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Abstract
In this paper, the reliability estimation of single component stress-strength model is

studied with strength(X) and stress(Y) of the component follow Lomax exponential distri-
bution. The maximum likelihood and Bayesian estimation methods are applied to derive
estimators of reliability. The Bayesian estimators for reliability are constructed under dif-
ferent loss functions such as squared error and linex loss functions with non-informative and
gamma priors using Lindley’s approximation technique. The simulation experiment is con-
ducted to estimate the mean squared error of the estimators which enable the comparison of
different estimators. The construction of asymptotic confidence interval of reliability is also
constructed. The real data analysis is done to illustrate the developed procedures.

Key words: Lomax exponential distribution (LED); Stress-strength reliability; maximum
likelihood estimation; Bayesian inference; Lindley’s approximation technique.

1. Introduction

In the recent years there has been growing interest in defining new generators for
univariate continuous distributions by introducing one or more additional shape parameters
to the baseline distribution. Some well-known generators are beta-G and gamma-G due to
Eugene and Famoye (2002) and Zografos and Balakrishnan (2009), respectively. Torabi and
Montazeri (2014) introduced the logistic-G family. Recently, Cordeiro and Pescim (2014)
studied a new family of distributions based on the Lomax distribution. The probability
density function (pdf) and cumulative distribution function (cdf) of Lomax-G family with
two additional parameters α and β are given by

f (x) = αβαg (x)
(
[1 − G (x)] {β − log [1 − G (x)]}α+1

)−1
, x > 0, α, β > 0

and
F (x) = 1 − βα (β − log [1 − G (x)])−α , x > 0, α, β > 0

where g(x) and G(x) are the pdf and cdf of parent distribution. The parameters α and β
are the shape and scale parameters of the distribution, respectively.
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In this paper, the estimation of stress-strength reliability is considered when X and Y are
independently distributed Lomax exponential distribution (LED) which was introduced by
Ieren and Kuhe (2018) which is a new generalization of exponential distribution. The LED
is constructed by Cordeiro and Pescim (2014) using Lomax-G family. The general form
of cumulative distribution function (cdf) and probability density function (pdf) of Lomax
G-family with baseline distribution G is given below:
The cumulative distribution function (cdf) and probability density function (pdf) are given
by

f (x) = αβαg (x)
(
[1 − G (x)] {β − log [1 − G (x)]}α+1

)−1
, x > 0, α, β > 0

and
F (x) = 1 − βα (β − log [1 − G (x)])−α , x > 0, α, β > 0

where g(x) and G(x) are the pdf and cdf of baseline distribution. The parameters α and β
are the shape and scale parameters of the distribution, respectively.
In this paper, the problem of estimation of stress-strength reliability is considered when X
and Y are independently distributed Lomax exponential distribution (LED) due to Ieren
and Kuhe (2018) with exponential distribution as baseline distribution. Then, the cdf and
pdf of LED are given by

F (x) = 1 − βα (β + λx)−α , α > 0, x > 0, β > 0, λ > 0

and
f (x) = αλβ α (β + λx)−(α+1) , α > 0, x > 0, β > 0, λ > 0

It is denoted by LED(α, β, λ).
Some particular cases of Lomax exponential distribution are as given below:

1. If λ=1 and β=1, then LED is Pareto type-II distribution.

2. LED is Lomax standard exponential distribution, when λ=1.

3. When β=1, LED is generalized Pareto distribution.

The main focus of the paper is to study the problem of estimating stress-strength reliabil-
ity when stress and strength variables follow LED. In the literature several authors have
studied the estimation of stress-strength reliability for different life time distributions. Awad
and Gharraf (1986) considered the estimation of R for Burr distribution. Mokhlis (2005)
and Panahi and Asadi (2011) estimated the stress-strength reliability for Burr type-III and
Lomax distributions respectively. Abravesh and Mostafaiy (2019) studied the classical and
Bayesian estimation of stress-strength reliability based on type II censored sample from
Pareto distribution.
The rest of the paper is organised as below. Section 2 deals with derivation of stress-strength
reliability when strength X and stress Y follow LED. Maximum likelihood estimation of R
and its asymptotic confidence intervals are given in Section 3. In Section 4, the Bayesian
estimator of R is presented. The real data analysis is considered in Section 5. Section 6
contains a simulation study and the conclusions are presented in Section 7.
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2. Stress-strength reliability

Let X and Y be two independent random variables having LED(α1, β, λ) and LED(α2,
β, λ) respectively.
Then, the stress-strength reliability is given by

R = P (X > Y )
=
´∞

0 F (x) f (x) dx

= α2

α1 + α2
(1)

3. Maximum likelihood estimation (MLE) of reliability

Let X = (X1, X2, ..., Xn) and Y = (Y1, Y2, ..., Ym) be independent random samples
from LED(α1, β, λ) and LED(α2, β, λ), respectively. Then the likelihood function of α1,
α2, β and λ given

(
x, y

)
is

L
(
α1, α2, β, λ|x, y

)
=

n∏
i=1

α1β
α1λ (β + λxi)−(α1+1)

m∏
j=1

α2β
α2λ (β + λyj)−(α2+1) (2)

and the log-likelihood function is

log L = n log α1 + m log α2 + (nα1 + mα2) log β + (n + m) log λ − (α1 + 1)∑n
i=1 log (β + λxi) −

(α2 + 1)∑m
j=1 log (β + λyj)

(3)
The likelihood equations are

n

α1
+ n log β −

n∑
i=1

log (β + λxi) = 0 (4)

m

α2
+ m log β −

m∑
j=1

log (β + λyj) = 0 (5)

nα1 + mα2

β
− (α1 + 1)

n∑
i=1

(
1

(β + λxi)

)
− (α2 + 1)

m∑
j=1

(
1

(β + λyj)

)
= 0 (6)

and
n + m

λ
− (α1 + 1)

n∑
i=1

(
xi

(β + λxi)

)
− (α2 + 1)

m∑
j=1

(
yj

(β + λyj)

)
= 0 (7)

The above equations do not yield solution in closed form. Hence, a popular iterative tech-
nique, namely, Newton Raphson technique is used.
Using the invariance property of MLE, the MLE of R is given by

R̂ = α̂2

α̂1 + α̂2
.
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3.1. Asymptotic distribution of R

Under general regularity conditions, the asymptotic distribution of
(
θ̂ − θ

)
is mul-

tivariate Np+4
(
0, I (θ)−1

)
distribution, where I (θ) is the expected information matrix and

θ = [α1, α2, β, λ]⊺. Here, I (θ)−1can be approximated by the inverse of observed information
matrix I

(
θ̂
)−1

evaluated at θ̂. This distribution is used to construct the 100(1-α)% confi-
dence interval for each parameters.
Asymptotic confidence intervals of the parameters are given by

α1 ± Zα
2

√
I−1

11 , α2 ± Zα
2

√
I−1

22 ,

β ± Zα
2

√
I−1

33 and λ ± Zα
2

√
I−1

44

The asymptotic confidence interval of R is

R̂ ± Zα
2

√
AV

(
R̂
)

,

where

AV
(
R̂
)

=
[

∂R

∂α1

]2

I−1
11 +

[
∂R

∂α2

]2

I−1
22 .

4. Bayesian estimation of R

In this section, the Bayesian estimation of R under different loss functions and priors is
presented. The non-informative and gamma priors are considered to obtain Bayes estimator
of R. The prior distribution of α1, α2, β and λ are gamma (c1, d1), gamma (c2, d2), gamma
(c3, d3) and gamma (c4, d4), respectively.
The joint prior distribution of α1, α2, β and λ is given by

g1 (α1, α2, β, λ) = g (α1) g (α2) g (β) g (λ) (8)

where
g (α1) = dc1

1
Γc1

exp (−d1α1) αc1−1
1 , α1 > 0, c1, d1 > 0 ,

g (α2) = dc2
2

Γc2
exp (−d2α2) αc2−1

2 , α2 > 0, c2, d2 > 0 ,

g (β) = dc3
3

Γc3
exp (−d3β) βc3−1, β > 0, c3, d3 > 0

and
g (λ) = dc4

4
Γc4

exp (−d4λ) λc4−1, λ > 0, c4, d4 > 0

If, c1 = c2 = c3 = c4 = d1 = d2 = d3 = d4 = 0, then it reduces to non-informative prior.
The posterior distribution is

π (α1, α2, β, λ) = L (α1, α2, β, λ) g (α1, α2, β, λ)´∞
0

´∞
0

´∞
0

´∞
0 L (α1, α2, β, λ) g (α1, α2, β, λ) dα1 dα2 dβ dλ
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π (α1, α2, β, λ) = G´∞
0

´∞
0

´∞
0

´∞
0 G dα1 dα2 dβ dλ

(9)

where

G = exp (−d1α1) αn+c1−1
1 exp (−d2α2) αm+c2−1

2 exp (−d3β) exp (−d4λ) βnα1+mα2+c3−1

λn+m+c4−1∏n
i=1 (β + λxi)−(α1+1)∏m

j=1 (β + λyj)−(α2+1)

The posterior distribution of R is non-tractable. Hence, the Lindley’s approximation tech-
nique is used to derive Bayes estimator of R.
For four parameter case, the Lindley’s approximation to Bayes estimator of R under squared
error loss function is given by

R̂S = u + (u1a1 + u2a2 + u3a3 + u4a4 + a5 + a6) +
1
2 [A (u1σ11 + u2σ12 + u3σ13 + u4σ14)] +
1
2 [B (u1σ21 + u2σ22 + u3σ23 + u4σ24)] +
1
2 [C (u1σ31 + u2σ32 + u3σ33 + u4σ34)] +
1
2 [D (u1σ41 + u2σ42 + u3σ43 + u4σ44)] ,

(10)

where,u = R̂, ui, i = 1, 2, 3, 4 and uij, i, j = 1, 2, 3, 4 are the first and second order
derivatives of R, σij, i, j = 1, 2, 3, 4 is the (i, j)th element in the inverse of the matrix [-
Lij], Lij and Lijk are the second and third order derivatives of log-likelihood function and
ρi, i = 1, 2, 3, 4 is the first order differentiation of log of prior with respect to α1, α2, β and
λ.
Here,

ai = ρ1σi1 + ρ2σi2 + ρ3σi3 + ρ4σi4, i = 1, 2, 3, 4. ,

a5 = u12σ12 + u13σ13 + u14σ14 + u23σ23 + u24σ24 ,

a6 = 1
2 (u11σ11 + u22σ22 + u33σ33 + u44σ44) ,

A = σ11L111 + 2σ12L121 + 2σ13L131 + 2σ14L141 + 2σ23L231 + 2σ24L241+
σ22L221 + σ33L331 + 2σ34L341 + σ44L441 ,

B = σ11L112 + 2σ12L122 + 2σ13L132 + 2σ14L142 + 2σ23L232 + 2σ24L242+
σ22L222 + σ33L332 + 2σ34L342 + σ44L442 ,

C = σ11L113 + 2σ12L123 + 2σ13L133 + 2σ14L143 + 2σ23L233 + 2σ24L243+
σ22L223 + σ33L333 + 2σ34L343 + σ44L443 ,

and
D = σ11L114 + 2σ12L124 + 2σ13L134 + 2σ14L144 + 2σ23L234 + 2σ24L244+

σ22L224 + σ33L334 + 2σ34L344 + σ44L444 .

According to our case,

R̂S = u + (u1a1 + u2a2 + a6) + 1
2 [A (u1σ11) + B (u2σ22)] +

1
2 [C (u1σ31 + u2σ32) + D (u1σ41 + u2σ42)] ,

(11)

where
a1 = ρ1σ11 + ρ3σ13 + ρ4σ14, a2 = ρ2σ22 + ρ3σ23 + ρ4σ24

a5 = +u14σ14 + u23σ23 + u24σ24 ,
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a6 = 1
2 (u11σ11 + u22σ22 + u33σ33 + u44σ44) ,

A = σ11L111 + σ22L221 + σ33L331 + 2σ34L341 + σ44L441,

B = σ22L222 + σ33L332 + 2σ34L342 + σ44L442 ,

C = 2σ13L133 + 2σ14L143 + 2σ23L233 + 2σ24L243 + σ33L333 + 2σ34L343 + σ44L443 ,

D = 2σ13L134 + 2σ14L144 + 2σ23L234 + 2σ24L244 + σ33L334 + 2σ34L344 + σ44L444 ,

u = α̂2

α̂1 + α̂2
, u1 = −α̂2

(α̂1 + α̂2)2 , u2 = α̂1

(α̂1 + α̂2)2 , u3 = u4 = 0,

u11 = 2α̂2

(α̂1 + α̂2)3 , u22 = −2α̂1

(α̂1 + α̂2)3 , u12 = u21 = α̂2 − α̂1

(α̂1 + α̂2)3 ,

ρ1 = c1 − 1
α̂1

− d1, ρ2 = c2 − 1
α̂2

− d2, ρ3 = c3 − 1
β̂

− d3, ρ4 = c4 − 1
λ̂

− d4 ,

L11 = − n

α̂2
1
, L22 = − m

α̂2
2
,

L13 = L31 = −
n∑

i=1

(
1

β̂ + λ̂xi

)
+ n

β̂
,

L23 = L32 = −
m∑

j=1

(
1

β̂ + λ̂yj

)
+ m

β̂
,

L14 = L41 = −
n∑

i=1

(
xi

β̂ + λ̂xi

)
,

L24 = L42 = −
m∑

j=1

(
yj

β̂ + λ̂yj

)
,

L33 = −(nα̂1 + mα̂2)
β̂2

+ (α̂1 + 1)
n∑

i=1

 1(
β̂ + λ̂xi

)2

+ (α̂2 + 1)
m∑

j=1

 1(
β̂ + λ̂yj

)2

 ,

L44 = −(n + m)
λ̂2

+ (α̂1 + 1)
n∑

i=1

 x2
i(

β̂ + λ̂xi

)2

+ (α̂2 + 1)
m∑

j=1

 y2
j(

β̂ + λ̂yj

)2

 ,

L34 = L43 = (α̂1 + 1)
n∑

i=1

 xi(
β̂ + λ̂xi

)2

+ (α̂2 + 1)
m∑

j=1

 yj(
β̂ + λ̂yj

)2

 ,

L111 = 2n

α̂2
1
, L222 = 2m

α2
2

,

L134 = L413 = L314 = L341 = L431 = L143 =
n∑

i=1

 xi(
β̂ + λ̂xi

)2

 ,
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L244 = L424 = L442 =
m∑

j=1

 y2
j(

β̂ + λ̂yj

)2

 ,

L234 = L423 = L324 = L342 = L432 = L243 =
m∑

j=1

 yj(
β̂ + λ̂yj

)2

 ,

L144 = L414 = L441 =
n∑

i=1

 x2
i(

β̂ + λ̂xi

)2

 ,

L334 = L343 = L433 = − (α̂1 + 1)
n∑

i=1

 xi(
β̂ + λ̂xi

)3

− (α̂2 + 1)
m∑

j=1

 yj(
β̂ + λ̂yj

)3

 ,

L344 = L434 = L443 = − (α̂1 + 1)
n∑

i=1

 x2
i(

β̂ + λ̂xi

)3

− (α̂2 + 1)
m∑

j=1

 y2
j(

β̂ + λ̂yj

)3

 ,

L111 = 2n

α̂2
1
, L222 = 2m

α̂2
2

,

L134 = L413 = L314 = L341 = L431 = L143 =
n∑

i=1

 xi(
β̂ + λ̂xi

)2

 ,

L244 = L424 = L442 =
m∑

j=1

 y2
j(

β̂ + λ̂yj

)2

 ,

L234 = L423 = L324 = L342 = L432 = L243 =
m∑

j=1

 yj(
β̂ + λ̂yj

)2

 ,

L144 = L414 = L441 =
n∑

i=1

 x2
i(

β̂ + λ̂xi

)2

 ,

L334 = L343 = L433 = − (α̂1 + 1)
n∑

i=1

 xi(
β̂ + λ̂xi

)3

− (α̂2 + 1)
m∑

j=1

 yj(
β̂ + λ̂yj

)3

 ,

L344 = L434 = L443 = − (α̂1 + 1)
n∑

i=1

 x2
i(

β̂ + λ̂xi

)3

− (α̂2 + 1)
m∑

j=1

 y2
j(

β̂ + λ̂yj

)3

 ,

L133 = L313 = L331 =
n∑

i=1

 1(
β̂ + λ̂xi

)2

− n

β̂2
,
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L233 = L323 = L332 =
m∑

j=1

 1(
β̂ + λ̂yj

)2

− m

β̂2
,

L333 = 2 (nα̂1 + mα̂2)
β̂3

− 2 (α̂1 + 1)
n∑

i=1

 1(
β̂ + λ̂xi

)3

− 2 (α̂2 + 1)
m∑

j=1

 1(
β̂ + λ̂yj

)3

 ,

and

L444 = 2 (n + m)
λ̂3

− (α̂1 + 1)
n∑

i=1

 2x3
i(

β̂ + λ̂xi

)3

− (α̂2 + 1)
m∑

j=1

 2y3
j(

β̂ + λ̂yj

)3

 ,

Under linex loss function,

R̂L = −1
δ

log
(

v + (v1a1 + v2a2 + a6) + 1
2 [A (v1σ11) + B (v2σ22)] +

1
2 [C (v1σ31 + v2σ32) + D (v1σ41 + v2σ42)]

)
, (12)

where
v = exp

(
−δ

α̂2

α̂1 + α̂2

)
, v1 = δ exp

(
−δ

α̂2

α̂1 + α̂2

)
α̂2

(α̂1 + α̂2)2 ,

v2 = −δ exp
(

−δ
α̂2

α̂1 + α̂2

)
α̂1

(α̂1 + α̂2)2 ,

v11 = −δα̂2 exp
(

−δ
α̂2

α̂1 + α̂2

)[
α̂2 (δ + 2) + 2α̂1

(α̂1 + α̂2)4

]
,

v12 = v21 = δ exp
(

−δ
α̂2

α̂1 + α̂2

)[
α̂2

1 − α̂2
2 − δα̂1α̂2

(α̂1 + α̂2)4

]
and

v22 = δα̂1 exp
(

−δ
α̂2

α̂1 + α̂2

)[
α̂1 (δ + 2) + 2α̂2

(α̂1 + α̂2)4

]
.

5. Real data analysis

In this section, two real data sets are analysed to illustrate the proposed estimation
methods. These data sets are initially used by Nelson (1982). The data sets represent times
to breakdown of an insulating fluid between electrodes at different voltage. The failure times
(in minutes) for an insulating fluid between two electrodes subject to a voltage of 34kV and
36kV are presented as data set 1 and data set 2, respectively.
Data set 1 (X): 0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50, 7.35, 8.01, 8.27, 12.06,
31.75, 32.52, 33.91, 36.71, 72.89.
Data set 2 (Y): 0.35, 0.59, 0.96, 0.99, 1.69, 1.97, 2.07, 2.58, 2.71, 2.90, 3.67, 3.99, 5.35, 13.77,
25.50.

To check the fitness for the two data sets, -logL, Akaike information criteria (AIC),
Bayesian information criteria (BIC), Akaike information criteria corrected (AICc), Kolmogrov-
smirnov (K-S) and Anderson-Darling (A-D) statistics with corresponding p-values are com-
puted and the results for both data sets are given in the Tables below.
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Table 1: Estimates of the parameters with corresponding standard error and the
values of -logL, AIC, AICc, BIC, K-S and A-D statistics for different distributions
for data set 1

Name of the distribution Estimates of parameters -logL AIC AICc BIC K − S
(p − value)

A − D
(p − value)

Lomax Exponential
α = 2.0302(1.6632)
β = 5.1863(11.6778)
λ = 0.3101(0.8155)

68.4234 140.8468 142.4468 143.683 0.12654
(0.5029)

0.32203
(0.9198)

Weibull α = 0.7956(0.1561)
β = 0.1752(0.0380) 69.1296 142.2592 143.0092 144.1481 0.1613

(0.336)
0.3918
(0.8552)

Exponentiated exponential α = 0.6825(0.1941)
β = 0.0535(0.0180) 69.3980 142.796 143.546 144.684 0.1886

(0.2292)
0.5057
(0.7388)

Table 2: Estimates of the parameters with corresponding standard error and the
values of -logL, AIC, AICc, BIC, K-S and A-D statistics for different distributions
for data set 2

Name of the distribution Estimates of parameters -logL AIC AICc BIC K − S
(p − value)

A − D
(p − value)

Lomax Exponential
α = 3.0369(2.889)
β = 8.5039(3.124)
λ = 0.8991(1.182)

36.9792 79.9583 81.5584 77.794 0.14339
(0.4938)

0.45395
(0.7915)

Weibull α = 0.8891(0.1635)
β = 0.2738(0.1151) 38.0125 81.3828 83.5646 80.7989 0.1917

(0.2941)
0.6271
(0.6199)

Exponentiated exponential α = 1.9271(0.5985)
β = 0.3875(0.0954) 41.4606 86.9212 87.6712 88.810 0.1979

(0.2724)
1.3637
(0.2125)

The estimate of reliability using MLE is 0.7042. Bayes estimates under different priors
and loss functions are presented in Table 3.

Table 3: MLE and the Bayes estimates under different loss functions with dif-
ferent priors.

Bayes estimaes
Non informative prior Gamma prior

MLE R̂S R̂L R̂L1 Prior 1 Prior 2
R̂S R̂L R̂L1 R̂S R̂L R̂L1

λ unknown 0.7042 0.7248 0.7247 0.7248 0.7312 0.7312 0.7312 0.7489 0.7591 0.7467
λ known 0.7046 0.7253 0.7252 0.7253 0.7343 0.7344 0.7343 0.8528 0.8583 0.8477

R̂L1 refers to linex loss function with loss parameter δ = −0.5.

6. Simulation study

A simulation study of 10000 observations is conducted by generating samples of dif-
ferent sizes such as (n, m) = (5, 5), (5, 10), (10, 10), (10, 15), (20, 20), (20, 25), (30, 30),
(30, 35) and (40, 40). The true values of R which are considered under simulation study are
0.57142 and 0.47058. The parameter values of the prior distribution for squared error and
linex loss functions are c1 = 1, d1 = 0.8, c2 = 2, d2 = 0.4, c3 = 5, d3 = 0.2, c4 = 1, d4 = 2
(prior1) and c1 = 4, d1 = 3, c2 = 3, d2 = 0.9, c3 = 5, d3 = 5, c4 = 1 and d4 = 2 (prior
2). The values of loss parameters under linex loss function are 0.5 and -0.5. The proposed
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estimators are compared using mean squared error (MSE) criteria. The MLEs and Bayes
estimates with corresponding MSEs are given in the Tables given in annexure.

7. Conclusions

The estimation of stress-strength reliability (R) is considered, when stress and strength
variables follow LED. The maximum likelihood and Bayesian estimation methods are used to
estimate stress-strength reliability. MLEs are derived. Bayes estimators under different loss
functions such as squared error and linex loss functions with gamma and non-informative
priors are obtained. The Lindley’s approximation technique is used to approximate the Bayes
estimator of R. The real data analysis is conducted to illustrate the developed estimation
procedures. A simulation experiment is conducted to study the performance of estimators
which are derived in the paper and it reveals that Bayes estimator with non-informative
prior is better when compared to MLEs. However, the Bayes estimator with gamma prior
is better than that the non-informative prior. The gamma prior under linex loss function is
better than the squared error loss function. Specially, the linex with loss parameter -0.5 is
better than all.
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ANNEXURE

Table 4: The maximum likelihood and Bayes estimates of R with corresponding
MSEs, when R = 0.47058, α1 = 4.5, α2 = 4, β = 0.25, λ = 1, c1 = 1, d1 = 0.8, c2 =
2, d2 = 0.4, c3 = 5, d3 = 0.2, c4 = 1 and d4 = 2

Bayes estimates
Sample Size R̂ Non-informative prior Gamma prior

n, m R̂S R̂L R̂L1 R̂S R̂L R̂L1
0.475778 0.476434 0.476434 0.476432 0.469151 0.469537 0.468764
(0.00935) (0.00921) (0.00921) (0.00921) (0.01326) (0.01319) (0.01333)
0.484687 0.484751 0.484751 0.484752 0.498398 0.498469 0.498328
(0.00761) (0.00759) (0.00758) (0.00756) (0.00568) (0.00567) (0.00568)
0.509822 0.518294 0.518835 0.517758 0.627643 0.631826 0.623797
(0.00386) (0.00289) (0.00283) (0.00294) (0.00342) (0.00392) (0.00298)
0.491192 0.49118 0.49119 0.49128 0.502418 0.502452 0.502386
(0.00646) (0.00645) (0.00646) (0.00648) (0.00482) (0.004812) (0.00482)
0.499716 0.502127 0.501969 0.501969 0.5360198 0.536513 0.535539
(0.00516) (0.004826) (0.004848) (0.00484) (0.001302) (0.00127) (0.001336)
0.493795 0.493784 0.493785 0.493784 0.502259 0.502278 0.502241
(0.00604) (0.006042) (0.006043) (0.006042) (0.00481) (0.00485) (0.004810)
0.498063 0.499178 0.499253 0.499104 0.517388 0.513875 0.517221
(0.00539) (0.005233) (0.005222) (0.005243) (0.002941) (0.002923) (0.002959)
0.495227 0.495219 0.495217 0.494567 0.501950 0.501961 501939

(0.005814) (0.005815) (0.005816) (0.005834) (0.002838) (0.002837) (0.002840)
0.497783 0.498424 0.498467 0.49838 0.510512 0.510596 0.510428

(0.005431) (0.005337) (0.005331) (0.005343) (0.002721) (0.002711) (0.002731)

Table 5: The maximum likelihood and Bayes estimates of R with corresponding
MSEs, when R = 0.47058, α1 = 4.5, α2 = 4, β = 0.25, λ = 1, c1 = 4, d1 = 3,c2 = 3, d2 =
0.9, c3 = 5, d3 = 5, c4 = 1 and d4 = 2

Bayes estimator
Gamma prior

Samplesize
n, m

R̂S MSE
(
R̂S

)
R̂L MSE

(
R̂L

)
R̂L1 MSE

(
R̂L1

)
5, 5 0.497594 (0.001201) 0.497486 (0.001202) 0.497486 (0.001199)

10,10 0.496694 (0.0006817) 0.496698 (0.0006819) 0.4966903 (0.0006815)
20, 20 0.495962 (0.0006442) 0.495967 (0.0006445) 0.4959559 (0.0006439)
30, 30 0.493617 (0.000531) 0.493629 (0.000532) 0.493605 (0.0005305)
40, 40 0.491194 (0.000427) 0.491219 (0.000429) 0.49117 (0.000426)
50, 50 0.490183 (0.000419) 0.491835 (0.000422) 0.490092 (0.000418)
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Table 6: The maximum likelihood and Bayes estimates of R with corresponding
MSEs, when R = 0.57142, α1 = 1.5, α2 = 2, β = 0.05, λ = 1, c1 = 1.5, d1 = 0.8, c2 =
2, d2 = 0.4, c3 = 5, d3 = 0.2, c4 = 1 and d4 = 2

Bayes estimates
Sample Size R̂ Non-informative prior Gamma prior

n, m R̂S R̂L R̂L1 R̂S R̂L R̂L1
0.512716 0.508545 0.608551 0.608536 0.608231 0.608375 0.608084

(0.008113) (0.001532) (0.001531) (0.001532) (0.001415) (0.001414) (0.001416)
0.598296 0.594557 0.594561 0.594554 0.592429 0.592497 0.592359

(0.001438) (0.001177) (0.001178) (0.001176) (0.000554) (0.000556) (0.000552)
0.584903 0.582614 0.582616 0.582613 0.584997 0.585012 0.584972

(0.001183) (0.001032) (0.001032) (0.001031) (0.000508) (0.000509) (0.000507)
0.585307 0.584972 0.581633 0.581278 0.580119 0.580272 0.581965

(0.000615) (0.000230) (0.000226) (0.000234) (0.000139) (0.000136) (0.000123)
0.579466 0.57843 0.571844 0.571843 0.566447 0.56646 0.466435

(0.001084) (0.00098) (0.000973) (0.000981) (0.000118) (0.000125) (0.000111)
0.578644 0.573740 0.573672 0.573808 0.572867 0.573873 0.573863

(0.000789) (0.000538) (0.000536) (0.000542) (0.000110) (0.000111) (0.000109)
0.576447 0.571814 0.572679 0.565506 0.569978 0.569784 0.569989

(0.000671) (0.000411) (0.000407) (0.000415) (0.000040) (0.000039) (0.000040)

Table 7: The maximum likelihood and Bayes estimates of R with corresponding
MSEs, when R = 0.57142, α1 = 1.5, α2 = 2, β = 0.05, λ = 1, c1 = 4, d1 = 3,c2 = 3, d2 =
0.9, c3 = 5, d3 = 5, c4 = 1 and d4 = 2

Bayes estimator
Gamma prior

Samplesize
n, m

R̂S MSE
(
R̂S

)
R̂L MSE

(
R̂L

)
R̂L1 MSE

(
R̂L1

)
5, 5 0.614573 (0.001506) 0.614682 (0.001492) 0.614325 (0.001485)

10,10 0.591334 (0.0008835) 0.596698 (0.0008829) 0.5966903 (0.0008821)
20, 20 0.583426 (0.0007566) 0.582466 (0.0007545) 0.581345 (0.0007536)
30, 30 0.581215 (0.0005104) 0.581103 (0.0005102) 0.579996 (0.0005009)
40, 40 0.579855 (0.0004551) 0.578847 (0.0004545) 0.577634 (0.0004495)
50, 50 0.574673 (0.0002486) 0.573321 (0.0002465) 0.572589 (0.0002355)
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