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Abstract 
 

Taguchi’s parameter design technique for improving product quality has aroused a 
great deal of interest among statisticians and quality practitioners. He proposed the use of 
product array for reducing variation and improving product quality. However, in some 
applications, his approach results in an exorbitant number of runs. As an alternative to the 
product array approach, Welch et al. (1990), Shoemaker et al. (1991) and Montgomery 
(1991a), proposed the use of combined arrays wherein control and noise factors are combined 
in a single array. Further, Shoemaker et al. (1991) used an optimal design algorithm to reduce 
the size of the combined array. 
 

In this paper, we have exploited the non-orthogonal column structure of the 20-run 
Plackett-Burman Design. It is shown that by making use of the columns of the 20-run 
Plackett-Burman design, the size of the experiment can further be reduced. The results have 
been shown for designs with six factors and the results for three, four and five factors are 
given in the annexure. 
 
Key words: Robust parameter design; Orthogonal arrays; Fractional factorial designs; 
Combined array; Plackett-Burman designs;  D-efficiency;  Projective rationale. 
 
1. Introduction 

 
Taguchi (1959, 1987) introduced an off-line quality control technique known as robust 

parameter design for reducing variation and improving product quality. The root of this idea 
is the notion that products lack in quality because of inconsistency in performance produced 
by factors that are controllable in the design of the product. He thus classifies the factors into 
two groups: Control factors and Noise factors. 

 
The overall objective of Taguchi’s approach is to determine the levels of control factors 

at which the effect of the noise factors on the performance characteristics is minimized. To 
achieve this objective he made use of product arrays by taking the Kronecker product of two 
orthogonal arrays, one involving only the control factors (inner array) and the other involving 
only the noise factors (outer array). Direct products of orthogonal arrays are themselves 
orthogonal arrays but the product operation greatly increases the number of observations in 
the array without generally increasing its strength. Several different methods of construction 
have been suggested, with the underlying idea of choosing levels for the controllable factors 
so that the uncontrollable factors have least influence on the response. Welch et al. (1990), 
Borkowski and Lucas (1991, 1997), Montgomery (1991 a, b), Myers (1991), Shoemaker et 
al. (1991), Welch and Sacks (1991), Box and Jones (1992) and Lucas (1994) suggested the 
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use of combined arrays, wherein the control factors and noise factors are combined in a single 
array. A combined array lets the experimenter choose the interactions to be estimated. This 
provides more flexibility so that the experimental budget can be used to fit models more 
refined than the main effects only models frequently used in Taguchi’s loss model approach. 
An excellent review of the robust parameter technique is made by Nair (1992) and Myers and 
Montgomery (1995). Kunert et al. (2007) compared Taguchi’s product array with a combined 
array. 

 
In this paper we have exploited the non-orthogonal column structure of the 20-run 

Plackett-Burman (PB) design to generate non-orthogonal combined arrays. 
 

2. The Role of Interactions 
 

In parameter design, one is interested in choosing the levels of control factors so that 
the product’s performance is insensitive to noise factors and can be adjusted on target as 
appropriate. The control	×	noise (C ×	N) interactions are exploited to accomplish this. The 
structure of these interactions provides special insights in the combined array/response model 
approach because they are the effects that can be exploited to reduce response variability. The 
noise	×	noise (N	×	N) interactions play little role in making a product’s performance 
insensitive to noise factors. The presence of large C	×	C interactions is considered highly 
undesirable; thus, every attempt is made to reduce the number of C	×	C interactions through 
judicious choice of the quality characteristics. 
 
3. Objectives and the Supportive Models 
 

Keeping in view the above justification for the inclusion of various terms in the models 
we now specify our objectives: 
 

Let there be r control factors, say, x1, x2, ……,xr  and s noise factors viz. z1, z2 , ……,zs. 
 

Then our objective is: 
 

1. To estimate the main effects of all the control factors and noise factors. 
2. To estimate C ×	N interactions. 
3. To estimate if possible, (depending on the degrees of freedom) the C	×	C 

interactions. 
 

The above objectives can be explained more precisely with the help of regression 
models. Let y denote a quality characteristic associated with a product. We can then express: 

 
                      y = f (x, z)                  (1) 

 
If the response is well modelled by a linear function of the independent variables, then 

the approximating function is the first order model:  
 

𝑦 = 𝛽! + ∑𝛽"𝑥" + ∑𝛾#𝑧# + 	𝜖	                                                          (2) 
   

But, in model (2), the settings of x have no influence on variability. For robust 
parameter design to be successful, the functional relationship between control factors and 
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noise variables should be such that they interact. Thus, a second order model will be more 
appropriate:  

 
𝑦 = 𝛽! +%𝛽"𝑥" +%𝛽""𝑥"# +%%𝛽""!𝑥"𝑥"! +%𝛾$𝑧$ +%𝛾$$𝑧$# +%%𝛾$$!𝑧$𝑧$! +%%𝛿"$𝑥"𝑧$ + 𝜖 

 
where i≠𝑖$= 1,2,….,r;  j≠𝑗$= 1,2,….,s                                                                             (3) 
 

In order to meet the first two objectives mentioned above the reduced model, by 
keeping the origin at (0, 0), would be: 

 
                          𝑦 = ∑𝛽"𝑥" + ∑𝛾#𝑧# + ∑∑𝛿"#𝑥"𝑧# + 𝜖.                           (4) 

 
Whereas, when one is also interested in estimating the C	×	C interactions (the third 

objective), the corresponding model would be:  
 

𝑦 = ∑𝛽"𝑥" +∑𝛾#𝑧# + ∑∑𝛿"#𝑥"𝑧# + ∑∑𝛽""%𝑥"𝑥"% + 𝜖                    (5)  
 
4. Efficiency Criterion 
 

We have used the following D-criterion for measuring the overall efficiency for 
estimating a collection of effects: 

       
D-efficiency = |X$X|%/'               (6) 

 
where, X = [x1/||x1||,…., xk/||xk||]; and xi is the coefficient vector of the ith effect. To find the 
efficiency of each individual effect, we have used the following Ds criterion:  
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)&
%)&

                                                                (7) 

 
where, X(i) is obtained from X by deleting xi. 
 
5. Steps Used for Combined Array Approach  
 

We give below the steps used in the combined array approach: 
 
i. Choose p columns from the totality of n–1 columns and consider all the non-

equivalent designs. 
ii. For each design allocate the control factors and noise factors to p columns. 
iii. Write the appropriate model by considering the required set of C ×	N interactions 

and C	×	C interactions (depending upon run-size). 
iv. For all possible choices of the control and noise factors find the D value for the 

whole design and Ds values for the various effects. 
v. Compare the D value of all the designs obtained and take the one with maximum 

D value. If there are more designs with the maximum D value, consider all of 
them. 

vi. Sort the Ds values of these designs on the basis of C ×	N interactions and take the 
design for which it is maximum. If there are more than one designs with the same 
values of Ds for C ×	N interactions, consider all of them. 
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vii. Sort the Ds values of these designs on the basis of C	×	C interactions and take the 
design for which it is minimum. If there are more than one designs with the same 
values of Ds for C	×	C interactions, take all of them. 

viii. Among the designs chosen by step (vii), finally sort these designs on the basis of 
the Ds values for control factors and noise factors and select the design for which 
it is maximum. 

ix. Once a design has been selected by following the aforesaid steps, the Ds values of 
the various effects are reported according to the order of column allocations of 
respective control factors, noise factors and their interactions in the tables. 
 
 

6. Plackett-Burman Designs 
 
Plackett and Burman (1946) provided a series of two-level fractional factorial designs, 

for examining (n–1) factors in n runs, where n is a multiple of 4 and n ≤ 100. These are non-
orthogonal designs in which the aliasing coefficient between any two effects lies between –1 
and +1. They gave the following design for 20-runs: 

 
Table 1: 20-Run Plackett-Burman design 

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
– + – – + + + + – + – + – – – – + + – 
– – + – – + + + + – + – + – – – – + + 
+ – – + – – + + + + – + – + – – – – + 
+ + – – + – – + + + + – + – + – – – – 
– + + – – + – – + + + + – + – + – – – 
– – + + – – + – – + + + + – + – + – – 
– – – + + – – + – – + + + + – + – + – 
– – – – + + – – + – – + + + + – + – + 
+ – – – – + + – – + – – + + + + – + – 
– + – – – – + + – – + – – + + + + – + 
+ – + – – – – + + – – + – – + + + + – 
– + – + – – – – + + – – + – – + + + + 
+ – + – + – – – – + + – – + – – + + + 
+ + – + – + – – – – + + – – + – – + + 
+ + + – + – + – – – – + + – – + – – + 
+ + + + – + – + – – – – + + – – + – – 
– + + + + – + – + – – – – + + – – + – 
– – + + + + – + – + – – – – + + – – + 
+ – – + + + + – + – + – – – – + + – – 
– – – – – – – – – – – – – – – – – – – 

 
We shall now discuss the projection properties of this design. The choice of p columns, 

where p < (n–1) may result in a number of designs for given n and p, not all of which may be 
equivalent. Two such designs are said to be equivalent if one can be obtained from the other 
by permutations of rows, columns and sign changes. Draper and Lin (1990) have given 
detailed tables giving the number of distinct designs for 12-, 20- and 24-run PB designs for 
different values of p. Each design is characterized by the number of repeat runs, mirror 
images or distinct runs it has. For p = 2, Draper and Lin (1990, Table 3B), Lin and Draper 
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(1992, 1995) found that projection is a 22 design, n/4 times over. For p	=	3, they found that 
there are two different projections, each one consisting of at least a full 23 factorial. For p	=	4, 
there are three non-isomorphic 20	×	4 submatrices: designs 4.1, 4.2 and 4.3. The 20 points in 
design 4.1 have one treatment combination omitted and five duplicated. Both designs 4.2 and 
4.3 have each 4 points missing, 5 points appear once, 6 points appear twice and one point 
appears three times. For p	=	5, Draper and Lin (1990, Table 3B) found that there are nine 
non-isomorphic 20	×	5 submatrices viz. designs 5.1, 5.2, …, and 5.9. Design 5.1 has no run 
with repeats, design 5.4 has one run with 2 repeats and the remaining designs have at least 
two runs with repeats. For p	=	6, there are 50 non-isomorphic 20	×	6 submatrices. To save 
the enormity of calculations, we consider only the 17 designs considered by Draper and Lin 
(1990, Table 3B) viz. designs 6.1, 6.2,…, and 6.17 based on their mirror image patterns or 
repeat run pairs. Designs 6.1, 6.2, 6.4, 6.9 and 6.13 have no runs with repeats while rest of the 
designs have at least one run with a repeat. We now discuss the combined array concept for 
this design. 

 
7. Combined Array Results for the 20-Run PB Design 
  

There are 19 independent columns for studying the factor effects and 20 design points. 
We shall discuss here only one case as others can be obtained in a similar manner. Suppose 
we have six factors we then need to choose six columns from the 19 columns. Now 6 factors 
can be divided into control and noise factors in five different ways: 

 
(a) r = 5, s = 1 (b) r = 1, s = 5  (c) r = 4, s = 2  (d) r = 2, s = 4  (e) r	= 3, s = 3 

 
Consider the first possibility: 
 
(a) r = 5, s = 1 
 

Allocate five columns to the control factors and one to the noise factor. There are 21 
parameters to be estimated including the C	×	C interactions. Out of 17 designs given by 
Draper and Lin (1990, Table 3B), 5 designs have no repeats and thus enable us to estimate 19 
parameters in 20 runs. Out of these, design 6.1 is the best having maximum D-efficiency. The 
following Table gives the allocation of control and noise factors which have come out to be 
the best for this design:  

 
Table 2: r = 5, s = 1 

 
Design 6.1 (1,2,3,4,5,6), (20) 

D. 
No. 

C N C ×	N C	×	C D Ds 

1 1,3,4,5,6 2 12,32,42,52,62 14,15,34,35, 
36,45,46,56 

.73 .31,.31,.56,.44,.64,.58,.28,.57,.64,.51,.56, 
.58,.41, .57,.43,.32,.51,.28,.44 

 
In the Table after giving the design number we give the column allocation of the 

selected design in the first parenthesis and the number in the second parenthesis gives the 
number of distinct runs in the design. 

 
Five out of 17 designs have one run with a repeat and thus enable us to estimate 18 

parameters. Design 6.5 is the best. We call a design to be good if it has the highest D-
efficiency and provides maximum flexibility in the allocation of control and noise factors. 
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We give below the allocations of control and noise factors that have come out to be the best 
for this design:  

Table 3: r = 5, s = 1 
 

Design 6.5 (1,2,4,5,6,7), (19) 
D. 
No. 

C N C ×	N C	×	C D Ds 

1 1,2,4,6,7 5 15,25,45,65,75 12,14,16,17, 
26, 27,46 

.74 .68,.49,.36,.64,.64,.68,.66,.59,.56, 
.38,.33,.59,.56,.38,.33,.53,.33,.49 

2 2,4,5,6,7 1 21,41,51,61,71 25.26,27,45, 
46,56,57 

.74 .49,.36,.68,.64,.64,.68,.59,.56,.66, 
.38,.33,.59,.53,.33,.56,.49,.38,.33 

   
There are 4 designs with 2 repeats, out of which, design 6.10 is the best having the 

highest D-efficiency, which enables us to estimate 17 parameters in 18 runs. The following 
Table gives the allocation of control and noise factors that has come out to be the best for this 
design:  

Table 4: r = 5, s = 1 
 

Design 6.10 (1,4,5,6,7,9), (18) 
D. 
No. 

C N C ×	N C	×	C D Ds 

 1 1,4,5,6,9 7 17,47,57,67,97 14,16,45,46,
56,59 

.71 .57,.77,.51,.67,.28,.67,.4,.54,.4, 
.67, .41,.31,.23,.49,.22,.31,.22 

 
There are 3 designs with 3 repeats, out of which design 6.16 is the best having highest 

D-efficiency. This design enables us to estimate 16 parameters in 17 runs. The following 
table gives the allocation of control and noise factors that have come out to be the best for 
this design:  

Table 5: r = 5, s = 1 
 

Design 6.16 (1,2,3,6,9,12), (17) 
D. No. C N C ×	N C	×	C D Ds 
1 1,2,3,6,9 12 112,212,312, 

612,912 
12,13,16,23, 26 .69 .28,.77,.18,.18,.10,.29,.77,.31,   

.54, .54,.10, .24,.05,.28,.16,.54 
 

(b) r = 1, s = 5 
 

Allocate one column to the control factor and five to the noise factors. In this case 11 
parameters are to be estimated as there are no C	×	C interactions. Design 6.17 is the best 
having highest D-efficiency, which estimates all the 11 parameters in minimum number of 
runs. We give below the allocations of control and noise factors which have come out to be 
the best for this design:  

Table 6: r = 1, s = 5 
 

Design 6.17 (1,2,3,5,8,13), (17) 
D. No. C N C ×	N C	×	C D Ds 
1 1 2,3,5,8,13 12,13,15,18,113 - 0.93 .93,.83,.86,.80,.86,.86,.86, 

.86,.81, .86,.86 
2 2 1,3,5,8,13 21,23,25,28,213 - 0.93 .92,.86,.86,.86,.80,.86,.86, 

.86,.86, .81,.86 
3 13 1,2,3,5,8 131,132,133,135,138 - 0.93 .93,.83,.86,.80,.86,.86,.86, 

.86,.81, .86,.86 
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(c) r =	4, s = 2 
 

Allocate four columns to the control factors and two to the noise factors. There are in 
all 20 parameters to be estimated. However, in 20 runs one can estimate at the most 19 
parameters. Out of 5 designs, having no repeats, design 6.1 is the best having maximum D-
efficiency. The following table gives the allocation of control and noise factors which has 
come out to be the best for this design:  

 
Table 7: r = 4, s = 2 

 
Design 6.1 (1,2,3,4,5,6), (20) 

D. No. C N C ×	N C	×	C D Ds 
1 1,2,3,6 4,5 14,15,24,25,34,

35,64,65 
12,13,23,26,36 .68 .25,.56,.31,.13,.39,.3,.56,.46, 

.64, .2,.56,.47, .32, .29, .23, 

.13, .39, .56, .37 
 

Out of 5 designs having one repeat, design 6.6 performs the best. We give below the 
allocation of control and noise factors that has come out to be the best for this design:  

 
Table 8: r = 4, s = 2 

 
Design 6.6 (1,2,4,5,7,8), (19) 

D. No. C N C ×	N C	×	C D Ds 
1 1,2,5,8 4,7 14,17,24,27,54,

57, 84,87 
12,15,25,28 .74 .53,.66,.66,.53,.38,.38,.64,.64,.36, 

.36,.49,.49,.56,.56,.53,.36,.66,.33 
 

There are 4 designs with 2 repeats, out of which design 6.10 is the best having the 
highest D-efficiency, which enables us to estimate 17 parameters in 18 runs. The following 
table gives the allocation of control and noise factors that has come out to be the best for this 
design:  

 
Table 9: r = 4, s = 2 

 
Design 6.10 (1,4,5,6,7,9), (18) 

D. No. C N C ×	N C	×	C D Ds 
1 1,4,5,9 6,7 16,17,46,47,56,

57,96,97 
14,15,19 .71 .55,.29,.55,.42,.67,.67,.31,.32,.27, 

.58, .23,.32,.22,.55,.49,.67,.49 
 

There are 3 designs with 3 repeats, out of which design 6.16 is the best having the 
highest D-efficiency. This design enables us to estimate 16 parameters in 17 runs. The 
following Table gives the allocation of control and noise factors that has come out to be the 
best for this design: 

Table 10: r = 4, s = 2 
 

Design 6.16 (1,2,3,6,9,12), (17) 
D. No. C N C ×	N C	×	C D Ds 
1 1,3,6,9 2,12 12,112,32,312,62,612, 

92,912 
13,16 .63 .14,.31,.07,.23,.77,.47,.33,.24, 

.33,.54,.33,.54, .08,.24,.05,.28 
 

Consider the following example discussed by Shoemaker et al. (1991) to illustrate the 
flexibility afforded by a combined array: 
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7.1. Example 1  
 

Suppose there are 4 two-level control factors, A, B, C and D, and 2 two-level noise 
factors, r and s. Assume that the control × control interactions – AB, AC and AD are 
potentially important and that we wish to estimate them. If we use the product array 
approach, we first construct a control array (CA) that estimates all main effects – A, B, C and 
D and the three important interactions – AB, AC and AD. We then construct a noise array 
(NA) that estimates the two main effects – r and s, and the interaction – rs. The defining 
relation of this plan is I = ABCD. According to the general result concerning estimation 
capacity of CA	×	NA designs, the resulting 32-run product array allows us to estimate six 
main effects – A, B, C, D, r, and s, the 12 two-factor interactions – AB, AC, AD, rs, Ar, Br, 
Cr, Dr, As, Bs, Cs, and Ds and 13 higher-order interactions. On the other hand, a combined 
array 26-1 with resolution VI using 

 
I = x1x2x3x4z1z2 

 
is much more appropriate. This design allows the estimation of all the six main effects and all 
15 two-factor interactions. 
 

As yet a better approach, Shoemaker et al. (1991) used an optimal design algorithm to 
reduce the size of experiment further. As the 13 higher order interactions are less likely to be 
important, they constructed a linear model consisting of six main effects and 12 two-factor 
interactions mentioned above. Three combined arrays of size 20, 22, and 24 were generated 
from an optimal design algorithm DETMAX (Mitchell 1974), used in the software system 
RS/ DISCOVER (1988). All the three designs are approximately two-third the size of the 
product /combined array but allow efficient estimation of all the main effects and two-factor 
interactions mentioned earlier. 
 

For the above example, we exploited the non-orthogonal column structure of the 20-run 
PB design. Also, as the role of noise	×	noise interactions in making a product’s performance 
insensitive to noise factors is almost negligible, we therefore exclude them from our model. 
We are now left with 17 parameters to be estimated. There are 4 designs with 2 repeats each, 
viz, 6.8, 6.10, 6.11, and 6.14 given by Draper and Lin (1990, Table 3B). As a result, they 
have only seventeen degrees of freedom for estimating factor effects. Out of these four 
designs, design 6.10 estimates the 17 parameters with highest D-efficiency. Table 9 gives the 
allocation of control and noise factors that has come out to be the best for this design. 
 

Thus, if we allocate the four control factors to columns 1, 4, 5, and 9 and noise factors 
to columns 6 and 7 of design 6.10, this design allows us to estimate all the 17 parameters in 
18 runs only as compared to the design given by Shoemaker et al. (1991). 

 
(c) r = 2, s = 4 
 

Allocate two columns to the control factors and four to the noise factors. There are in 
all 15 parameters to be estimated. Out of 17 designs, designs 6.15, 6.16, and 6.17 enable us to 
estimate 15 parameters in 17 runs. However, as design 6.17 provides more flexibility for the 
allocation of control and noise factors, we give below the results for this design only:  
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Table 11: r  =  2, s  =  4 
 

Design 6.17 (1,2,3,5,8,13), (17) 
D. No. C N C ×	N C	×	C D Ds 
1 2,3 1,5,8,13 21, 25, 28, 213, 31, 

35, 38, 313 
23 .66 .35,.52,.35,.12,.25,.30,.46,.20,.24, 

.20, .28,.37, .06, .16, .48 
2 8,13 1,2,3,5 81, 82, 83, 85, 131, 

132, 133, 135 
813 .66 .52,.35,.35,.30,.25,.12,.28,.16,.06, 

.37,.46,.20,.24,.20,.48 
 
(d) r = 3, s = 3 
 

Allocate three columns to the control factors and three to noise factors. Out of 17 
designs, 5 designs have one repeat and thus enable us to estimate 18 parameters in 19 runs. 
Out of these 5 designs, design 6.5 is the best having maximum D value. The following table 
gives the allocation of control and noise factors that has come out to be the best for this 
design: 

 
Table 12: r = 3, s = 3 

 
Design 6.5 (1,2,4,5,6,7), (19) 

D. No. C N C ×	N C	×	C D Ds 
1 1,2,5 4,6,7 14,16,17,24,26,27, 

54,56,57 
12,15,25 .68 .66,.42,.66,.36,.64,.12,.48,.19, 

.36,.12,.36,.26,.48,.19,.36,.42, 

.66,.42 
  

Out of 4 designs having 2 repeats, design 6.10 performs the best and enables us to 
estimate 17 parameters in 18 runs. The following Table gives the allocation of control and 
noise factors that has come out to be the best for this design: 

 
Table 13: r = 3, s = 3 

 
Design 6.10 (1,4,5,6,7,9), (18) 

D. No. C N C ×	N C	×	C D Ds 
1 1,6,7 4,5,9 14,15,19,64,65,69, 

74,75,79 
16,17 .71 .55,.67,.67,.29,.55,.42,.48,.67,.48,

.27,.23,.22,.58,.32,.55,.31,.32 
 

Out of 3 designs having 3 repeats, design 6.17 performs the best and enables us to 
estimate 16 parameters in 17 runs. The following Table gives the allocation of control and 
noise factors which have come out to be the best for this design: 

 
Table 14: r =3, s = 3 

 
Design 6.17 (1,2,3,5,8,13), (17) 

D. No. C N C ×	N C	×	C D Ds 
1 1,3,13 2,5,8 12,15,18,32,35,38, 

132, 135,138 
13 .63 .32,.53,.53,.28,.14,.28,.77,.28, 

.30,.28, .20,.05,.10,.12,.17,.34 
2 2,3,13 1,5,8 21,25,28,31,35,38, 

131, 135,138 
23 .63 .32,.53,.53,.28,.28,.14,.77,.30, 

.28, .28,.05,.20,.10,.17,.12,.34 
 

In the presence of 3 two-level control factors and 3 two-level noise factors, Shoemaker 
et al. (1991) have shown with the help of an example, the flexibility offered by a combined 
array vis-a-vis a product array. 
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8. Concluding Remarks 
 

Many authors have advocated the use of combined arrays as an alternative to Taguchi’s 
product arrays by modelling the response itself as a function of control and noise factors. 
These combined arrays are based on orthogonal fractional factorial designs, which do not 
exist for all values of n. Also, a major concern of most of the industries is to reduce the 
number of runs or minimize it. In this paper, we have exploited the non-orthogonal column 
structure of the 20-run Plackett-Burman design, giving a systematic method for choosing 
columns of a PB design for the allocation of control and noise factors.  It has been shown that 
most of the designs using this approach, though not orthogonal, result in the reduction of the 
size of the experiment, a major benefit to the industry. 
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ANNEXURE 
 

Combined Array Designs for Three, Four and Five Factors 
 
For p = 3 
 
(a) r	=	2, s	=	1 

 
 

 
The other designs can be obtained by renaming the control and noise factors. 
 
(b) r = 1, s	=	2 

 
 
The other designs can be obtained by renaming the control and noise factors. 
 

 
 
 

Design 3.1, (1,2,3), (8) 
D. No. C N C ×	N C	×	C D DS 
1 1,2 3 13, 23 12 1 1,1,1,1,1,1 

Design 3.2, (1,3,6), (8) 
D. No. C N C ×	N C	×	C D DS 
1 1,3 6 16,36 13 1 1,1,1,1,1,1 

Design 3.1, (1,2,3), (8) 
D. No. C N C ×	N C	×	C D DS 
1 1 2,3 12,13 - 1 1,1,1,1,1 

Design 3.2, (1,3,6), (8) 
D. No. C N C ×	N C	×	C D DS 

1 1 3,6 13,16 - 1 1,1,1,1,1 
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For p = 4 
 
(a)   r =  3, s =  1 
 
 
 
 
The other designs can be obtained by renaming the control and noise factors. 
 
(b) r =  1, s =  3 
 
 
 
 
 
The other designs can be obtained by renaming the control and noise factors. 
 
(c) r =  2, s =  2 
 
 
 
 
 
The other designs can be obtained by renaming the control and noise factors. 
 

For p = 5 

(a) r =  4, s =  1 
 
 
 
 
 
 
 
 
 
 
 
(b) r =  1, s = 4 
 
 
 
 
 
 
 
 
 

Design 4.3, (1,5,6,7), (12) 
D. No. C N C ×	N C	×	C D DS 
1 1,5,6 7 17,57,67 15,16,56 0.86 .73,.73,.73,.73,.67,.67,.67,.67,.67,.67 

Design 4.3, (1,5,6,7), (12) 
D. No. C N C ×	N C	×	C D DS 
1 1 5,6,7 15,16,17 - 0.95 .91,.91,.91,.91,.89,.89,.89 

Design 4.3, (1,5,6,7), (12) 
D. No. C N C ×	N C	×	C D DS 
1 1,5 6,7 16,17,56,57 15 0.88 .78,.78,.78,.78,.67,.67,.67,.67,.89  

Design 5.3, (1,2,3,5,6), (18) 
D. No. C N C ×	N C	×	C D DS 
1 1,2,3,6 5 15,25,35,65 12,13,16,23, 

26,36 
0.76 .44,.77,.44,.21,.45,.77,.44, 

.77,.45,.45, .21,.44,.45,.77,.44 

Design 5.5, (1,2,5,6,7), (18) 
D. No. C N C ×	N C	×	C D DS 
1 1,5,6,7 2 12,52,62,72 15,16,17,56, 

57,67 
0.76 .77,.77,.45,.45,.44,.45,.45,.77, 

.77,.21, .44,.44,.44,.44,.21  

Design 5.9, (1,2,3,6,9), (14) 
D. No. C N C ×	N C	×	C D DS 
1 3 1,2,6,9 31,32,36,39 - 0.86 .91,.61,.79,.61,.76,.61, 

.76,.61,.79 
2 9 1,2,3,6 91,92,93,96 - 0.86 .91,.61,.61,.76,.79,.61, 

.61,.79,.76 
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(c) r =  3, s = 2 
 

 
(d) r =  2, s =	3 

 

Design 5.8 (1,3,5,6,8), (16) 
D. No. C N C × N C	×	C D DS 
1 1,3,5 6,8 16,18,36,38,56,58 13,15,35 0.68 .32,.17,.39,.32,.39,.39,.29,.39, 

.32,.29,.39,.39, .50,.32 
2 1,3,8 5,6 15,16,35,36,85,86 13,18,38 0.68 .39,.17,.32,.32,.39,.29,.39,.39, 

.32,.39,.29,.32, .50,.39 
3 3,5,6 1,8 31,38,51,58,61,68 35,36,56 0.68 .17,.32,.39,.39,.32,.32,.39,.29, 

.39,.39,.29,.39, .32,.50 

Design 5.9, (1,2,3,6,9), (14) 
D. No. C N C ×	N C × C D DS 
1 1,2 3,6,9 13,16,19,23,26,29 12 0.72 .46,.46,.43,.29,.43,.30,.43,.46, 

.57,.61,.33,.43 
2 1,6 2,3,9 12,13,19,62,63,69 16 0.72 .46,.46,.29,.43,.43,.43,.46,.30, 

.61,.33,.57,.43 


