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Abstract 

 

In family studies, usually, information on ages at onset of diseases is collected and the 

resulting data are often left censored.  When there is a possibility of multiple types of events 

(disease) in a left censored family (clustered) data, the concept of cause specific reversed 

hazard models and the concept of frailty are needed for modeling and analysis of the data. 

Hence, in this paper, for the analysis of clustered multiple event data with left censored 

observations, frailty models in terms of cause specific reversed hazard rates are introduced. 

The shared gamma frailty reversed hazards model for bivariate multiple event data are 

developed. The first model is developed for the analysis of data without the presence of 

covariates. In the second model, covariates are included and regression coefficients are 

assumed to be different for different type of events. The estimation of the parameters of the 

models by maximum likelihood method, using EM algorithm, is presented. The properties of 

the estimates are also discussed. Finally, the models are applied to real data sets. 

 

Key words: Reversed hazard rate; Competing risk; Frailty models. 

 

1. Introduction 

 

In family studies on diseases with ages at onset, assessing the familial association is often 

the problem of interest. When age at onset is considered, the data is often left censored. Left 

censored observations occur when the exact value of a response has not been observed and 

instead, an upper bound on that response is observed. Such observations also arise if a 

measuring instrument lacks the sensitivity needed to measure the observations below a known 

threshold. Then the measurement is taken and if the signal is below the instrument threshold, 

all which is known is that measurement is less than the threshold. Left censored observations 

also occur in studies determining the age at which a child learns to perform a specified task. 

Often, some children can already perform the task when they enter to the study. Such lifetimes 

are considered as left censored. The modeling and analysis of such left censored lifetime data 

is carried out using reversed hazard rate. The concept of reversed hazard rate (RHR) has been 

proposed as dual to hazard rate by Barlow et al. (1963) and is defined for a nonnegative random 

variable T as (𝑡) =  lim
∆𝑡→0

𝑃(𝑡−∆𝑡 < 𝑇 ≤ 𝑡+∆𝑡)

∆𝑡
. That is, in a small interval, the product of the RHR 

function and the length of the interval is the approximate probability of failure in the interval 

given failure before the end of the interval.  RHR was used for the estimation of the survival 



 V.L. GLEEJA AND P.G. SANKARAN [Vol. 19, No. 2 200 

function in the presence of left censored observations by Ware and DeMets (1976) for a baboon 

descent data. Later RHR was used for characterization of life distributions by Shaked and 

Shantikumar (1994), for investigating the properties for k  out of n  systems by Block et al. 

(1998) and for developing nonparametric estimators for right truncated data by Lawless (2003). 

Different authors, Chandra and Roy (2001), Gupta and Nanda (2001), Gupta and Wu (2001), 

Kalbfleisch and Lawless (1989), Nair, Sankaran and Asha (2005), Sankaran and Gleeja (2006), 

Bartoszewicz and Skolimowska (2006) and Faith (2017), extensively studied and presented 

results related to RHR.  

 

Sometimes in studies involving family or subgroups, lifetimes of individuals within the 

subgroup may be related. For modeling association between individual lifetimes within 

subgroups, the notion of frailty was introduced by Vaupel et al. (1979).  The model assumes 

frailty as a common random effect that acts multiplicatively on the hazard rates of all subgroup 

members. The most widely used frailty model is shared frailty model with gamma distribution 

as frailty distribution. It has been discussed in Vaupel et al. (1979), Clayton and Cuzick (1985), 

Klein (1992) and Andersen et al. (2003). Some other distributions for frailty like positive 

stable, Weibull, lognormal etc. are investigated in Hougaard (2000). The estimation of the 

parameters of shared frailty model using maximum likelihood method via the EM algorithm is 

developed in Nielson et al. (1992) and the asymptotic normality and efficiency of the estimators 

are studied and proved in Murphy (1994, 1995).  

 

The concept of frailty as a common random effect that acts multiplicatively on RHR has 

been introduced in Sankaran and Gleeja (2008). Let  1 2,T T  be the lifetimes of two related 

individuals. Then    0,j j j jm Z t Zm t  be conditional individual RHRs given frailty Z  where 

 0 j jm t , 1,2j   are the baseline reversed hazards. Assume that lifetimes  1 2,T T  are 

conditionally independent given frailty Z  and Z follows a gamma distribution with mean one 

and variance  . Then shared gamma frailty models is introduced by Sankaran and Gleeja 

(2011) as the distribution function of  1 2,T T ,      
 1/

1 2 01 1 02 2, 1F t t M t M t


 


      where 

 01 1M t  and  02 2M t  are the cumulative baseline reversed hazard function and   ≥ 0 .  

 

When time to failure of paired organs like kidney, lungs, eyes, ears, dental implants etc. 

are considered, it is more appropriate to model using shared frailty models. The estimation was 

done using maximum likelihood method via EM algorithm. Later, estimation of parameters 

involved in the shared frailty model by the Bayesian estimation procedure using the Markov 

chain Monte Carlo (MCMC) technique was discussed in Hanagal et al. (2014). The most 

commonly used frailty distribution is Gamma distribution, because of its mathematical 

convenience. Other distributions can be used as frailty distribution and Hanagal and Pandey 

(2015) developed three parametric shared frailty models with inverse Gaussian frailty using 

RHR. Gamma frailty models with different baseline distributions are discussed in Hanagal and 

Bhambure (2017) and Hanagal and Pandey (2017). Inverse Gaussian correlated frailty model 

with different baseline distributions are discussed in Hanagal (2020) and Hanagal and Pandey 

(2020). The shared frailty models are attracting recent interest of researchers and extensive 

research is being conducted on these models. While analyzing family data on age at onset of a 

particular disease, shared frailty models using RHR is very useful.  

 

But in certain studies on age at onset of diseases, individuals may be susceptible to more 

than one type of diseases or in some survival studies death can occur due to any one of the two 
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or more causes. When there are multiple types of causes for the event, the concept of competing 

risks facilitates analysis. Modeling and analysis of lifetime data with multiple type of events 

under right censoring is discussed in Crowder (2001), Kalbfleisch and Prentice (2002) and 

Lawless (2003). The analysis of competing risks data under left censoring using RHR has been 

carried out in Sankaran and Anjana (2014). Specifically, they presented the analysis of left 

censored data with multiple types of events using cause-specific RHR functions. Let  ,T J be 

a pair of random variables where T  is possibly a censored lifetime and J  represents cause of 

event. J  takes values on the set {1,2,...,r}. These r causes are mutually exclusive and 

exhaustive, so that the individual can have at most one realized lifetime with an identifiable 

cause. Then cause specific RHR of T is defined as 
0

( , / )
( ) limj

t

P t t T t J j T t
m t

t 

    



,  

j = 1,2,...,r. Thus ( )jm t  specifies the instantaneous rate of failure of an individual at time t due 

to cause j given that it failed before time t.  Then the marginal RHR of T  was given as 

 
1

( )
r

j

j

m t m t


 . Sankaran and Anjana (2016) introduced a proportional cause specific RHR 

model for modeling and analysis of left censored competing risks data in the presence of 

covariates. The model was given as     '

0| exp( )j jm t m tx βx , j=1,2,...,r  where  |jm t x is 

the cause-specific RHR due to cause j in the presence of covariate x and  x is a vector of  p 

covariates,  
'

1 2, ,..., p  β  is the vector of  p regression parameters, and  0 jm t is the 

baseline cause-specific RHR due to cause  j. The vector of regression parameters β measures 

the effect of the covariate vector on the cause-specific RHR. But these models are not 

appropriate for clustered data like family data, as it does not consider the association exist 

between members of the family.  

 

Thus, in order to analyze a left censored family (clustered) data with multiple types of 

events (diseases), a frailty-based competing risks models using RHR is needed. Motivated by 

this, in this paper, a shared gamma frailty model in terms of cause specific RHR is developed.  

 

The paper is organized as follows. In section 2, cause specific shared frailty proportional 

RHR model is developed with and without the presence of covariates. The estimation and the 

asymptotic properties of the parameters of models are studied in section 3. In section 4, the 

model is illustrated with data sets from Ying and Wei (1994) and McGilchrist and Aisbett 

(1991). Finally conclusions and discussions are given in section 5.  

 

2. Cause Specific Shared Frailty Proportional RHR Model  

 

The model is constructed to deal with a clustered or family data with multiple causes of 

event. The time to event is the variable of interest and let us consider bivariate situation.  

  

2.1. Cause specific shared frailty proportional RHR model without covariates 

 

Let  1 2,T T T  be the pair of lifetimes of two related individuals defined on a common 

probability space  , , P F with absolutely continuous distribution function. Let  1 2,F t t  and 

 j jF t  respectively denote the joint distribution function of T  and the marginal distribution 

function of jT , j=1,2.  Let the support of T  be 1 2[0, ] [0, ]D b b   where  1 2,b b  is such that 
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  inf 1|j jb t F t  , 1,2j  . Assume that each of the pair  1 2,T T  is subject to multiple 

causes of event. Let   1 2,C C C  denote the cause of event for T . Suppose that there are r 

causes for the event for each individual in the process. Assume that 
jC  is a unique element of 

the set {1,2,…,r},  j=1,2. We assume that individual can have at most one realized lifetime 

with an identifiable cause. Observations from the same cluster or family may share common 

environment or some other factors. Hence it is assumed that the pair of lifetimes shares a 

common unobserved frailty Z . First define the cause specific RHR of jT  for given frailty Z as  

 

      0,jk j jk jm Z t Zm t , j=1,2 and k=1,2,…,r                                                                                                                                                                

  

where  0 jk jm t  is baseline cause specific RHR function of jT , j=1,2 and Z  is an unobservable 

random variable having a probability density function ( )g z .  The marginal RHR of jT
 
for 

given frailty Z is obtained as  

 

     0

1 1

, ,
r r

j j jk j jk j

k k

m Z t m Z t Z m t
 

   , 
j=1,2. 

 

We assume that lifetimes  1 2,T T  are conditionally independent given frailty Z . Then the 

distribution function of   1 2,T T  given frailty Z  is 

 

        
1 2

1 2 1 2

1 1

, | exp , ,
r r

k k

k kt t

F t t Z m Z u du m Z v dv

 

 

  
   

  
    . 

 

Let  g z  be the joint density function of Z . Then the bivariate distribution function of   1 2,T T  

is  

 

                        1 2 1 2

0

, , |F t t F t t Z g z dz



    =   1 2, |E F t t Z  

                                    01 1 02 2

1 1

exp
r r

k k

k k

E Z M t M t
 

   
      

   
   

 

where  01 1kM t  and  02 2kM t  are the cumulative baseline cause specific reversed hazard 

function.   

 

The marginal distribution function of  
jT  is  

 

        01 1

10

| exp
r

j j j j k

k

F t F t z g z dz E Z M t





  
    

  
 , 1,2j  .   

 

Suppose that Z is i.i.d. random variable with the following gamma density function 
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 

   

1/ 1

1/

exp{ / }
( ) ,         0

1/

z z
g z








 




 


.  

    

The mean value of Z  is 1 and variance is  .  Then bivariate distribution function of   1 2,T T

is obtained as 

  

     
 1/

1 2 01 1 02 2

1 1

, 1
r r

k k

k k

F t t M t M t



 



 

 
   
 
 

       

where   ≥ 0.  (1) 

 

Thus, cause specific shared gamma frailty proportional RHR model can be represented by (1).

  

 

The marginal distribution function 
jT  is then obtained as  

 

                      
( 1/ )

0

1

1
r

j j jk j

k

F t M t









 
  
 
 , 1,2j  .   

    

Therefore, the bivariate distribution function of  1 2,T T  can be represented in terms of marginal 

distribution functions as  

 

             
 1/

1 2 1 1 2 2, 1F t t F t F t
  

    
 

      where   ≥ 0.  (2)

  

Remark 1: T1 and T2 are independent, when   = 0.  

 

Remark 2: The model given in (2) is identifiable. Let  1 2,F t t  be a known distribution 

function given as in (2), and 0  , and let    
1

0
r

i i ik i

k

m b m b


  , 1,2i  . 1,2,...,k r  for r 

different causes. 

 

We obtain the joint density function as  

 

   
         

   

1 1 2 2 1 1 2 2

1 1
1 2 1

2

1 1 2 2

1

,

1

r r

k k

k k

m t m t F t F t

f t t

F t F t

 

  


 

 

 
    





  
 

 
. 

 

Since    
1

0
r

i i ik i

k

m b m b


   and   1i iF b  , 1,2i  ,  we have 

 

                     
 

   
1 2

1 1 2 2

,
1

f b b

m b m b
   . 
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From the above expression it is clear that the identified value is unique. Then the model is 

identifiable. 

 

2.2.  Cause specific shared frailty proportional RHR model with covariates 

 

Often the lifetime of individual is influenced by age, gender, history or severity of 

diseases. If information is available about such factors, then the heterogeneity in a population 

arising from the influence of those factors can be incorporated in models by specifying them 

as covariates. Accordingly, cause specific RHR function of jT  in presence of covariates and 

frailty is defined as  

 

    '

0, exp( )jk j jk j k jm Z t Zm t β x  

 

for j = 1,2 and k = 1,2,…,r, where and  
'

1 2, ,...,j j j jpx x xx , j = 1,2  is a p×1 vector of 

covariates and  
'

1 2, ,...,k k k pk  β  is the vector of regression coefficients and are assumed 

to be different for different causes of events. 

 

Proceeding as in Section 2.1, bivariate distribution function of   1 2,T T  is obtained as  

 

       1 2 01 1 1 02 2 2

1 1

( , ) exp exp( ) exp( )
r r

k k k k

k k

F t t E Z M t M t
 

   
      

   
 ' '

β x β x .         (3) 

 

Assuming that frailty variable Z follows gamma distribution with mean one and variance  ,   

(3) reduces to  

 

           
 1/

1 2 01 1 1 02 2 2

1 1

, exp( ) exp( ) 1
r r

k k k k

k k

F t t M t M t



 



 

 
   
 
 ' '

β x β x where   > 0. (4) 

 

The marginal distribution function 
jT  is then obtained as  

 

      
( 1/ )

0

1

exp( ) 1
r

j j jk j k j

k

F t M t









 
  
 
 '

β x , 1,2j  . 

 

When the bivariate distribution function of   1 2,T T  is represented in terms of marginal 

distribution functions, (4) reduces to (2).  

 

The parameters of the model could be estimated from observed data only if the model is 

identifiable. The identifiable property of the models follows from Sankaran and Gleeja (2011). 

 

3.  Estimation  

 

The estimation procedures are developed for cause specific shared gamma frailty 

proportional RHR model when the data is left censored. Let  1 2,T T T  be the pair of lifetimes 
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of two related individuals and  1 2,U U U  be a pair of corresponding censoring times defined 

on a common probability space  , , P F with absolutely continuous distribution function.  

Under bivariate censoring, one could observe  * *

1 2 1 2 1 2, , , , ,T T C C    where * max( , )j j jT T U

and *( )j j jI T T   , j=1,2 with (.)I  as usual indicator function. Suppose that 

 * *

1 2 1 2 1 2, , , , ,i i i i i iT T C C   , i=1,2,…,n are n independent and identically distributed observations 

of  * *

1 2 1 2 1 2, , , , ,T T C C   . Define    * , 1,ijk ij ij ijN t I T t C k    ,    * ,ijk ij ijY t I T t C k  

, for i=1,2,…,n,  j=1,2, k=1,2,…,r . Define the predictable process  Y t  as   

      ,  1,2,..., ,  1,2,  1,2,...,ijkY t i n j k r   Y t   

and 

     ,  1,2,..., ,  1,2,  1,2,...,  ijkN t i n j k r   tN    

as a multivariate counting process with components 
ijkN

,
 where components with the same 

value of the first index i  share the same frailty variable iZ . Further it is assumed that 

conditional on Z , T and U are independent. 

 

3.1. Estimation of cause specific shared frailty proportional RHR model without 

covariates 

 

For the case without covariates, let the cause specific RHR of jT  for given frailty Z for 

the ith cluster is      0ijk i ijk jkm t Z Y t m t
, 

1,2,..., ,  1,2,  1,2,...,i n j k r   , where iZ  is 

unobservable i.i.d. random variable from Gamma (1/ ,  1/  ) distribution. The estimate of 

parameter   and cumulative baseline cause specific RHR function    0 0

b

jk jk

t

M t m s ds   is 

to be obtained. Assume that conditional on Z=z, censoring is non-informative. So the partial 

conditional likelihood based on  tN  is given by the product integral 

 

                     
 

 
 .1

.1
ijkN t N t

ijk

t i j k

dP m t dt m t dt
  

      
 

  ,    (5)  

 

where  
2

.

1 1 1

( )
n r

ijk

i j k

N t N t
  

  and    
2

.

1 1 1

n r

ijk

i j k

m t m t
  

 . Considered as a function of Z , 

(5) is proportional to conditional density of     t tN , Y  given Z z . Substituting the 

specification of  ijkm t  and evaluating the product integral, L( ) is obtained as  

 

 

   
        

 
1/ 1

0 01/

0

exp{ / }
( ) exp

1/

ijk

b
N t

i i
i ijk jk i ijk jk

i j k t

z z
L z Y s dM s z Y t dM t








 


   

   
   

  
 

(6) 

       

   
    

 

..1/ 1

0

0
01/

1
exp{ ( )}

1/

i

ijk

b
N b

i i ijk jk
N tj k

ijk jk

i j k t

z z Y s dM s

Y t dM t







 

 



 





 
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where  
2

..

1 1

( )
r

i ijk

j k

N b N b
 

 . Conditional on data, iZ  are still independent and gamma 

distributed with parameters    ..1/ iN b   and      0

0

1

b

ijk jk

j k

Y s dM s  . Integrating 

out Z  in (6), the marginal partial likelihood is obtained as  
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     






.        (7) 

 

EM algorithm is used to maximize (7). The estimates of parameters which maximizes (7) 

maximizes (6) also. The E step is to estimate 
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
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. 

 

The M step is then to calculate ̂ , the maximum likelihood estimator for   from (7), and 

to estimate cumulative baseline cause specific RHR function 

 

          
 

 
.

0
ˆ

ˆ

b
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i ijkt
i

dN s
M t

z Y s
 

, where  .

1

( )
n

jk ijk

i

N s N s


  . 

 

The initial estimates of ˆ
iz  and  0M̂ t  are obtained by taking 0  . By general theory of 

EM algorithm, if this algorithm converges, it converges to a stationary point of  log L  .  

 

3.2.   Estimation of cause specific shared frailty proportional RHR model with covariates 

 

For the model with covariates, let the vector observed be  * *

1 2 1 2 1 2 1 2, , , , , , ,i i i i i i i iT T C C   x x

.  Then cause specific proportional RHR in presence of covariates and frailty is represented as  

 

       '

0 exp( )ijk i ijk jk k ijm t z Y t m t β x                                          (8)
 
 

 

for j = 1,2 and k = 1,2,…,r, where  
'

1 2, ,...,k k k pk    is the vector of regression coefficients 

and  
'

1 2, ,...,ij ij ij ijpX X Xx
, 

j=1,2  is a px1 vector of covariates. Then the likelihood function 

conditional on the covariate xij and frailty Zi for the model (8) is given as  
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    
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  x β x β x . 

 

Let iZ be unobservable i.i.d. random variable from Gamma (1/ ,  1/  ) distribution. Then 

L(𝜃, 𝛃) is obtained as  
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Then loglikelihood function can be written as    1 2log ( , )L l l     where 

 

         1 ..

1 1
log log 1 1/ 1 log i
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z
l N b z  
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                (9) 

and 
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 

  β β x β x .  (10) 

 
Proceeding as in the case without covariates and using EM algorithm, estimate of Zi is 

obtained as  
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. 

 

The M step is then to calculate ̂  and ˆ
kβ , the maximum likelihood estimator for    and 

k  from
 
(9) and (10) respectively and to estimate cumulative baseline cause specific RHR 

function  

 

 
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.

0 '
ˆ
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. 

 

  For testing of independence of variables 1T  and 2T , likelihood ratio test can be used. The 

case of shared frailty model with no covariates and with standard conditions on the censoring 

distribution is discussed in Maller and Zhou (2003). They obtained that the likelihood ratio 

statistic has an asymptotic null distribution which is an equal mixture of a point mass at zero 

and a chi-square distribution with one degree of freedom.  For testing 0 : 0H   , the likelihood 

ratio test statistic is ˆ-2log  = 2 (log ( )-log (0))Q L L . When 2 2
0, 1,-2log  0.5( )Q     , the 

null hypothesis is rejected at 5% level of significance. 

 

The asymptotic properties of the estimators follow from Sankaran and Gleeja (2011). 

The consistency of the estimators is established in Theorem 1. 

 



 V.L. GLEEJA AND P.G. SANKARAN [Vol. 19, No. 2 208 

Let 1T  be the first jump of N , 0  lies in a known interval [0, ] S  and true cumulative 

baseline reversed hazard 
0 jkM  be strictly decreasing and continuous on [0, ] b  for <b  .  

 

Theorem 1: Assume that  

i. Y  is a non-decreasing step function and   1  P Y t   has at most finite number of 

discontinuities in  0,t b , 

ii. 
 

  
0,

0
u b

Inf E Y u


 , 

iii.   1 1 1P Y T   , 

then 
 

   0 0
0,

ˆ 0jk jk
t b

Sup M t M t


   almost surely (a. s.) and 
0

ˆ 0    a. s. 

 

Proof: The assumption (i) is used to prove that  0
ˆ

jkM t  does not diverge to infinity, (ii) is 

used to ensure that counting process N  has sufficient activity on the entire interval so as to 

estimate the parameters, and (iii) excludes the possibility of N  having at most only one jump. 

The model becomes unidentifiable if all iN  have only one jump. The rest of the proof is similar 

to the one given in Murphy (1994). 

 

The asymptotic normality of the estimators can be established in the following way.  

Set      0 1 0

0

ˆ0 1

b
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ˆ
t th    for 1h  a function and 2h  a scalar, and 

differentiate at 0t   to get   0 1 2
ˆˆ , ,n jkF M h h . Then, if  0

ˆˆ ,jkM   maximizes  log L  , then

  0 1 2
ˆˆ , , 0n jkF M h h   for all  1 2,h h . The form of nF  is given by 1 2n n nF F F  , where   
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 For 0  , the last term is taken as its limit as   approaches zero to get 
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  . The class of h  is taken to be the space of bounded 

variation cross the reals. Define the norm to be 
1 2H v

h h h  , where 
1 v

h  is absolute value 

of  1 0h  plus the total variation of 1h  on the interval  0,b . Define 
pH  to be the product space 
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of bounded variation functions on  0,b  and real valued scalars with norm 

1 2H v
h h h p   . If p   , then the inequality is strict. In the following p  is assumed to 

be finite unless stated otherwise. Define   0 1 0 2

0

,

b

jk jkM h h dM h   . Then the parameter 

space   can be considered to be a subset of  pl H , which is the space bounded by real 

valued functions on 
pH  under the supremum norm  sup
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U U h


 . The score function nF  is 

a random map from   to  pl H  for all finite p . 

 

Theorem 2: Assume that  
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where 
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When 0 0  , the last term above is defined by its limit, which is 

3
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1 1 0
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br

ijk jk

j k

Y dM
 

 
 
 

  . 

 

Proof: Proof of the theorem follows from Murphy (1995). 

 

4.  Data Analysis 

 

The analysis of the proposed model is illustrated with data concerning the times to tumor 

appearance or death of mice from the same litter in a tumor genesis experiment by Mantel and 

Ciminera (1979), reported in Ying and Wei (1994).  The observations from drug treated rat ( 1T

) and its litter matched control ( 2T ) which were either dead ( 1, 1,2iC i   ) or appeared with 

tumor ( 0, 1,2iC i   ) are considered for the analysis. The observations with the value 60 

indicate left censored observations. The indicator function 0,  1,2i i  
 
if observation is left 

censored, 1,  1,2i i   if it is not censored. The data consist of 22 pairs. The analysis of data 

is carried out with cause specific shared frailty proportional RHR model without covariates. 

Then the maximum likelihood estimate for   is obtained as 0.7557 and is significantly greater 

than zero (p<0.001) using likelihood ratio test. Hence the pairs are not independent. The value 

of frailty variable estimated is given in Table 1.  
 

Table 1: Estimates of frailty variable for mice in the same litter 
Drug 

( 1T ) 

Control 

( 2T ) 

1  2
 

1C
 

2C
 

Zi 
Drug 

( 1T ) 

Control 

( 2T ) 

1  2  1C  2C  Zi 

60 60 0 0 0 0 0.1558 77 79 1 1 1 1 0.9270 

60 60 0 0 0 0 0.1558 89 90 1 1 0 1 1.2745 

81 69 1 1 1 1 0.3670 102 80 1 1 0 1 1.3389 

60 77 0 1 1 1 0.4267 86 94 1 1 0 1 1.3499 

67 68 1 1 0 0 0.4560 104 77 1 1 0 0 1.3830 

80 73 1 1 0 1 0.4686 103 91 1 1 0 1 1.6442 

76 74 1 1 1 1 0.4959 92 102 1 1 0 0 1.6924 

73 66 1 1 0 0 0.5160 88 99 1 1 1 1 1.7022 

70 77 1 1 0 1 0.5600 91 92 1 1 1 1 1.7225 

80 76 1 1 0 1 0.6460 103 84 1 1 0 0 1.7461 

76 78 1 1 1 0 0.7655 93 103 1 1 1 1 2.2075 
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If realization of Z is less than one, then members of the group tend to experience the 

event earlier. Hence most fragile ones have values less than one. The value of Z increases with 

increase in lifetime.  The estimates of cumulative baseline cause specific reversed hazard 

function for time to event for drug treated rat and its litter matched control is shown in Figure1 

and Figure 2. It can be seen that in drug treated rat, based on cumulative baseline reversed 

hazard function, tumor appearance is more than death without tumor. But in case of control, 

based on cumulative baseline reversed hazard function, tumor appearance is less than death 

without tumor.  

 

Figure 1: Cumulative baseline cause specific RHR for time to event of drug treated rats 

 
 

Figure 2: Cumulative baseline cause specific RHR for time to event of control rats 

 
 

 

For illustration of the model with covariates, excerpt of the bivariate data set given in 

McGilchrist and Aisbett (1991), is being used. This data shows the infection times at the point 

of insertion of catheter for kidney patients using portable dialysis equipment. The observations 

with value 10 indicate left censored observations. Data for the first two occurrences of infection 

are given. Let 1T  and 2T  represents the first and second occurrences of infection. Disease 

types, glomerulo nephritis = (0), acute nephritis = (1), polycystic kidney disease = (2), others 

= (3), are treated as four different causes for infection. Let C1 is the variable denoting cause for 

first occurrence and C2 is the variable denoting cause for second occurrence. It takes value 0, 

1, 2, or 3, depending on the disease type causing infection.  Gender is considered as the 
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covariate for the study, 1=male and 0=female. In the model, it is assumed that regression 

coefficients associated with covariate gender are different for different types of diseases. Let 

1 , 2 , 𝛽3 and
 4  denote the regression coefficients associated with covariate for different 

disease types glomerulo nephritis, acute nephritis, polycystic kidney disease and others 

respectively.  Estimates of parameters of the model are given in Table 2. Estimates are 

significant (p<0.001) using likelihood ratio test. Being a male increase the risk of getting 

infected at earlier time compared to that of female for all disease types. Males with disease type 

glomerulo nephritis and polycystic kidney disease are more prone to infection. As   is 

significant, pairs are not independent. The value of frailty variable estimated is given in Table 

3.   
 

Table 2: Estimates of parameters 

 

Parameter   1  2  3  4  

Estimate 0.0069 -1.1952 -0.4877 -1.1952 -0.9258 

Standard error 0.0012 0.0661 0.0485 0.0661 0.0655 

 

Table 3:  Estimates of frailty variable for kidney patients 

 

1T  2T  1  2  1X
 

1C  2C  Z 

10 16 0 1 1 3 3 0.9929 

22 28 1 1 1 3 3 1.0037 

447 318 1 1 0 3 3 1.0119 

30 12 1 1 1 3 3 1.0024 

24 245 1 1 0 3 3 1.0017 

511 30 1 1 1 0 0 1.0046 

53 196 1 1 0 1 1 1.0091 

15 154 1 1 0 0 0 1.0071 

10 333 0 1 1 1 1 0.9917 

96 38 1 1 0 1 1 1.0002 

185 177 1 1 0 3 3 1.0070 

292 114 1 1 0 3 3 1.0066 

15 108 1 1 0 3 3 0.9871 

152 562 1 1 0 2 2 1.0090 

13 66 1 1 1 1 1 1.0010 

12 40 1 1 0 1 1 0.9996 

132 156 1 1 1 0 0 1.0077 

34 30 1 1 0 1 1 0.9899 

10 25 0 1 0 0 0 0.9914 

130 26 1 1 1 0 0 0.9928 

27 58 1 1 0 1 1 1.0020 

152 30 1 1 0 2 2 0.9909 

119 10 1 0 0 3 3 0.9811 
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If realization of Z is less than one, then members of the group tend to experience the 

event earlier. Hence most fragile ones have values less than one. The value of Z increases with 

increase in lifetime. The estimates of cumulative baseline cause specific reversed hazard 

function for time to first and second occurrence of infection are presented in Figure 3 and 

Figure 4. 

 

Figure 3: Cumulative baseline cause specific RHR for time to first occurrence of infection 

 
 

Figure 4: Cumulative baseline cause specific RHR for time to second occurrence of 

infection 

 
 

5.  Conclusion and Discussion 

 

In this paper, a shared gamma frailty model in terms of cause specific RHR has been 

introduced for the analysis of competing risks data under left censoring. The gamma 

distribution with mean one and variance   is chosen as distribution of the frailty random 
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variable. The model is discussed with and without the presence of covariates. The parameters 

of the models were estimated by maximum likelihood method, using EM algorithm, and 

discussed the properties of the estimators. The proposed models were applied to real life data 

sets. The data in Mantel and Ciminera (1979) was analyzed for checking the adequacy of 

gamma frailty distribution with marginal proportional hazard model by Cui and Sun (2004). 

They obtained the estimate of parameter of gamma distribution as 0.888 which is very close to 

the value obtained by the present model.  Existence of strong association and dependency in 

litter matched pairs is reported in Anisha (2012). The present model helps to quantify the 

strength of association in litter matched pairs for left censored data. The data in McGilchrist 

and Aisbett (1991) were analysed by several authors. The report on analysis by Hanagal and 

Dabade (2013) and  Hanagal (2020) depicts gender as the significant covariate and observes 

that females are at lower risk. The same result holds for the present model and different 

regression coefficients are estimated for different causes in the present model. It was observed 

that more fragile individuals are having realization of frailty variable as less than one and those 

who experience the event of interest at a later stage are having the value greater than one. The 

models discussed in Anisha (2012), Cui and Sun (2004) and Hanagal and Dabade (2013) were 

able to consider only right censored or complete observations. Those models were not dealing 

with left censored data. So, in order to analyse a left censored family data with multiple type 

of diseases, shared gamma frailty model in terms of cause specific reversed hazard rates is 

more appropriate and is recommended.  
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