waic -319.6 -326.9
p waic 1.5 1.2
waic 639.1 653.9

9. Conclusion

In this research work, we put forward a new distribution using the exponential power
model as a baseline distribution and named it exponentiated exponential power (EEP) dis-
tribution. We have explored some properties including the hazard rate function, cumulative
distribution function, survival function, probability density function, cumulative hazard func-
tion, order statistics, quantiles, the measures of skewness based on quartiles, and median,
and kurtosis based on octiles.

Also we have performed a full Bayesian analysis for the proposed model. Using Stan
software whose MCMC techniques are based on the NUTS which is an adaptive variant of
HMC; a more robust and efficient sampler. We have presented the numerical as well as
graphical analysis of the EEP model and found that all chains are well mixed and conversed.
Further, we have estimated the parameters of the model and performed posterior predictive
checks, and found that the underlying model can be used to generate reliable samples. The
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developed techniques are applied to a real data set, thus we can apply for full Bayesian
analysis for the proposed model using these Bayesian techniques. Hence it is expected that
the EEP model will be a choice in the fields of the theory of probability, applied statistics,
bayesian inferences, and survival analysis.
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ANNEXURE
f un c t i on s { real expexp power l pd f ( real y , real alpha ,

real lambda , real theta ){
return log ( alpha∗lambda∗ theta ) + ( alpha −1)∗
log ( y)+1+lambda∗yˆ alpha − exp( lambda∗yˆ alpha)+

( theta −1)∗ log(1−exp(1−exp( lambda∗yˆ alpha ) ) ) ;
}
real expexp power( real alpha , real lambda , real theta ){
return ( (1/lambda )∗ log(1− log(1−
( uniform rng ( 0 , 1 ) ) ˆ ( 1 / theta ) ) ) ) ˆ ( 1 /alpha ) ;
}

}
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data{
i n t N;
real y [N ] ;

}

parameters {
real <lower=0> alpha ;
real <lower=0> lambda ;
real <lower=0> theta ;

}

model{
for ( i in 1 : N) {

y [ i ] ˜ expexp power( alpha , lambda , theta ) ;
}
alpha ˜ gamma( 0 . 001 , 0 . 0 0 1 ) ;
lambda ˜ gamma( 0 . 001 , 0 . 0 0 1 ) ;
theta ˜ gamma(0 , 0 . 0 0 1 ) ;

}

generated q u a n t i t i e s {
vector [N] yrep ;
for ( i in 1 : N)
{

yrep [ i ]= expexp power rng ( alpha , lambda , theta ) ;
}

}

Data Creation in R software
y = c ( 0 . 8 , 0 . 8 , 1 . 3 , 1 . 5 , 1 . 8 , 1 . 9 , 1 . 9 , 2 . 1 , 2 . 6 , 2 . 7 , 2 . 9 ,
3 . 1 , 3 . 2 , 3 . 3 , 3 . 5 , 3 . 6 , 4 . 0 , 4 . 1 , 4 . 2 , 4 . 2 , 4 . 3 , 4 . 3 ,
4 . 4 , 4 . 4 , 4 . 6 , 4 . 7 , 4 . 7 , 4 . 8 , 4 . 9 , 4 . 9 , 5 . 0 , 5 . 3 , 5 . 5 ,
5 . 7 , 5 . 7 , 6 . 1 , 6 . 2 , 6 . 2 , 6 . 2 , 6 . 3 , 6 . 7 , 6 . 9 , 7 . 1 , 7 . 1 ,
7 . 1 , 7 . 1 , 7 . 4 , 7 . 6 , 7 . 7 , 8 . 0 , 8 . 2 , 8 . 6 , 8 . 6 , 8 . 6 , 8 . 8 ,
8 . 8 , 8 . 9 , 8 . 9 , 9 . 5 , 9 . 6 , 9 . 7 , 9 . 8 , 10 . 7 , 10 . 9 , 11 . 0 ,
11 . 0 , 11 . 1 , 11 . 2 , 11 . 2 , 11 . 5 , 11 . 9 , 12 . 4 , 12 . 5 , 12 . 9 ,
13 . 0 , 13 . 1 , 13 . 3 , 13 . 6 , 13 . 7 , 13 . 9 , 14 . 1 , 15 . 4 , 15 . 4 ,
17 . 3 , 17 . 3 , 18 . 1 , 18 . 2 , 18 . 4 , 18 . 9 , 19 . 0 , 19 . 9 , 20 . 6 ,
21 . 3 , 21 . 4 , 21 . 9 , 23 . 0 , 27 . 0 , 31 . 6 , 33 . 1 , 38 . 5 )
N <− l ength (y )
Data = l i s t ( y=y , N=N) .
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