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Abstract
Agricultural commodities prices are very unpredictable and complex, and thus, fore-

casting these prices is one of the research hotspots. In this paper, we propose a new hybrid
VMD-TDNN model combining variational mode decomposition (VMD) and time-delay neu-
ral network (TDNN) to improve the accuracy of agricultural price forecasting. Specifically,
the VMD decomposes a price series into a set of intrinsic mode functions (IMFs), and the
obtained IMFs are modelled and forecasted separately using the TDNN models. Finally, the
forecasts of all IMFs are combined to provide an ensemble output for the price series. VMD
overcomes the limitation of the mode mixing and end effect problems of the empirical mode
decomposition (EMD) based variants. The prediction ability of the proposed model is com-
pared with TDNN, and EMD based variants coupled with TDNN model using international
monthly price series of maize, palm oil, and soybean in terms of evaluation criteria like root
mean squared error, mean absolute percentage error and, directional prediction statistics.
Additionally, Diebold-Mariano test and Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS), a ranking system, are used to evaluate the accuracy of the mod-
els. The empirical results confirm that the proposed hybrid model is superior in terms of
evaluation criteria and improves the prediction accuracy significantly.

Key words: Agricultural price forecasting; Empirical mode decomposition; Intrinsic mode
function; Time-delay neural network; Variational mode decomposition.

1. Introduction

Price forecasting of agricultural commodities is a challenging task as there are sev-
eral unpredictable factors, both natural and man-made, which influence the production and
price of the commodities. Thus, the price series become inherently nonstationary and non-
linear in nature posing a severe threat to food security in developing countries, see FAO
(2011). Accurate and reliable agricultural price forecasts are thus very necessary not only
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for mitigating the threat of food security but also to balance the demand with supply, en-
sure remunerative prices to farmers, and the welfare of the consumers, see Jaiswal et al.
(2022). A thorough review of the existing literature confirms that significant efforts have
been done to improve price forecasting using various time series models. The various time
series models developed for price forecasting can be broadly classified into two categories, i.e.
statistical models and artificial intelligence (AI) models. Among statistical models, autore-
gressive integrated moving average (ARIMA), see Box et al. (2015), and constituent models,
see Hayat and Bhatti (2013); Jadhav et al. (2017), are most frequently used as prediction
models. However, ARIMA models assume linear relationships among data points, despite
real-world agricultural price data being usually nonlinear. As a result, the ARIMA model is
unable to capture the hidden patterns in the agricultural price series effectively, leading to
unsatisfactory forecasting results.

In recent years, artificial neural network (ANN) in the category of AI models has
become the most efficient modelling method in dealing with the complex nature of time se-
ries. ANN has been widely utilized to model nonlinear time series with minimal assumptions
and high prediction accuracy due to its self-learning capabilities, see Zhang et al. (1998).
ANN has been effectively employed as a universal function approximator in a wide range of
research areas like electricity price forecasting, exchange forecasting, wind speed forecasting,
solar energy forecasting, etc. In agricultural price forecasting, Jha and Sinha (2014)used
the time-delay neural network (TDNN) model to predict monthly wholesale prices of differ-
ent oilseeds and concluded that the ANN-based forecasting model outperforms the ARIMA
model in terms of prediction accuracy. Similarly, Xu and Zhang (2021) investigated both
univariate and bivariate neural network modelling for corn cash prices and found that simple
neural networks with twenty hidden nodes and two lags provided better forecasting accuracy
for short-term forecasting. Despite the better prediction performance of ANN-based mod-
els in many areas, their accuracy is still not satisfactory when dealing with nonstationary
and nonlinear time series data. However, the accuracy can be further increased using the
hybridization technique, i.e. combining different models according to their strength and
producing a synergetic effect. In a hybrid model class, the decomposition-and-ensemble-
methodology is the most promising one, see Qian et al. (2019). This methodology follows
the principle of “divide and conquer” whereby using some techniques, a complex series is
divided into a number of simple subseries such that each subseries now has better charac-
terization and thus can be easily captured, resulting in better forecasting accuracy.

For the decomposition of any nonlinear and nonstationary time series, empirical mode
decomposition (EMD), see Huang et al. (1998), and its variants like ensemble empirical mode
decomposition (EEMD), see Wu and Huang (2009), and complementary ensemble empirical
mode decomposition with adaptive noise (CEEMDAN), see Torres et al. (2011), are com-
monly used. The essence of the EMD and its variants is that they decompose a time series
into a set of subseries (modes) called intrinsic mode functions (IMFs) and residual. These
IMFs and residual are further modelled by any of the forecasting techniques like TDNN.
For instance, Yu et al. (2008) evaluated EMD based feed-forward neural network (FNN)
for crude oil predictions and concluded that decomposition-based hybrid models outperform
standalone forecasting models. Choudhary et al. (2019) used EEMD for decomposing the
daily potato price series of two different markets. Fang et al. (2020) applied EEMD to differ-
ent agricultural commodities for decomposition, whereas ARIMA, neural network (NN) and
support vector machine (SVM) models for predicting the decomposed components. Prasad
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et al. (2018) demonstrated the superiority of a hybrid model that combines CEEMDAN and
an extreme learning machine (ELM) to forecast soil moisture.

However, EMD and its variants have major drawbacks, such as the frequent appear-
ance of mode mixing, noise sensitiveness and end effects, leading to meaningless subseries
that negatively impact the precision of decomposition. In order to address these limita-
tions, variational mode decomposition (VMD) is proposed as an adaptive, non-recursive
and multiresolution decomposition technique by Dragomiretskiy and Zosso (2014). VMD
decomposes original time series into a set of distinct independent IMFs based on their cen-
tral frequencies. The VMD proved its superiority over EMD based decomposition in the
different areas of time series forecasting, see Bisoi et al. (2019); Dragomiretskiy and Zosso
(2014); Lahmiri (2016); Liu et al. (2018). Therefore,in view of the superior performance of
VMD as a unique data-adaptive decomposition technique and the advantageous properties
of TDNN for forecasting any nonlinear series, a novel hybrid VMD-TDNN model is proposed
for agricultural price forecasting.

The main idea of our study is to utilise a new adaptive multiresolution technique in
the context of modelling and predicting nonstationary and nonlinear agricultural price series.
However, the most significant contributions of this paper are as follows. First, a novel agri-
cultural price forecasting framework is proposed by combining VMD with the TDNN model.
VMD is a decomposition technique that breaks a highly complex agricultural price series into
several uniform subseries with stable fluctuations. VMD has the advantage of being noise
robust as it denoises a time series using simulated harmonic functions. In this context, for
an agricultural price series that is known to be very noisy, the VMD is more suitable for its
better characterization leading to faster convergence and better predictive accuracy. Second,
for empirical evaluation of our proposed model, we use three real agricultural price series to
test how well the proposed model can tackle high-frequency events such as fluctuations in
fuel prices, strikes, etc. and also the low-frequency events such as lower production, higher
export, optimum rainfall, etc. Third, it is seen that many scientists believe that machine
learning is a black box, and the results obtained from any machine learning technique are
either not trustworthy or are not able to provide proper interpretations otherwise. Another
reason for this belief is that the datasets and the code for machine learning-related forecasting
research are often not publicly available, making it difficult for the forecasting community to
adapt such research and verify the claimed performance. Thus, considering one of the major
goals of our study to make this work replicable by the whole research fraternity for practical
forecasting tasks, we use the datasets available in the public domain and for each of the
hybrid models used in this study, we develop and publish packages namely, “eemdTDNN”
and “vmdTDNN”, see Choudhary et al. (2021, 2022), in CRAN. Fourth, we compare the
prediction accuracy of the VMD-TDNN with different decomposition-based techniques, and
the empirical evidence shows that the VMD-TDNN model outperforms EMD and its variants
based hybrid models in terms of each evaluation criteria. Finally, for the robust validation
and to check the superiority of the forecasting ability of the developed model, we use Diebold-
Mariano test for checking the significant improvement achieved by it. Further, we also use
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) for ranking the
models based on overall performance.

The remainder of the paper is organised as follows: Section 2 describes the proposed
VMD-TDNN hybrid model for agricultural price forecasting in detail. For empirically eval-
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uating the proposed model, three internationally traded agricultural commodities, namely
maize, soybean oil and palm oil monthly price series, are described in Section 3. Section 4
concludes the work.

2. Methodology

2.1. Variational mode decomposition

VMD, see Dragomiretskiy and Zosso (2014), is a novel data-adaptive decomposition
technique that overcomes the limitations of traditional frequency-based decomposition tech-
niques. This technique effectively improves the end effect, mode mixing, recursive sifting
process, sensitivity to noise, a fixed number of modes, and other shortcomings of EMD
variants, see Wu and Huang (2009). The algorithm used in VMD is non-recursive as it ex-
tracts modes concurrently, assuming limited bandwidth of central frequency for each IMF.
Moreover, the modes obtained after VMD have a particular property called sparsity which
means each mode is mostly compact around a centre pulsation in the frequency spectrum.
The advantages of using VMD over other techniques are that the modes are robust with
respect to noise and have faster convergence with better accuracy. These characteristics of
VMD make it highly suitable for addressing complex agricultural price data consisting of
multi-frequency signals. The bandwidth of a mode is estimated using the following steps:

1. For each mode cj(t), the Hilbert transformation (HT) is used to obtain a one-sided
frequency spectrum.

2. The sifting of the frequency spectrum of the mode is determined using the modulation
properties.

3. The bandwidth of cj(t) is estimated finally using H 1 Gaussian smoothness of the de-
modulated signal i.e. the squared L2-norm of the gradient.

The following constraints of the variation problem can be used to explain VMD:

min
{ωj},{cj}

∑
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the set of modes, {wj} := {w1, w2, · · ·wn} is the of central frequencies, δ(t) is the impulse
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√
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where α is said to be a balance parameter or penalty parameter of data fidelity constraint.

Furthermore, an iterative sequence called the alternate direction method of multipliers
(ADMM) is applied to the above equation for updating cj, ωj and λ in two directions. The
results are obtained as follows:

ĉk+1
j (ω) =

ŷ(ω)−∑l ̸=j ĉl(ω) + λ̂(ω)
2

1 + 2α (ω − ωj)2 ; ωk+1
j =

´∞
0 ω |ĉj(ω)|2 dω´∞

0 |ĉj(ω)|2 dω

and λ̂k+1(ω)← λ̂k(ω) + τ

ŷ(ω)−
∑

j

ĉk+1
j (ω)

 .

The stopping criterion for the iterations is∑j
∥ĉk+1

j −ĉk
j∥

2
2

∥ĉk
j∥

2
2

<ϵ, where ϵ > 0, ŷ(ω), ĉj(ω), λ̂(ω)

and ĉk+1
j (ω) are fourier transformations of y(t), cj(t), λ(t), and ck+1

j (t), respectively, and k is
the number of iterations.

2.2. Time-delay neural network (TDNN)

The artificial neural network (ANN) technique, which uses nonlinear units (neurons)
to model any complex nonlinear time series, is being frequently utilized in many applications.
There are three layers in a standard ANN architecture: input layer, where data is introduced
to the network; hidden layer, where data is processed; and output layer, where the results
of the given inputs are produced. There are two ways to model time series using neural
networks: either using a recurrent neural network or creating short-term memory at the
network’s input layer, see Haykin (2009). TDNN is an example of the latter, which uses
the temporal dimension of a univariate time series to develop a short-term memory, called
heteroassociative memory, in its network. The usual TDNN is a feed-forward network with
interconnected hidden and output neurons. A TDNN with a single hidden layer has the
following generic expression, see Jha and Sinha (2014)

ŷ(t) = g

α0 +
q∑

j=1
αjf

(
β0j +

p∑
i=1

βijy(t− i)
)

where ŷ(t) is the predicted value, y(t − i) is the ith input (lag), αj(j = 0, 1, 2, . . . , q) and
βij(i = 0, 1, 2, . . . , p; j = 1, 2, . . . , q) are connection weights, p and q are the numbers of input
and hidden nodes, respectively, f and g denote the activation functions at the hidden and
output layer of the model.

2.3. VMD-TDNN model for agricultural price series

A nonstationary and nonlinear time series is decomposed into IMFs using VMD as
a decomposition tool. Several models of TDNN are built for each IMF separately, varying
the hyperparameters of the TDNN, and the best-fitted model is selected for each IMF to
predict them separately, followed by ensemble prediction. Thus, a hybrid model, namely,
VMD-TDNN, is proposed by integrating VMD and TDNN, and its details are displayed in
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Figure 1. The procedure for this model can be separated into three parts:

1. Data decomposition – VMD decomposes agricultural price series y(t) into n inde-
pendent modes (IMFs), which are stationary and nonlinear. These IMFs have different
oscillations of agricultural prices from high to low frequencies. These modes have a reg-
ular structure and stable fluctuation. Now, the patterns of each IMF can be captured
more conveniently and accurately through TDNN.

2. Individual prediction – Each IMF is split into training and testing sets to ensure the
generalization ability of the forecasting model. The TDNN model is used for modelling
each of the IMFs as it is well suited for capturing nonlinear patterns.

3. Ensemble prediction - The final forecast of the original price series is obtained by
adding the predicted values of all IMFs as:

ŷ(t) =
n∑

j=1
ĉj(t)

where, ∑n
j=1 ĉj(t) represent the ensemble of predicted values of IMFs.

Figure 1: Flowchart of VMD-TDNN model for agricultural price forecasting

2.4. Forecasting evaluation criteria

Each prediction model employed in this paper is evaluated in terms of root mean
squared error (RMSE), mean absolute percentage error (MAPE), directional prediction
statistics (Dstat ), and Diebold-Mariano (DM) test, since individual decision criteria is unable
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to capture errors completely, see Jaiswal et al. (2022). Moreover, for the ranking of each
model, TOPSIS method, see Hwang and Yoon (1981), is employed, which ranks each model
by giving weights after normalizing the decision matrix of all evaluation criteria and calcu-
lating the geometric distance between the different models. The following are the forecasting
evaluation criteria for comparing the proposed model with other models:

1. Root mean squared error (RMSE):

RMSE =
√∑h

t=1(y(t)− ŷ(t))2

h

2. Mean absolute percentage error (MAPE):

MAPE = 1
h

h∑
t=1

∣∣∣∣∣y(t)− ŷ(t)
y(t)

∣∣∣∣∣
3. Directional prediction statistics (Dstat ):

Dstat = 1
h

h∑
t=1

at × 100%

where y(t) and ŷ(t) are the actual value and predicted value, respectively, h is the size

of the testing set and at =
{

1, if [y(t + 1)− y(t)][ŷ(t + 1)− y(t)] ≥ 0
0, otherwise

.

4. Diebold-Mariano (DM) test:
For a given time series y(t), the Diebold-Mariano (DM) test statistics is defined as:

zDM = d̄√
V̂d̄

where h is the test size, {etet}h
t=1 and {eref}h

t=1 are error for test model and reference
model respectively, g is the loss function, d̄ = 1

h

∑h
t=1 [g (etet )− g (eref )] is the sample

mean, V̂d̄ = 1
h

[
γ0 + 2∑l−1

j=1 γj

]
is the estimate of variance using l step forecasts and

γj = cov (dt, dt−j) is the estimate of jth autocovariance of [g (etet)− g (eref )].

5. TOPSIS:
For a given decision matrix X =(xij) and a weight vector W =[w1, w2, · · · , we], rank
of ith model is defined as:

Ri = d−
i

d−
i + di

+
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where xij denotes jth evaluation criteria for ith prediction model for 1 ≤ i ≤ m and 1 ≤

j ≤ e, d+
i =

√∑e
j=1

(
vij − v+

j

)2
and d−

i =
√∑e

j=1

(
vij − v−

j

)2
are measures of separation

between the positive and negative ideal solutions, vij = wj ∗nij is weighted normalized
decision matrix where ∑e

j=1 wj = 1, nij = xij√∑
i

xij
2 is the normalized value of xij, v+

j ={
max vij, if j is positive criterion
min vij, if j is negative criterion and v−

j =
{

min vij, if j is positive criterion
max vij, if j is negative criterion

are extremely positive and extremely negative performance on each criterion.

3. Empirical results and discussion

Three different agricultural commodity price series are used in this section to empiri-
cally evaluate the proposed model’s performance. In this study, all the model developments
and their statistical analysis are done in R statistical software of version 4.1.2. The detailed
R codes are given in the Appendix. In this section, data description, different decomposition
techniques, and prediction results of the models are analysed for the price series.

3.1. Data description

This paper examines the efficiency of the proposed hybrid VMD-TDNN model us-
ing monthly international Maize, Palm oil, and Soybean oil price (dollar per metric tonne,
$/MT ) data. Data are obtained from the “World Bank Commodity market” from January
1960 to December 2021(https://www.worldbank.org/en/research/commodity-markets).
Each price series contains 744 observations divided into training and testing sets to ensure
generalization capability. The training set carrying 732 data points is used to train the
model, while the remaining 12 data points are used to test the effectiveness of the proposed
model. Figure 2 shows time plots and the complex behaviour of each series, which is the
characteristic of agricultural price data. Table 1 shows the basic descriptive statistics for
each price series.

Figure 2: Time plots for monthly international Palm oil, Soybean oil and Maize
price ($/MT ) series

https://www.worldbank.org/en/research/commodity-markets
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Table 1: Descriptive statistics of the price ($/MT) series (from January 1960 to
December 2021)

Statistics Maize Palm oil Soybean oil
Mean 120.31 512.49 574.07

Maximum 333.05 1377.22 1574.67
Minimum 38.00 141.73 157.00

Standard deviation 59.65 257.75 294.08
Skewness 1.28 0.93 1.01
Kurtosis 1.80 3.58 0.82

Jarque-Bera 299.40 118.26 146.97

Since agricultural price series are complex and may exhibit nonstationarity and non-
linearity properties, it becomes necessary to test these properties, which can be helpful in
skilful handling of data while fitting the model. The Augmented Dickey-Fuller (ADF) test,
see Kumar et al. (2020), and Brock-Dechert-Scheinkman (BDS) test, see Choudhary et al.
(2019), are used to check the stationarity and linearity characteristics, respectively. Table
2 shows the ADF test results that confirm the nonstationarity of each price series. Table 3
presents the BDS test results, which confirm the nonlinearity nature of each price series.

Table 2: Augmented Dickey-Fuller (ADF) test results

Price Series ADF Test Conclusiont-statistic Probability
Maize −3.12 0.10 Nonstationary

Pam Oil −3.14 0.09 Nonstationary
Soybean Oil −3.01 0.15 Nonstationary

Table 3: Brock-Dechert-Scheinkman (BDS) test results

Price Series
Embedding dimension

ConclusionEpsilon 2 3
Statistics Probability Statistics Probability

Maize
0.5 σ 133.23 < 0.001 224.66 < 0.001

Nonlinear1.0 σ 67.16 < 0.001 77.15 < 0.001
1.5 σ 52.64 < 0.001 53.64 < 0.001
2.0 σ 41.41 < 0.001 39.72 < 0.001

Palm oil
0.5 σ 230.22 < 0.001 399.29 < 0.001

Nonlinear1.0 σ 98.24 < 0.001 119.26 < 0.001
1.5 σ 64.78 < 0.001 67.36 < 0.001
2.0 σ 53.68 < 0.001 51.77 < 0.001

Soybean oil
0.5 σ 193.52 < 0.001 335.36 < 0.001

Nonlinear1.0 σ 85.31 < 0.001 102.54 < 0.001
1.5 σ 60.46 < 0.001 62.45 < 0.001
2.0 σ 52.53 < 0.001 50.74 < 0.001
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Table 4: VMD parameters for different price series

Price series α τ n ϵ
Maize 2000 0 9 1×10−6

Palm Oil 2000 0 9 1×10−7

Soybean Oil 2000 1 9 1×10−6

Table 5: Comparison of different decomposition algorithm in terms of θ

Price series EMD EEMD CEEMDAN VMD
Maize 0.1669 0.0472 0.0435 0.0214
Palm Oil 0.0420 0.0292 0.0190 0.0121
Soybean Oil 0.0608 0.0443 0.0279 0.0140

3.2. Decomposition of the agricultural price series

For the hybrid VMD-TDNN model, VMD is used to decompose the original agricul-
tural price series into a set of IMFs. For decomposition, VMD requires four hyperparameters:
(i) balancing parameter of the data-fidelity constrain(α), (ii) tolerance of convergence crite-
rion (τ), (iii) number of modes (n), and (iv) time-step of the dual ascent (ϵ). The values
of these hyperparameters are selected through experimentation in order to keep the energy
evaluation parameter value (θ) as close to zero as possible to achieve superior decomposi-
tion outcomes and are presented in Table 4. While in the case of the number of modes,
unlike EMD variants, a VMD technique provides as many modes as it is asked to produce,
which significantly affects the accuracy of decomposition results. However, there is no prac-
tical or theoretical method to determine the optimum number of modes, see Dragomiretskiy
and Zosso (2014); Lahmiri (2016). Therefore, in order to make all models comparable, the
number of modes by VMD is chosen the same as that obtained by EMD and its variants.
Accordingly, each price series is decomposed into nine different independent IMFs through
VMD. Figure 3 shows the decomposed IMFs through VMD of the three price series from
high frequency to low frequency. Here, high frequency shows the effect of short term fluc-
tuations of the market, whereas low frequency represents any particularly significant event
(like changes in policy, adverse effects of several biotic and abiotic factors, etc.) affecting the
demand-supply equilibrium at that time. For instance, in our case, the two most significant
events are observed in 2008 and 2011, which can be observed in Figure 3 in the form of spikes
around 580th and 620th observations, respectively. Reasons behind both the events are the
2007-08’s world food crisis and the production of biofuels, see Trostle (2011). For ethanol
fuel production, usage of maize increased from 15% (2006) to 40% (2012) of total U.S. maize
production. Moreover, the VMD based decomposed IMFs show more independent frequency
distribution than the EMD variants, which can be empirically verified through the energy
evaluation parameter (θ), see Zhu et al. (2016), defined as:

θ =

∣∣∣√∑n
j=1 E2

j(t) − Ey(t)

∣∣∣
Ey(t)

; Ey(t) =
√∑T

t=1 y2(t)
T

;

where Ey(t) and Ej(t) are the energy values of the original time series and jthIMF, respectively.
Here, θ is used as an evaluation parameter for orthogonality of IMFs such that θ closer to 0
indicates more orthogonality, whereas greater θ indicates the presence of elusive components
among IMFs. Table 5 compares different decomposition methods in terms of θ for each price
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series, which shows that the value of θ in the case of VMD is the smallest. This motivates
us to choose VMD over other techniques to construct the TDNN based hybrid model.

Figure 3: The decomposed IMFs for Maize, Palm oil and Soybean oil price series
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3.3. Forecasting results and discussion

The datasets and code for machine learning-related forecasting studies are often not
publicly available, making it impossible for the forecasting community to replicate and val-
idate the stated performance. Thus, keeping in mind that one of the primary goals of our
study is to make this work replicable by the entire research community for practical fore-
casting tasks, we develop two R software packages named eemdTDNN, see Choudhary et al.
(2021) and vmdTDNN, see Choudhary et al. (2022), which are published in the compre-
hensive R archive network (CRAN). Here, the emdTDNN, EEMDTDNN, ceemdanTDNN
and VMDTDNN are the functions of the above packages which are used to model and fore-
cast each price series. The forecasting performance of the proposed VMD-TDNN model
is compared with the existing individual model, i.e. TDNN and different hybrid models
like EMD-TDNN, EEMD-TDNN, and CEEMDAN-TDNN for each price series. Figure 4
displays the plots of the predicted series by all models, along with the level series for each
price series. The figure clearly shows that the VMD-TDNN model captures price movement
patterns and directions better than conventional models. Moreover, the prediction ability
of different models is tested in terms of different forecasting evaluation criteria. In this
paper, RMSE, MAPE and directional prediction statistics (DStat) are employed to evalu-
ate the performance of each model. Table 6 shows that all the hybrid models, including
EMD-TDNN, EEMD-TDNN, CEEMDAN-TDNN and VMD-TDNN, outperform the single
prediction model, i.e. TDNN, for each price series in terms of RMSE and MAPE.

It is mainly due to the “decomposition-ensemble principle” where decomposition tech-
niques (EMD, EEMD, CEEMDAN, and VMD) reveal the hidden patterns of agricultural
prices series and produce stationary and nonlinear modes which improve the forecasting abil-
ity of the TDNN. Among hybrid models, VMD-TDNN outperforms EMD-TDNN, EEMD-
TDNN and CEEMDAN-TDNN in terms of both level and directional statistics since VMD
is better than EMD variants, as discussed in section 3.2. With regards to DStat in particular,
the results of the proposed VMD-TDNN model show better directional prediction than its
competing models by showing 90% direction accuracy for maize series, almost 82% for palm
oil, and 100% for soybean oil (Table 6). Though the different evaluation criteria used above
show the superiority of the proposed model individually, there is ambiguity in choosing the
best among other benchmark models as their results are not consistent. To get a better
interpretation and a proper order of all models, we employ a novel technique called TOPSIS,
which ranks all the models by combining their performances in both level and directional
measures. Table 6 shows the ranks of each model obtained by the TOPSIS method.

Apart from these assessment criteria, the Diebold-Mariano (DM) test is also used
to compare the predicting accuracy of various models statistically. Table 7 summarises
the results of the DM test for each prediction model, and the following conclusions can be
drawn. Firstly, the proposed VMD-TDNN model outperforms all existing models at a 5%
significance level for each series. Secondly, all the hybrid models perform better than the
TDNN model at the significance level of less than 1% for each series except for EMD-TDNN
for palm oil which is significant at 4%.
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Figure 4: The predicted results of different models for Maize, Palm oil and
Soybean oil price series
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From the empirical analysis of various models using maize, palm oil, and soybean oil
price series, it is clear that the proposed VMD-TDNN model significantly outperforms all
other models regarding different forecasting evaluation criteria and thus can be considered as
a competitive model for agricultural price forecasting. However, the VMD algorithm requires
predetermination of the number of variational modes to be extracted contrary to the EMD
and its variants. For EMD variants, the total number of modes is equal to log2T , where T
is the total number of observations in the price series. Further, there is no theoretical or
practical approach to determine the number (n) of extracted modes by VMD. For simplicity
and to make all models comparable, the number of modes by VMD is chosen the same as
that obtained by EMD and its variants, see Bisoi et al. (2019); Dragomiretskiy and Zosso
(2014); Lahmiri (2016); Liu et al. (2018). Indeed, setting a higher number will further reduce
the θ even if it is just a little but this will inevitably lead to higher computational burden and
processing time during the decomposition process and the training of TDNN. In contrary,
setting a lower number may lead to an inefficient representation and characterization of the
original time series. The fact that with nine IMFs the VMD–TDNN achieved higher accuracy
than others for all price series is very encouraging and promising in itself. However, a formal
methodology should be developed in this regard in future works.
Table 6: Forecasting performance of different models for Maize, Palm oil and
Soybean oil prices

Forecasting Models Maize Palm oil Soybean oil TOPSIS Rank
MAPE RMSE Dstat MAPE RMSE Dstat MAPE RMSE Dstat

TDNN 0.2725 76.29 45.45 0.0690 107.68 36.36 0.0854 143.64 72.73 5
EMD-TDNN 0.1075 36.09 54.54 0.0739 101.38 36.36 0.0477 91.02 90.91 4
EEMD-TDNN 0.0794 27.26 90.90 0.0613 92.57 36.36 0.0449 85.06 81.81 3
CEEMDAN-TDNN 0.0644 24.85 81.82 0.0575 88.86 81.81 0.0377 70.98 90.90 2
VMD-TDNN 0.0345 9.49 90.90 0.0478 76.90 81.81 0.0259 47.28 100.00 1

Table 7: Forecasting performance in terms of DM test of different models for
Maize, Palm oil and Soybean oil prices for the one-year forecast horizon

Series Tested Model Benchmark Models
TDNN EMD-TDNN EEMD-TDNN CEEMDAN-TDNN

Maize
EMD-TDNN 12.16(0.000)
EEMD-TDNN 13.96(0.000) 2.54(0.013)
CEEMDAN-TDNN 11.03(0.000) 5.44(0.000) 1.28(0.111)
VMD-TDNN 8.05(0.000) 3.12(0.004) 2.46(0.015) 3.67(0.001)

Palm Oil
EMD-TDNN 2.18(0.046)
EEMD-TDNN 2.83(0.002) 2.27(0.019)
CEEMDAN-TDNN 2.36(0.018) 2.31(0.018) 2.39(0.015)
VMD-TDNN 2.76(0.009) 2.81(0.005) 2.08(0.053) 2.56(0.012)

Soybean Oil
EMD-TDNN 5.19(0.000)
EEMD-TDNN 4.42(0.000) 1.76(0.042)
CEEMDAN-TDNN 4.87(0.000) 1.91(0.040) 1.39(0.095)
VMD-TDNN 4.66(0.000) 2.05(0.031) 1.90(0.041) 3.44(0.002)

4. Conclusions

Agricultural price series are highly vulnerable to several risks due to biotic and abiotic
factors, which account for several characteristics, including nonlinearity and nonstationarity.
This paper proposes a new hybrid VMD-TDNN model to improve the prediction accuracy
of agricultural price data. The VMD algorithm decomposes a series into a set of subseries
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or modes for the proposed model. These obtained modes are forecasted separately using the
TDNN model, and their forecasted values are aggregated to give a final forecast for a given
price series data. VMD has many advantages over EMD based methods, including a better
mathematical foundation, data adaptiveness capability, robustness to noise and faster con-
vergence with better accuracy. For empirical evaluation, an extensive comparative analysis
of the forecasting performance of the proposed VMD-TDNN model with the four different
models is performed using three monthly international price series. The empirical results
show that the VMD-TDNN outperforms the competing models in terms of different fore-
casting evaluation criteria like MAPE, RMSE and Dstat. In addition, to better understand
the proper order, we utilise a unique technique called TOPSIS, which ranks all models by
combining their performances of both level and directional metrics, and VMD-TDNN stands
first among all. Further, the DM test result shows that the VMD-TDNN model significantly
improves forecasting accuracy from other models. Overall, we can state that the proposed
model provides a valuable decision support tool for every agricultural stakeholder who falls
in the domain of agricultural price forecasting.
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Appendix

R codes used for empirical evaluation of the study

# To check and install the packages used in this analysis
ipak <- function(pkg){

new.pkg <- pkg[!(pkg %in% installed.packages()[ ,"Package"])]
if (length(new.pkg))

install.packages(new.pkg, dependencies = TRUE)
sapply(pkg, require, character.only = TRUE)

}
# usage
packages <- c("tseries", "moments", "Rlibeemd", "VMDecomp")
ipak(packages)
library(tseries)
library(moments)
library(Rlibeemd)
library(VMDecomp)

#Importing the actual price data specifying the location of the data file
data=read.csv(file.choose(), header=TRUE)
data
#plotting of the imported data
plot(ts(data))

#transforming the data into numeric vector (1-dimensional)
data=as.matrix(data)
data=as.vector(data)

#Basic descriptive of the data set
library(moments)
summary(data)
sd(data)
skewness(data)
kurtosis(data)
jarque.test(data)

#Stationarity and linearity test
adf.test(data) # Augmented Dickey-fuller test for testing stationarity
bds.test(data) # Brock-Dechert Shienkman test for testing nonlinearity

#Data Decomposition through EMD, EEMD, CEEMDAN, and VMD
library(Rlibeemd)

# Decomposition of price data using EMD technique
EMD=emd(data, num_imfs = 0, S_number = 4L, num_siftings = 50L)
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# Decomposition of price data using EEMD technique
EEMD=eemd(ts(data), num_imfs = 0, ensemble_size = 250L, noise_strength = 0.2,

S_number = 4L, num_siftings = 50L, rng_seed = 0L, threads = 0L)↪→

# Decomposition of price data using CEEMDAN technique
CEEMDAN=ceemdan(ts(data), num_imfs = 0, ensemble_size = 250L, noise_strength =

0.2, S_number = 4L, num_siftings = 50L, rng_seed = 0L, threads = 0L)↪→

# Decomposition of price data using VMD technique
VMD=vmd(data, alpha = 2000, tau = 0, K = 9, DC = FALSE, init = 1, tol = 1e-06)

# Plotting of decomposed series

# PLotting of decomposed series extracted by EMD technique
plot(EMD,xlab="Time (Month)")

# PLotting of decomposed series extracted by EEMD technique
plot(EEMD,xlab="Time (Month)")

# PLotting of decomposed series extracted by CEEMDAN technique
plot(CEEMDAN,xlab="Time (Month)")

# VMdecomp package does not allow for auto-plot of all series,
# so we will extract all the decomposed series one by one done by VMD technique
# and then combine them in a two dimensional matrix and then plot them

#Extraction of all IMFS
AllIMF <- ts(VMD$u)

# VMD decompose price series in reverse order (From low to high frequency)
# in contrary to EMD variants.So IMF1 will be the last column, IMF2 will be
# the second last column,...

# Extraction of each IMF one by one
IMF1=ts(AllIMF[,9])
IMF2=ts(AllIMF[,8])
IMF3=ts(AllIMF[,7])
IMF4=ts(AllIMF[,6])
IMF5=ts(AllIMF[,5])
IMF6=ts(AllIMF[,4])
IMF7=ts(AllIMF[,3])
IMF8=ts(AllIMF[,2])
IMF9=ts(AllIMF[,1])

# Combining of all IMFs
VMD_IMFs <- cbind.data.frame(IMF1, IMF2, IMF3, IMF4, IMF5, IMF6, IMF7, IMF8,IMF9)
VMD_IMFs <- ts(VMD_IMFs)

# Plotting of all IMFs of VMD together
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plot(VMD_IMFs)

# Modelling and Forecasting results of EMDTDNN model
emd_tdnn=function(data, stepahead = 12, num.IMFs = emd_num_imfs(length(data)),

s.num = 4L, num.sift = 50L)
{

n.IMF <- num.IMFs # To find the total number of IMFs
AllIMF <- emd(data, num_imfs = n.IMF, S_number = s.num, num_siftings =

num.sift)↪→

data_trn <- ts(head(data, round(length(data) - stepahead))) # Extracting the
training set↪→

data_test <- ts(tail(data, stepahead)) # Extracting the testing set
IMF_trn <- AllIMF[-c(((length(data) - stepahead) + 1):length(data)),
]
Fcast_AllIMF <- NULL
# Applying For loop to model and forecast each decomposed series using TDNN

model↪→

for (IMF in 1:ncol(IMF_trn)) {
IndIMF <- NULL
IndIMF <- IMF_trn[, IMF]
EMDTDNNFit <- forecast::nnetar(as.ts(IndIMF))
EMDTDNN_fcast = forecast::forecast(EMDTDNNFit, h = stepahead)
EMDTDNN_fcast_Mean = EMDTDNN_fcast$mean
Fcast_AllIMF <- cbind(Fcast_AllIMF, as.matrix(EMDTDNN_fcast_Mean))

}
# Combining all the forecasts to get final forecast using EMD-TDNN
FinalEMDTDNN_fcast <- ts(rowSums(Fcast_AllIMF, na.rm = T))
# Finding different evaluation criteria based on testing data set
MAE_EMDTDNN = mean(abs(data_test - FinalEMDTDNN_fcast))
MAPE_EMDTDNN = mean(abs(data_test - FinalEMDTDNN_fcast)/data_test)
rmse_EMDTDNN = sqrt(mean((data_test - FinalEMDTDNN_fcast)ˆ2))
Plot_IMFs <- AllIMF
AllIMF_plots <- plot(Plot_IMFs)
return(list(TotalIMF = n.IMF, AllIMF = AllIMF, data_test = data_test,

AllIMF_forecast = Fcast_AllIMF, FinalEMDTDNN_forecast =
FinalEMDTDNN_fcast,↪→

MAE_EMDTDNN = MAE_EMDTDNN, MAPE_EMDTDNN = MAPE_EMDTDNN,
rmse_EMDTDNN = rmse_EMDTDNN, AllIMF_plots = AllIMF_plots))

}
EMDTDNN=emd_tdnn(data, stepahead = 12, num.IMFs = emd_num_imfs(length(data)),

s.num = 4L, num.sift = 50L)
EMDTDNN

# Forecasting result of EEMDTDNN model
EEMD_TDNN=function (data, stepahead = 12, num.IMFs = emd_num_imfs(length(data)),

s.num = 4L, num.sift = 50L, ensem.size = 250L, noise.st = 0.2)
{

n.IMF <- num.IMFs # To find the total number of IMFs
AllIMF <- eemd(ts(data), num_imfs = n.IMF, ensemble_size = ensem.size,
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noise_strength = noise.st, S_number = s.num, num_siftings =
num.sift,↪→

rng_seed = 0L, threads = 0L)
data_trn <- ts(head(data, round(length(data) - stepahead))) # Extracting the

training set↪→

data_test <- ts(tail(data, stepahead)) # Extracting the testing set
IMF_trn <- AllIMF[-c(((length(data) - stepahead) + 1):length(data)),
]
Fcast_AllIMF <- NULL
# Applying For loop to model and forecast each decomposed series using TDNN

model↪→

for (IMF in 1:ncol(IMF_trn)) {
IndIMF <- NULL
IndIMF <- IMF_trn[, IMF]
EEMDTDNNFit <- forecast::nnetar(as.ts(IndIMF))
EEMDTDNN_fcast = forecast::forecast(EEMDTDNNFit, h = stepahead)
EEMDTDNN_fcast_Mean = EEMDTDNN_fcast$mean
Fcast_AllIMF <- cbind(Fcast_AllIMF, as.matrix(EEMDTDNN_fcast_Mean))

}
# Combining all the forecasts to get final forecast using EMD-TDNN
FinalEEMDTDNN_fcast <- ts(rowSums(Fcast_AllIMF, na.rm = T))
# Finding different evaluation criteria based on testing data set
MAE_EEMDTDNN = mean(abs(data_test - FinalEEMDTDNN_fcast))
MAPE_EEMDTDNN = mean(abs(data_test - FinalEEMDTDNN_fcast)/data_test)
rmse_EEMDTDNN = sqrt(mean((data_test - FinalEEMDTDNN_fcast)ˆ2))
Plot_IMFs <- AllIMF
AllIMF_plots <- plot(Plot_IMFs)
return(list(TotalIMF = n.IMF, data_test = data_test, AllIMF_forecast =

Fcast_AllIMF,↪→

FinalEEMDTDNN_forecast = FinalEEMDTDNN_fcast, MAE_EEMDTDNN =
MAE_EEMDTDNN,↪→

MAPE_EEMDTDNN = MAPE_EEMDTDNN, rmse_EEMDTDNN = rmse_EEMDTDNN,
AllIMF_plots = AllIMF_plots))

}
EEMDTDNN=EEMD_TDNN(data, stepahead = 12, num.IMFs = emd_num_imfs(length(data)),

s.num = 4L, num.sift = 50L, ensem.size = 250L, noise.st = 0.2)
EEMDTDNN

#Forecasting Result of CEEMDANTDNN model
ceemdan_TDNN=function (data, stepahead = 12, num.IMFs =

emd_num_imfs(length(data)),↪→

s.num = 4L, num.sift = 50L, ensem.size = 250L, noise.st = 0.2)
{

n.IMF <- num.IMFs # To find the total number of IMFs
AllIMF <- ceemdan(ts(data), num_imfs = n.IMF, ensemble_size = ensem.size,

noise_strength = noise.st, S_number = s.num, num_siftings =
num.sift,↪→

rng_seed = 0L, threads = 0L)
data_trn <- ts(head(data, round(length(data) - stepahead))) # Extracting the

training set↪→
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data_test <- ts(tail(data, stepahead)) # Extracting the testing set
IMF_trn <- AllIMF[-c(((length(data) - stepahead) + 1):length(data)),
]
Fcast_AllIMF <- NULL
# Applying For loop to model and forecast each decomposed series using TDNN

model↪→

for (IMF in 1:ncol(IMF_trn)) {
IndIMF <- NULL
IndIMF <- IMF_trn[, IMF]
CEEMDANTDNNFit <- forecast::nnetar(as.ts(IndIMF))
CEEMDANTDNN_fcast = forecast::forecast(CEEMDANTDNNFit,

h = stepahead)
CEEMDANTDNN_fcast_Mean = CEEMDANTDNN_fcast$mean
Fcast_AllIMF <- cbind(Fcast_AllIMF, as.matrix(CEEMDANTDNN_fcast_Mean))

}
# Combining all the forecasts to get final forecast using EMD-TDNN
FinalCEEMDANTDNN_fcast <- ts(rowSums(Fcast_AllIMF, na.rm = T))
# Finding different evaluation criteria based on testing data set
MAE_CEEMDANTDNN = mean(abs(data_test - FinalCEEMDANTDNN_fcast))
MAPE_CEEMDANTDNN = mean(abs(data_test - FinalCEEMDANTDNN_fcast)/data_test)
rmse_CEEMDANTDNN = sqrt(mean((data_test - FinalCEEMDANTDNN_fcast)ˆ2))
Plot_IMFs <- AllIMF
AllIMF_plots <- plot(Plot_IMFs)
return(list(TotalIMF = n.IMF, data_test = data_test, AllIMF_forecast =

Fcast_AllIMF,↪→

FinalCEEMDANTDNN_forecast = FinalCEEMDANTDNN_fcast, MAE_CEEMDANTDNN
= MAE_CEEMDANTDNN,↪→

MAPE_CEEMDANTDNN = MAPE_CEEMDANTDNN, rmse_CEEMDANTDNN =
rmse_CEEMDANTDNN,↪→

AllIMF_plots = AllIMF_plots))
}
CEEMDANTDNN=ceemdan_TDNN(data, stepahead = 12, num.IMFs =

emd_num_imfs(length(data)),↪→

s.num = 4L, num.sift = 50L, ensem.size = 250L, noise.st =
0.2)↪→

CEEMDANTDNN

# Forecasting Result of VMDTDNN model
VMD_TDNN=function (data, stepahead = 12, nIMF = 9, alpha = 2000, tau = 0,

D = FALSE)
{

data <- ts(data)
data <- as.vector(data)
v <- vmd(data, alpha = 2000, tau = 0, K = nIMF, DC = D, init = 1,

tol = 1e-06)
AllIMF <- v$u
data_trn <- ts(head(data, round(length(data) - stepahead))) # Extracting the

training set↪→

data_test <- ts(tail(data, stepahead)) # Extracting the testing set
IMF_trn <- AllIMF[-c(((length(data) - stepahead) + 1):length(data)),
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]
Fcast_AllIMF <- NULL
# Applying For loop to model and forecast each decomposed series using TDNN

model↪→

for (AllIMF in 1:(ncol(IMF_trn))) {
IndIMF <- NULL
IndIMF <- IMF_trn[, AllIMF]
VMDTDNNFit <- forecast::nnetar(as.ts(IndIMF))
VMDTDNN_fcast = forecast::forecast(VMDTDNNFit, h = stepahead)
VMDTDNN_fcast_Mean = VMDTDNN_fcast$mean
Fcast_AllIMF <- cbind(Fcast_AllIMF, as.matrix(VMDTDNN_fcast_Mean))

}
# Combining all the forecasts to get final forecast using EMD-TDNN
FinalVMDTDNN_fcast <- ts(rowSums(Fcast_AllIMF, na.rm = T))
# Finding different evaluation criteria based on testing data set
MAE_VMDTDNN = mean(abs(data_test - FinalVMDTDNN_fcast))
MAPE_VMDTDNN = mean(abs(data_test - FinalVMDTDNN_fcast)/data_test)
RMSE_VMDTDNN = sqrt(mean((data_test - FinalVMDTDNN_fcast)ˆ2))
return(list(AllIMF = AllIMF, data_test = data_test, AllIMF_forecast =

Fcast_AllIMF,↪→

FinalVMDTDNN_forecast = FinalVMDTDNN_fcast, MAE_VMDTDNN =
MAE_VMDTDNN,↪→

MAPE_VMDTDNN = MAPE_VMDTDNN, RMSE_VMDTDNN = RMSE_VMDTDNN))
}
VMDTDNN=VMD_TDNN(data, stepahead = 12, nIMF = 9, alpha = 2000, tau = 0,

D = FALSE)
VMDTDNN
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