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Abstract

This paper focuses on parametric forms, particularly the location-scale regression
model using the odd Burr III Weibull distribution. This model serves as an alternative to
the log odd log-logistic Weibull and log-Weibull regression model for analyzing data with
decreasing, increasing, unimodal, and bathtub-shaped failure rate functions. Several mathe-
matical properties of the log-transformed distribution have been established. The suggested
distribution has the benefit that it encompasses various classical distributions as submodels
found in the literature. Maximum likelihood and jackknife estimation techniques are used to
assess the model parameters. We conduct simulations under different parameter settings to
guarantee model robustness. In our proposed model, we employ diagnostic techniques that
employ case deletion known as global influence to determine the influential observations.
Additionally, we present martingale and modified deviance residuals to figure out the out-
liers and assess the model assumptions. The performance of the newly developed regression
model is exhibited using a real life dataset.
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1. Introduction

In order to develop more reliable and significant models, the trend in recent statistics
literature has changed towards introducing novel methods that incorporate additional pa-
rameters into the extensive range of continuous univariate distributions. A distribution that
has faced a major hurdle is the Weibull distribution, which is well-known for usage in lifetime
data analysis. The drawback of this distribution is its ineffectiveness to consider the non-
monotone hazard rates, such as bathtub-shaped hazard rates. To address this, researchers
are seeking for generalizations of Weibull distribution that might fit the datasets better than
the traditional two parameter Weibull models. For instance, exponentiated Weibull distri-
bution proposed by Mudholkar et al. (1995), the generalized modified Weibull distribution
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presented by Carrasco et al. (2008a), and the beta Weibull distribution explored by Lee
et al. (2007) represent some recent advancements in Weibull generalizations, demonstrating
the continued relevance of the Weibull distribution in lifetime data modeling.

In everyday scenarios, a number of factors might influence survival time, which can
explain the variability in the time of survival. To assess how these factors influence survival
time, it is important to employ proper regression model for censored and time-to-failure
data. Thus, describing a probabilistic model for survival time is crucial to design regression
models. Different types of regression models exist for this purpose. The location-scale
regression model (LSRM), as highlighted by Lawless (2011) stands out among these and
is often utilized in clinical trials. In these models, applying a log transformation serves to
linearize multiplicative relationships, making the model well-suited for time-to-event analysis.
A linear combination is assumed for the log-lifetimes models preserving the characteristics
of standard regression models and also incorporating the advantage of handling censored
data, effectively managing skewed distributions, and stabilizing variance. Numerous research
studies have been carried out employing log-LSRM. Among these, regression analysis using
bivariate location-scale models was discussed by He and Lawless (2005) with applications
to lifetime data, Silva et al. (2010) suggested the log-Weibull extended regression model
for censored data, whereas Carrasco et al. (2008b) applied log-modified Weibull regression
models to evaluate censored data. Cruz et al. (2016) investigated the log-odd log-logistic
Weibull regression model, whereas Elbatal et al. (2022) introduced a new log LSRM based
on the odd Perks-Weibull distribution. Furthermore, Zamanah et al. (2022) used survival
time data from hypertensive patients to illustrate the use of the log-harmonic mixed Weibull-
Weibull distribution, a log-modified alpha power-transformed Burr XII regression model was
proposed by Anafo (2024) and then analyze a stock market liquidity dataset. The relevance
of these distributions also extends to their potential to incorporate non-monotonic failure rate
functions in lifetime analysis, a regular occurrence in both survival analysis and reliability
studies.

In this study, we discuss a new log-location regression model based on the logarithm
of the odd Burr IIT Weibull distribution, which we call the log odd Burr 111 Weibull (LO-
BIIIW) distribution. The modification in the current distribution results in a LSRM that
is apt for modelling censored survival times exhibiting bathtub shaped hazard rates. The
logarithm of the lifetimes is carried out to regulate variance and establish a more linear
relationship with the covariates. This model provide an adequate alternative for the log-
logistic regression model. Our suggested distribution should therefore become beneficial in
a variety of applications for evaluating survival and reliability data.

Following model execution, it becomes necessary to illustrate the model’s assumptions
and perform out robustness checks in order to detect any significant observations that may
influence the results of the analysis. A study conducted by Cook (1977) established an
influence diagnostic approach that uses case deletion technique to evaluate the significance
of each observation on parameter estimates. Our proposal suggests using case deletion based
diagnostic measures to identify influential data points in the analysis of censored data using
LOBIITW regression models.

The OBIIIW and LOBIIIW distributions are described in Section 2, along with the
structural characteristics of the LOBIITW distribution. In Section 3, we present an location-
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scale LOBIIIW regression model. Section 4 presents estimation methods like maximum
likelihood estimation and jackknife method and discusses the findings from the simulation
studies. Two different kinds of residuals are defined in Section 5 for evaluating deviations
from the error assumptions and the existence of outliers. An evaluation of a real-data set in
Section 6 highlights the significance of the new model. Conclusions are provided at the end
of Section 7.

2. Log Odd Burr III Weibull distribution

Jamal et al. (2017) defines the cumulative distribution function (CDF) for the odd
Burr I1I Generating (OBIII-G) family as follows:

where ¢ > 0 and k& > 0 denotes the shape parameters and vy represents the parameters of the
baseline distribution.

A novel extension of the Weibull distribution has been introduced using the OBIII-G family.
This novel distribution named the odd Burr III Weibull (OBIIIW) distribution is established
by incorporating the Weibull distribution as base distribution in the OBIII-G family.
Consider the random variable T" following OBIIIW distribution, characterized by the param-
eters ¢, k,a and b. Then, the survival function is given as follows:

o~ 1°) "
S(t;c,k,a,b) =1- 1+ [HW)‘| y (].)

and the corresponding probability density function (PDF) defined by,

babo1 [e—(at)b]c e—(at)b ) A1
f(t;C, k’,(l, b) = ckba’t [1 — e—(at)b]c—l-l 1+ lw] , C, k’,a,b > 0,

(2)
where ¢, k£ and b are the shape parameters, and a is the scale parameter.

Usman and Haq (2019) undertook an extensive investigation of the characteristics and
applications of the above proposed model. Their conclusions revealed that the model offers
the benefit of accommodating various hazard rate patterns including constant, decreasing,
increasing, unimodal and bathtub shaped hazard rates (see Figure 1). This flexibility holds
particular significance in reliability analysis, where non-monotone hazard rates are frequently
encountered in real world data sets.

If the random variable T" has the OBIIIW density function (2), then the random
variable Y = log(7") has the log odd Burr III Weibull (LOBIIIW) distribution. Its density
function, parameterized by a = e and b = ¢!, can be formulated as follows:

chexp [(4) = cexp (12- } {1 . ( expl— exp(“2)]

oy k-1
flyse, b, p o) = o [1 — exp(— exp(%))}C+ 1 — exp(— eXP(%u)J } v
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Figure 1: Hazard plot of OBIIIW distribution

where —o00 <y < 00, ¢ >0,k > 0,0 >0and —oco < u < co. We refer to Equation
(3) as representing the distribution of Y ~ LOBIIIW (¢, k, j1,0), where p indicates the lo-
cation parameter, o is scale parameter, and ¢ and k are the shape parameters. Figure 2
displays graphs depicting the density function (3) for various parameter values. These find-
ings suggest that this distribution serves as a suitable choice for effectively modeling both
left-skewed, right-skewed, and symmetric datasets.

The survival function associated with Equation (3) can be expressed as,

exp|— exp (4 )]r}k_

1 — exp[—exp(F

S(y;c,k,,ma):l—{l—l—[ (4)

Then the standardized random variable Z = %, which is characterized by the density

function is given as follows:,

ey g oD [z = cexp (2) epl—ep)) \V
(z:0,k) = k[l—exp(—exp(z))]“rl {1+ <1—exp(—exp(z))> } ’ SEs (5)

3. Log Odd Burr IIT Weibull regression model

Researchers and statisticians have been investigating flexible regression models aimed
at effectively capturing non-monotone failure rates, frequently encountered in fields such as
reliability and biology. To overcome the limitations of the Weibull distribution in modelling
such patterns, a LSRM utilizing the LOBIIIW distribution can be used instead. This model
is particularly beneficial for analyzing data characterized by increasing, decreasing and bath-
tub shaped hazard failures. The importance for the newly developed regression model is its
capability to extend the commonly used Weibull distribution to more complex scenarios
through continuous extension. This generalization opens up new possibilities for applica-
tions that require more sophisticated statistical analysis. Moreover, it is crucial to examine
the impact of various explanatory variables on lifetimes such as cholesterol levels, weight,
blood pressure etc. Regression models, in particular location scale models, give researchers
important insight regarding the relationship between lifetime and the explanatory factors.
We have now established a linear regression model to analyze the relationship between the
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response variable y; and the explanatory variable vector x; = (1, 2,...,7,)" using the
LOBIIIW distribution, in the following way:

yi =X B +oz,i=1,2...,n. (6)
where the error term z; follows the density function (5), 8 = (81, 2, ..,6,)%, ¢ > 0 and
k > 0 are the unknown parameters. The vector x; = (1, T, - . . , T;p) are linked with the
explanatory variables. The vector g = (pty,. .., ptn,)? of LOBIIIW regression model represents
the location parameters and is indicated as linear model p = X 3 where X = (x,...,x,)7"

is a pre-defined model matrix. New opportunities for fitting several kinds of data are made
possible by the LOBIIIW model (6).
Using the log linear model given in Equation (6), the survival function Y;|x simplifies to,

expl— exp(“ 2] ”
)

1 — exp[— exp(@

—k

(7)

S(yi|x) =1— {1+

The regression model (6) reduces to the log-odd logistic regression model when k£ = 1, and
to the log-Weibull regression model when ¢ = k£ = 1.

4. Estimation of the LOBIIIW regression model
4.1. Maximum likelihood estimation method

Let the sample consists of n independent observations (y1,X1), (y2,X2), - -, (Yn, Xn),
where y; = min{log(7;),log(C;)}, and x; denotes the vector of explanatory variables related
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to the i individual. We consider that the observed lifetimes (log(7};)) and censoring times
(C;) are independent and the censorship is non-informative. The log-likelihood function for
the vector of parameters n = (c, k, o, BT) is given by,

l(") = le(c7k7 Zi) + Zl2(67k7zi) (8)
iEF ieC
where,

ll(c7ka Zz) = log

ok exp[z — coxp (2)] {1+< eXp[—eXP(zz')])))>c}_k_1],

K [1 —exp(— exp(zi))]CH 1 — exp(—exp(z;

lo(c,k,z) = log :1 _ {1 n [ expl— exp(z)] )]]C}_k] .

1 — exp|— exp(z;

and z; = @ The set F' represents individuals for whom y; corresponds to log-lifetime,

whereas C' designates individuals subject to right censoring.

Maximizing the likelihood function (8) yields the maximum likelihood estimates
(MLEs) for the parameter vector . The estimates are obtained by using the R software,
specifically utilizing the MAXLIK package.

Furthermore, the LOBIIIW model can be compared to particular sub-models using
the Likelihood Ratio (LR) test. The maximum log-likelihood values for the unconstrained
and constrained models can be used to build the LR statistic for testing specific models
within the LOBIIIW regression model.

4.2. Simulation

We implement a Monte-Carlo simulation study for examining the behavior of max-
imum likelihood estimators (MLEs) of ¢, k, o, By, and f; in a finite sample (n = 50, 100,
and 300). The samples are obtained using the true parameter values: ¢ =2, k =4, o0 = 1.5,
Bo = 3 and [; = 2 with varying levels of censoring generally at censoring percentages, cp=
0%, 10% and 30%. The log-lifetimes log(T}), ... , log(T},,) are simulated from the LOBIIITW
regression model (6), where x!' 8 = 3y + 31z; and z; are sampled from a uniform distribution
within the interval (0, 1). The censored times Cy, Cy, ..., C, are chosen from a uniform
distribution over the interval (0,7), where 7 has been altered until the required censoring
percentages are attained. Every combination of n, ¢, k, o, [y, 51, and censoring percentages
is then used to generate 1000 samples. Fach dataset generated was fitted with the LOBIIIW
regression model (6), where y; = By + Six;. The mean squared errors (MSEs) and aver-
age estimates (AEs) for the MLEs of ¢, k, o, fy, /1 computed from simulation results are
shown in Table 1. We can see from the data in Table 1 that MSEs increase along with an
increase in the censoring percentage. Additionally as predicted, the MSEs decline with sam-
ple size increases. These facts indicate that the asymptotic normal distribution accurately
approximates the distribution of the estimates from a finite sample.

5. Residual analysis

A key step after fitting a statistical model to the dataset is residual analysis. It serves
for various purposes, including validating the data, evaluating the data to unveil valuable



2025] LOCATION SCALE REGRESSION MODEL 227

Table 1: AEs and MSEs (in parentheses) of MLEs of ¢, k, o, By and 3,

Percentage Parameter Sample Size
50 100 300
c 2.0489(0.0479) 2.0195(0.0210) 2.0086(0.0072)
k 4.1593(0.5196) 4.0676(0.2080) 4.0195(0.0682)
0% o 1.3882(0.1946) 1.4689(0.0856) 1.4981(0.0384)
5o 3.1711(0.1313)  3.2008(0.0937) 3.2220(0.0688)
51 2.3465(0.2200) 2.3294(0.1647) 2.3203(0.1273)
c 2.0174(0.0494) 1.9894(0.0228) 1.9824(0.0078)
10% k 4.3935(0.7953) 4.2926(0.3593) 4.2337(0.1380)
o 1.3016(0.3028) 1.3745(0.1242) 1.4457(0.0507)
5o 3.1143(0.1505)  3.1500(0.0777) 3.1571(0.0497)
Ioh 2.3528(0.2171) 2.3168(0.1409) 2.2673(0.0913)
c 1.8797(0.0593) 1.8464(0.0437) 1.8328(0.0348)
k 4.9652(1.8927) 4.8063(0.9988) 4.7374(0.6627)
30% o 1.0040(0.8286) 1.0962(0.4321) 1.0828(0.3557)
5o 3.0172(0.2901) 3.0948(0.1148) 3.1736(0.0844)
51 2.4716(0.3867) 2.4157(0.2480) 2.3849(0.1784)

information, and confirming the assumptions of the model. Additionally, residual analysis
can assist in identifying outliers and reviewing any deviations from the error assumption.
Several types of residual analysis have been mentioned in the literature to achieve these goals.
For instance, Collett (2023), McCullagh (2019), Fleming and Harrington (2013) and Ortega
et al. (2008) have discussed about various residual analyses. This study assesses two types
of residuals: martingale-type residual and deviance component residual. The martingale
residual (MR) in parametric lifetime models may be defined as ry; = 9; + log[S(vi, )],
where §; = 0(6; = 1) signifies censored (uncensored) observation and S(y;, 7}) refers to the
estimated survival function as specified by Equation 7. In fact, r); spans from a minimum
of —oo to maximum of +1. Thus, the MR for the LOBIIIW model assumes the following
expression:

ey
terog {1 (14 b)) o=

ey
os {1~ (1+ [zt ) )t =0

Ty =

R
where 2, = ¥=%F8

&

The drawback of the MR is its significant skewness, indicating that it does not closely
resemble a normal distribution. To address this issue, Therneau et al. (1990) proposed the
modified deviance residual (MDR), which transforms the MR to reduce skewness. The
advantage of the MDR is that its distribution approximates a normal distribution as closely
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as possible, facilitating more effective residual analysis, which can be formulated as:
rpi = sign(rag){—=2[ras + 0; log(8; — rar)]| Y2,
where r; is the MR.

5.1. Simulation studies

A study using simulation was executed to examine the empirical distributions of
residuals rp; for the values n = 50, 100 and 300 and censoring percentage 0%, 10%, and
30%, following the procedure outlined in Section 4.2. Following conclusions can be drawn
by observing Figure 3:

1. The empirical distribution of the MDR closely matches the standard normal distribu-
tion, indicating a strong agreement.

2. The empirical distribution of the MDR tends to converge towards the standard normal
distribution as the censoring percentage decreases or the sample size increases.

6. Application

The heart transplant dataset, which includes records up to April 1st, 1974, is detailed
in the book by Kalbfleisch and Prentice (2011). During this time frame, certain patients
passed away before a suitable heart became available. Out of the 103 patients, 69 underwent
heart transplant surgeries, with 75 deaths reported. The remaining 28 patients provided
censored survival time data. The survival times from patient entry are represented by the
response variable y; (the number of days from acceptance into the transplantation program
to both the transplant and death was recorded for each patient). The failure indicator is
shown by the variable “survival status” (0 - censored, 1 - observed). Each patient (i = 1, 2,
..., 103) was related to the following explanatory variables.

e 1;; = Age at acceptance(in years).
e ;5 = Prior surgery (marked as 1 for yes and 0 for no).
e ;3 = Transplant (0 = no; 1 = yes).
In many cases, it is possible to qualitatively evaluate the form of the failure rate
function, which is useful when choosing a model. The total time on test (TTT) plot is
a useful tool in this context Aarset (1987). Figure 4 demonstrates the TTT plot for this

data, which shows a failure rate function has a monotonically increasing pattern. Hence, the
LOBIIIW distribution is appropriate for modeling this dataset.

Now, we demonstrate the results obtained from fitting the LOBIIIW regression model:
Yi = Bo + Brxin + PaTia + Paiz + 0z

where the errors z; are independent random variables with a density function (5)
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Figure 4: TTT plot of Stanford heart transplant data

6.1. Results of maximum likelihood and jackknife estimation

The statistical program R has been employed for estimating the maximum likelihood
estimates of the LOBIIIW, Log Odd Log Logistic Weibull (LOLLW), and Log Weibull (LW)
regression models. Table 2 presents the parameter estimates along with their standard
errors, p-values, and model selection criteria (AIC, CAIC, and BIC statistics). The smaller
standard errors represent more precise parameter estimates and lower p - values reveal that
the covariates x1, x9, and x3 have a significant impact. A comparative analysis of these
models indicates that the LOBIITW model consistently yields lower values across the model
selection criteria. Also, we can analyze the estimated coefficients in the following way: the
expected survival time is expected to decreases by approximately 94.08% (e~ x 100%)
when the age at acceptance (z7) increases by one unit. Variables xo and x3 might also be
interpreted in the same way. The jackknife method was also used along with maximum
likelihood estimation (MLE) to validate the results. The jackknife serves as a diagnostic
tool to verify parameter stability since MLE can be sensitive to influential observations
and small sample size. Table 3 provides the jackknife estimates of the model parameters.
For both estimation procedures, the LOBIITW regression model’s findings indicate that the
explanatory variables x1, x5, and x3 are statistically significant at the 5% level. Both methods
presented nearly identical estimates.

The Cox proportional hazards model was employed as a comparative technique since
it is a useful regression model for analyzing censored failure times. Further, estimates,
standard errors (SE), and p - values for the Cox regression model are displayed in Table 4.
Aligning with the findings of the LOBIIIW regression model, the Cox regression model also
shows that all explanatory variables are marginally significant at the 5% level.

Furthermore, the LR statistic is employed to compare the LOBIIIW and LW regres-
sion models by testing the hypotheses Hy : ¢ = k = 1 against H; : Hy is not true. The
test yielded a test statistic value of w = 2(—166.3611 — (—171.7112)) = 10.7002, with a
corresponding p-value of 0.0047. These results signify a favorable indication towards the
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LOBIIIW regression model.

Table 2: The parameter estimates, standard errors (given in parentheses) and
p-values in [.], for the LOBIIIW, LOLLW and LW regression models fitted to
the heart transplant data

Models c k o 5o 51 (2 53
LOBIIIW  1.813 2.378 3.506 5.604 -0.061 1.450 2.580
(0.722) (1.114) (1.153) (1.254) (0.019) (0.589) (0.378)
[< 0.001] [0.001] [0.013] [< 0.001]
AIC = 346.722 BIC = 365.165 CAIC=347.901
LOLLW 4.628 6.203 8.744 -0.076 1.405 2.591
(3.530) (4.685) (1.760) (0.019) (0.574) (0.388)
[< 0.001] [< 0.001] [0.016] [< 0.001]
AIC = 347.595 BIC = 363.404 CAIC = 348.470
LW 1.465 7.974 -0.092 1.214 2.537
(0.1314) (0.933) (0.020) (0.647) (0.373)
[< 0.001] [< 0.001] [0.063] [< 0.001]
AIC = 353.420 BIC = 366.594 CAIC = 354.039

Table 3: Jackknife estimates fitted to the heart transplant data

Parameter Estimates  SE 95%CI p-value
c 1.8790 0.7775  (0.3550, 3.4028) 0.0156
k 2.6486 1.2789  (0.1419, 5.1553) 0.0383
o 3.7520 1.2375  (1.3264, 6.1775) 0.0024
5o 5.6791 1.3454  (3.0420, 8.3161) < 0.001
o5t -0.0649  0.0192 (-0.1297, -0.0271) < 0.001
(o 1.5309 0.5878 (0.3788, 2.68290)  0.0091
(3 2.9011 0.3804  (1.8055, 3.2967) < 0.001

Table 4: Cox regression model estimates fitted to the heart transplant data

Parameter Estimate SE p-value  95%CI

Ioht 0.05919  0.01494  <0.0001  (0.0299, 0.0884)

(o -0.74266  0.44225 0.0931 (-1.6094, 0.1241)

B3 -1.66121  0.27588  <0.0001 (-2.2019, -1.1204)
AIC BIC CAIC

5954.3522  561.3047 554.6902
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6.2. Results of sensitivity and residual analysis

The global influence measures GD;(n) and LD;(n) have been evaluated to identify the
influential observations in the LOBIIIW regression model fitted to the present dataset. Fig-
ure 5 shows the index plots of influence measures, which signifies that the possible influential
observations are 18 and 99. Another way for detecting potential outliers in the LOBIITW
regression model involves plotting the MDR (rp;) against the adjusted values, as shown in
Figure 6(a). Upon examining the MDR plot, a residual analysis indicates that observations
8 and 99 are identified as potential outliers.

Both sensitivity and residual analysis determined observations 99 as the most fre-
quently occurring possible influential points. Observation 99 indicates the longest survival
time within the present censored dataset. We modified the model by eliminating the above
observations in order determine whether they had a significant effect on the parameter es-
timates. The Table 5 illustrates the relative change in the estimated parameters, given by

the formula R = W Here, 7);;) represents the MLE estimates calculated excluding the
J

it" record. We evaluate the robustness of the parameters in the LOBIIIW regression model,

considering that the covariates x1, x5 and x3 have significance in the fitted model. Thus, the
inference remains unchanged when the observation identified as potentially influential in the
diagnostic plots is removed.

Also, we display the normal probability plot for MDR with the simulated envelope
in Figure 6(b). The plot in Figure 6(b) recommends that the LOBIIIW regression model
appears to adequately fit the dataset, with no observations occurring as possible outliers.
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Figure 5: The index plot of (a) GD;(n) and (b) LD;(n) for the LOBIIIW regres-
sion model
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Figure 6: (a) Index plot of the deviance residual and (b) Normal probability plot
of rp; with envelopes

Table 5: Relative changes (expressed in percentages) along with the estimates
and corresponding p-values for the datasets

~ N N A A

Dropped Observation é k o Bo B B2 B3

None

1.8136  2.3785  3.5062  5.6040  -0.0610  1.4501  2.5804
(< 0.001)  (0.0013) (0.0138) (< 0.001)

499 [2.2618] [-12.2317] [-2.6506]  [3.8708]  [0.2569] [-6.734]  [-1.4363]
1.8546  2.6694  3.5991 53871  -0.0609  1.5478  2.6175
(< 0.001) (<0.001) (0.0066) (< 0.001)

7. Conclusion

This study introduces a novel LOBIIIW regression model for analyzing survival data,
particularly when dealing with censored observations. The model performs effectively when
the hazard function displays a bathtub form. We used two methods to estimate the pa-
rameters of the proposed model: the maximum likelihood and jackknife estimator. The
assumptions of the model were verified by utilizing MDR. Simulation research has shown
that the empirical distribution of MDR approximates a standard normal distribution. In
addition, GCD and LD measures were introduced to detect influential observations in the
regression model. We also demonstrate the effectiveness of the model by analyzing a real
dataset.
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ANNEXURE
A. Jackknife method

Jackknifing is a technique that converts the task of estimating a population parameter
to that of estimating a population mean. Applying this strategy takes a different way to
estimating a mean value. By suggesting another robust estimator for the covariance matrix,
Lipsitz et al. (1990) made a substantial contribution to the implementation of the jackknife
method. This estimator relies on the jackknife method and is valid for analyzing data from
repeated measure analyses. This method can be used as an alternative method to estimate
population parameters.

Suppose X1, Xo, ..., X, be arandom sample of size n and X =37 ; X? be the sample
mean used to estimate the population mean. Let 7 be the estimated parameter vector of n
based on each of the n observations and 7j_; for : = 1,2, ..., n be the estimated 7 value after
the i observation was removed from the sample. Hence, the pseudo-values are obtained by;

nf=ni—mn—1)n, i=12...,n
Thus, the jackknife estimator of 7 is given by,

e i T
n

n

Manly (2018) proposed that an approximate 100(1—v)% confidence interval for each 7 is
provided by 7" £ty ;1 ﬁ, which eliminates bias of order n~!. Here s represents the standard
deviation of the pseudo-values and ¢y, is the upper (1 —3) point of ¢ distribution with
n — 1 degrees of freedom.
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B. Sensitivity analysis: Global influence

The initial technique for performing sensitivity analysis involves global influence
through case - deletion as outlined in Cook (1977). Case deletion is a widely utilized tech-
nique for assessing the effect of removing the i*" record from the dataset. In the context of
model (6), the case - deletion process is defined as follows:

Yi=x/B+0Z, [1=12..,n [#i (9)

The term expressed by “i” describes the actual expression with the exclusion of the

" record. The log-likelihood function for model (9) is represented as l;)(n) and let #; =

’it
(¢, l%i, Gi, BiT)Trepresent the corresponding estimate of 1. The basic idea is to evaluate, the
difference between #; and 7 in order to figure out the impact of the i*" observation on the
maximum likelihood estimate % = (¢, k, &, BT)T. More consideration should be provided to
an observation, if its exclusion substantially affects the estimates. Thus, if 7}; is regarded as
an influential observation if it differs considerably from 7). The generalized Cook distance
(GCD), a frequently employed measure to assess the global influence, is defined as,

GD;(n) = (i — A {—L(A)}(AH; — 7).

Another established measure used to quantify the distinction between 7); and ) is the
likelihood displacement (LD) defined as:

LDi(n) = 2{1(A) — 1) }-
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