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Abstract
In every agricultural market, accurate agricultural commodity price forecasting is

essential for farmers, traders, policymakers, and government sectors. Decomposition of the
price series has sufficiently increased the forecast accuracy. In the past years, wavelet analysis
has been widely used for the decomposition of price series, where it converted time series
into high and low frequencies. Often, without accounting for the linearity of the frequencies
in wavelet-hybrid models, those frequencies are modeled directly. A major problem arises
when wavelet-hybrid models contain both linear and non-linear frequencies. Hence, a type
of wavelet-hybrid model was developed to solve this problem. Tomato’s monthly wholesale
price in the Mumbai market was used in this study. First, linear, and non-linear frequencies
are separated by the McLeod and Li test after the wavelet decomposition of the tomato
price series. Autoregressive Integrated Moving Average (ARIMA) and Time Delay Neural
Network (TDNN) were applied to linear and non-linear frequencies, respectively. Forecasts of
ARIMA and TDNN were reconstructed to obtain forecasts of the tomato price series. Finally,
our proposed wavelet-ARIMA-TDNN model was compared to ARIMA, TDNN, and Wavelet-
ARIMA, Wavelet-TDNN. The result revealed that our proposed method outperformed other
models.

Key words: McLeod and Li test; Non-linearity; Decomposition; Wavelet analysis; Wavelet-
ARIMA-TDNN.
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1. Introduction

In a populous country like India, satisfying people’s daily food demands is cum-
bersome. Thus, farmers have the responsibility to increase food production, especially for
vegetables. It is due to the perishable nature of vegetables, which causes their prices to fluc-
tuate and affects farmers’ revenue. Therefore, predicting this price fluctuation is essential
for farmers, traders, policymakers, government sectors, etc. Forecasting this highly volatile
price is a very challenging task for forecasters. Understanding the nature of the price series
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is important for forecasting it. Generally, time series follow either a linear or non-linear
pattern.

The ARIMA model is one of the most important and widely used models for linear
time series. Due to its inherent statistical properties and use of the Box George et al. (1976)
approach, the ARIMA model is popular. On the other hand, ANNs provide good self-learning
and non-linear approximation skills when dealing with non-linear complex data sets. ANN
has some success with predicting applications with a lag, particularly for non-linear time
series. However, there is no specific model to handle all the circumstances. But we can get
good results through the appropriate application of suitable models.

The ARIMA model performs well as a predictor for linear time series. Singla et al.
(2021) found that ARIMA model outperformed wavelet-hybrid models for the onion price
series. But, the ARIMA model’s precision is insufficient to address complex non-linear situa-
tions. Jha and Sinha (2014) showed that ANN models provide better prediction accuracy for
non-linear patterns than ARIMA models. Although ANNs are effective against non-linear
time series, they might produce inconsistent results against linear models. Additionally, it
shows that the sampling size and noise level affect the performance of linear regression model
using ANN Markham and Rakes (1998).

Decomposition of time series is an essential process in modelling. Wavelet analysis
Antoniadis (1997) is extensively used for decomposition and converts the time series into high
and low frequencies. These frequencies are fitted using time series models, which are known
as wavelet-hybrid models. Generally, without considering the linearity or non-linearity of the
data’s frequencies, time series models are used for modelling the frequencies in wavelet-hybrid
models. Also, Paul et al. (2020) found that wavelet-ANN outperformed wavelet-ARIMA for
modelling sub-divisional rainfall data. Nury et al. (2017) reported that wavelet-ARIMA was
performed better than wavelet-ANN for temperature time series data. The above studies
indicate that the linearity or non-linearity of the frequencies is a significant factor in wavelet-
hybrid models. For instance, Anjoy et al. (2017) fitted the ANN model to all frequencies
due to their non-linearity. Similarly,Ray et al. (2020) were fitted WNN to high frequencies
and ANN to low frequency due to their non-linear pattern. Also, it is possible to get both
linear and non-linear frequencies after the wavelet decomposition of a time series. In such a
situation, it is not optimal to fit all frequencies using the same time series model.

In this research, the problem of containing both linear and non-linear frequencies was
addressed. According to this problem, the wavelet-ARIMA-TDNN model was developed to
obtain reliable and accurate forecasting.

2. Materials and Methods

Monthly wholesale prices of Tomato for the Mumbai market (Jan-2011 to Dec-2021)
was collected from AGMARKNET (https://agmarknet.gov.in/) website.
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2.1. Wavelet Analysis

Wavelets are underlying building block functions like trigonometric sine and cosine
functions. A wavelet function (Equation 1) oscillates about zero.

ψτ,s = 1√
|s|

ψ
(
t− τ

s

)
τ, s ∈ R, s ̸= 0 (1)

Here, τ - Translation parameter s - Scaling parameter.

Wavelets are well-described in Daubechies et al. (1992), Ogden (1997), and Percival
and Walden (2000). Based on scaling and translation parameters, two types of wavelet trans-
forms (continuous and discrete) exist. The continuous wavelet transform (CWT) provides
coefficients for the entire real axis, which are more than necessary for extracting frequencies.
On the other hand, due to scaling proportional steps of translation parameters, the dyadic
discrete wavelet transform (DWT) requires a sample size of multiples of two. If the sample
size is 2J , J is known as the maximum level of decomposition. Equation (2) is the dyadic
DWT.

ψm,n (t) = 1√
2
ψ
(
t− n2m

2m

)
(2)

where, 1√
2

- variance preserving factor; m- scaling parameter; n- translation parameter

(ranges from 1 to 2J−m).

These reasons lead to the requirement of a modified wavelet transform, which is known
as a maximal overlap discrete wavelet transform (MODWT).

2.2. Maximal Overlap Discrete Wavelet Transform

A MODWT (Equation 3) can be obtained from a slight modification of dyadic DWT.
In MODWT, the translation parameter is not proportional to the scaling parameter where
wavelets are convoluted in each time interval for all the dyadic scales, so there is no restriction
on sample size. For N sample size,

ψm,n (t) = 1√
2
ψ
(
t− n

2m

)
(3)

where n ranges from 1 to N .

It produces an overlapping tile in the time-frequency plane, so the transform is not
orthogonal Percival and Walden (2000). Because of the non-orthogonality, it demands an
orthogonal filter for perfect reconstruction. Based on linear filter operation, MODWT gives
high frequencies and low frequencies using synthesis filters. MODWT provides J high fre-
quencies and one low frequency at the J th decomposition level. The maximum level of
decomposition for the N sample size is J = log2(N). It ranges from 1 to J. This transform
partitions variance across the scale. Frequencies are reconstructed by inverse maximal over-
lap discrete wavelet transform (IMODWT). The variance of reconstructed series at any J th

level and variance of actual time series are always equal, which explains that MODWT is
the variance-preserving transform.
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Figure 1: Schematic representation of the proposed wavelet-ARIMA-TDNN
model

2.3. Wavelet-ARIMA-TDNN

Wavelet-hybrid models are the combination of wavelet analysis and time series anal-
ysis, in which time series are converted into high and low frequencies using wavelet analysis
and then fitted by any time series model to increase the forecast accuracy. In this research,
we developed a hybrid time series forecasting method that combines features of wavelet
transformation, ARIMA, and TDNN based on the non-linearity test.

Since some of the time series data contain both linear and non-linear frequencies, the
following method is developed:

Step 1: MODWT divides time series into high and low-frequency components.

Step 2: Test the non-linearity for each frequency using the McLeod and Li test.

Step 3: Identify the linear and non-linear frequencies which are fitted by ARIMA and TDNN,
respectively.

Step 4: Reconstruct the forecast value of frequencies obtained from fitted models by IMODWT.

Figure 1 shows the schematic representation of the wavelet-ARIMA-TDNN model. The Haar
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filter was used in this study. Among all types of filters, only the Haar filter has the property
of discontinuity. So, it can capture sudden changes in the signal.

2.4. Non-linearity test

McLeod and Li (1983) is the Ljung-Box test for squared time series data.

Q (m) = n(n+ 2)
m∑

j=1

r2
j

n− j
(4)

where, rj- autocorrelation at jth lag; m-number of lags. Under the null hypothesis of linearity,
the statistic (Q) is asymptotically distributed as a Chi-square distribution with m degrees
of freedom.

2.5. ARIMA

The combination of Autoregressive and Moving Average processes and the integration
is more efficient for achieving higher adaptability of actual time series data. It is denoted as
ARIMA (p, d, q). It is one of the linear nonstationary time series models, defined in equation
5. For seasonal time series, ARIMA expanded into SARIMA (p, d, q)(P,D,Q), which stands
for Seasonal Autoregressive Integrated Moving Average. It is stated in equation 6.(
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where, L- lag operator; yt- time series; p- Autoregressive order; P- Seasonal autoregressive
order; d- No. of. Differences; D- No. of. Seasonal differences; q- Moving average order; Q-
Seasonal moving average order; εt- white noise.

2.6. Time-Delay Neural Network

An Artificial Neural Network is for modelling non-linear data sets Ogden (1997),
especially unknown relations between input and output datasets, through a data-driven and
self-adaptive approach. Over the last few decades, neural modelling systems have been used
to deal with a variety of prediction difficulties. The primary theoretical guideline for resolving
problematic situations with ANNs is based on the learning principle Valiant (1984). ANN
is inspired by human neurological science.

A network of basic processing nodes or neurons that are connected in a certain order
to carry out basic arithmetic manipulations is known as a neural network and can be used
to forecast future values of potentially noisy time series based on historical data Adamowski
and Chan (2011). A Time-delay neural network is an illustration of such a design (TDNN).
The number of layers and the total number of nodes in each layer must be selected to
create the neural network structure that is appropriate for a given application in time-series
prediction. A feed-forward neural network with a single hidden layer and an output node
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has been employed in the present investigation. In the hidden layer, the sigmoid function
has been used as an activation function with form for the y time series,

f (y) = 1
1+e−y

(7)

For g input lag, h hidden nodes in the hidden layer, and one output node, the total
number of parameters in a three-layer feed-forward neural network is h(g + 2) + 1.

3. Evaluation criteria

It is necessary to verify the model’s accuracy to choose the most suitable model for
forecasting. Root Mean Square Error (RMSE) is the standard deviation of the residuals of
the model; Mean Absolute Error (MAE) is the average difference of residuals of the model;
and Mean Absolute Percentage Error (MAPE) is the percentage of average absolute error
which give a way to compare the performance of the different models.

RMSE =
√√√√ 1
n

n∑
t=1

(
Yt−Ŷt

)2
(8)

MAE = 1
n

n∑
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∣∣∣ (9)

MAPE = 1
n

(
n∑
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Yt
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)

∗100 (10)

Finally, the Tomato price series forecast accuracy of the developed model (Wavelet-ARIMA-
TDNN) was compared to that of Wavelet-ARIMA and Wavelet-TDNN, and the single
ARIMA, TDNN in this investigation.

4. Results and Discussion

The tomato price series of the Mumbai market was used to apply the developed hybrid
methodology. Descriptive statistics of tomato price series of Mumbai market is given in Table
1. The data set was separated into training data (Jan-2011 to Dec-2020) and validation data
groups (Jan-2021 to Dec-2021). The validation data set is used to determine the predictive
accuracy after model fitting. The predicting outcomes of various methods, including ARIMA,
TDNN, Wavelet-ARIMA, and Wavelet-TDNN, were examined to compare the performance
of the suggested methodology with other related techniques in the field. The Ljung-Box
(LB) test Ljung and Box (1978) was used to test residual series.

For ARIMA fitting, ACF and PACF plots of stationary series were used to get the
possible orders for model fitting. Among all possible models, ARIMA (1,0,1) (2,1,1)[12] gave
low AIC and BIC values. Parameter estimates are given in Table 2. The performance of the
ARIMA model and its residual test is shown in Table 3.
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Table 1: Descriptive statistics of tomato price series in Mumbai market

Mean Standard
deviation

Minimum Maximum Range Skewness Kurtosis CV (%)

1439.09 835.67 459.17 4159.38 3700.21 1.18 0.57 58.07

Table 2: Fitted ARIMA model parameter estimates

Parameters C AR (1) MA (1) SAR (1) SAR (2) SMA (1)
Coefficient 7.54** 0.32* 0.41** 0.46** 0.22 -0.76

(S.E) (2.31) (0.14) (0.15) (0.16) (0.14) (0.22)
AIC 1698.66
BIC 1717.43

Table 3: Results of fitted ARIMA and TDNN models

Models Training set Validation set Ljung-Box
test

RMSE MAE MAPE RMSE MAE MAPE Statistic P
value

ARIMA 502.44 339.56 24.92 973.02 808.02 47.04 7.12 0.85
TDNN 594.04 419.45 26.51 855.03 783.06 46.63 20.96 0.06

This study applied an TDNN with a hidden layer, along with sigmoid and identity as
activation functions at the hidden and output layers, respectively as per prior studies Jha and
Sinha (2014). The backpropagation algorithm can be used to train feed-forward networks
in several different ways. In this study, the second-tier training speed was obtained using
the Levenberg-Marquardt algorithm Hagen and Menhaj (1994). Rapid convergence into the
modestly sized feed forward neural network is provided by this algorithm. Thus, functional
approximation issues were addressed by this technique Demuth and Beale (2002). For model
fitting, several combinations of input lags and hidden node sizes were tested. Input delays
ranged from 1 to 8, whereas hidden neurons ranged from 1 to 10. In the validation data
set for the tomato price series, three tapped delay and two hidden nodes (3:2s:1l) provided
the lowest RMSE, MAE and MAPE values. Table 3 shows the performance of the TDNN
model.

Table 4: Results of Wavelet-ARIMA model for all the decomposition levels

Decomposition
Level

Training set Validation set Ljung-Box
test

RMSE MAE MAPE RMSE MAE MAPE Statistic P
value

1 649.52 449.16 42.84 824.55 674.95 34.27 13.64 0.32
2 625.69 431.87 39.04 822.93 650.61 31.80 9.53 0.66
3 628.95 433.14 40.19 844.59 810.80 45.87 8.77 0.72
4 630.34 433.98 44.07 884.13 863.94 56.37 8.04 0.78
5 629.78 434.24 43.97 883.40 862.96 56.25 8.29 0.76
6 629.02 433.50 43.38 884.64 865.01 56.50 8.27 0.76
7 628.46 433.37 42.65 880.66 851.98 54.49 8.30 0.76
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Actual tomato price series were decomposed through MODWT from one to seven
(log2[120] = 6.9) decomposition levels. In each J th level of decomposition, tomato price
series were separated into J high frequencies (W 1, W2, . . . ,WJ) and one low frequency
(VJ) by the Haar mother wavelet, which is a frequently used wavelet, especially for the price
series. In the Wavelet-ARIMA model, all the high and low frequencies were fitted by ARIMA
for all the decomposition levels without conducting the non-linearity test, and the results
of Wavelet-ARIMA are reported in Table 4. Similarly, TDNN was used to fit all high and
low frequencies at every decomposition level for the Wavelet-TDNN model without taking
linearity into account. The results of Wavelet-TDNN are given in Table 5. Results of the
non-linearity test for all the high and low frequencies are shown in Table 6. In our developed
model, ARIMA was used to predict linear frequencies (W1 and W2) and TDNN was used for
modelling non-linear frequencies (W3, W4, W5, W6, W7, V1, V2, V3, V4, V5, V6, V7). Table 7
gives that the models were used to forecast the frequencies at each level of decomposition in
the developed hybrid model. Finally, the predicted values of different frequencies from fitted
ARIMA and TDNN were used to reconstruct the data series at each level of decomposition.

Table 5: Results of Wavelet-TDNN model for all the decomposition levels

Decomposition
Level

Training set Validation set Ljung-Box
test

RMSE MAE MAPE RMSE MAE MAPE Statistic P
value

1 342.76 246.59 19.22 595.83 462.56 30.49 11.84 0.46
2 422.48 306.10 23.37 487.13 393.36 26.16 35.19 <0.01
3 440.05 319.89 24.57 651.53 554.93 37.66 36.65 <0.01
4 454.30 325.86 24.96 788.35 735.23 48.05 34.93 <0.01
5 458.38 330.33 25.32 877.61 820.73 52.22 47.10 <0.01
6 462.07 333.82 25.61 770.39 698.75 44.37 36.38 <0.01
7 459.32 331.50 25.42 769.76 694.30 44.04 46.13 <0.01

McLeod and Li’s test for the actual series shows (Table 6) that the tomato price series
is non-linear. Both ARIMA and TDNN models were fitted for the tomato price series. But
TDNN gave better results than the ARIMA model. Therefore, TDNN performed well for
non-linear time series.

Table 6: Results of McLeod and Li test

Actual Series Statistic P value
Y 80.46 <0.01

Decomposed series
High frequency Statistic P value Low frequency Statistic P value

W1 11.95 0.98 V1 125.15 <0.01
W2 28.67 0.23 V2 216.08 <0.01
W3 97.03 <0.01 V3 324.69 <0.01
W4 127.27 <0.01 V4 806.21 <0.01
W5 297.19 <0.01 V5 667.16 <0.01
W6 589.54 <0.01 V6 924.31 <0.01
W7 697.13 <0.01 V7 226.14 <0.01
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Next, without considering the non-linearity, the Wavelet-ARIMA model was used for
model fitting, which was fitted at all the levels of decomposition. The 2nd decomposition
level gave better results than other decomposition levels. Although Wavelet-ARIMA was
fitted, Table 9 shows that it gave less RMSE, MAE and MAPE than the ARIMA model,
which confirm that wavelet analysis improves the performance of the ARIMA. Similarly,
Wavelet-TDNN was also tried for model fitting, which was fitted only at the first level of
decomposition. But Table 6 shows that the tomato price series consists of both significant
linear and non-linear frequencies. Due to modelling the linear high frequencies (W1 and W2)
using TDNN in Wavelet-TDNN, the Ljung-Box test shows that Wavelet-TDNN was not
fitted for other levels of decomposition. But Wavelet-TDNN enhanced the performance of
TDNN at single level decomposition. To overcome these contrasted applications of linear and
non-linear models, the developed hybrid model was applied to all the levels of decomposition.
Models used for Wavelet-ARIMA-TDNN at each decomposition level are given in Table 7.
The developed hybrid model (Wavelet-ARIMA-TDNN) was given better forecasts than the
Wavelet-ARIMA and Wavelet-TDNN models at every decomposition level. Finally, Wavelet-
ARIMA-TDNN gave a better forecast at the 2nd level of decomposition than at any other
level of decomposition (Table 8). In, W1, W2, and V2 are the outcome frequencies where high
frequencies are linear and a low frequency is non-linear. Two level decomposition of tomato
price series is given in Figure 2.

Table 7: Models used for Wavelet-ARIMA-TDNN at each decomposition level

Frequencies Decomposition level
1 2 3 4 5 6 7

W1 ARIMA ARIMA ARIMA ARIMA ARIMA ARIMA ARIMA
W2 - ARIMA ARIMA ARIMA ARIMA ARIMA ARIMA
W3 - - TDNN TDNN TDNN TDNN TDNN
W4 - - - TDNN TDNN TDNN TDNN
W5 - - - - TDNN TDNN TDNN
W6 - - - - - TDNN TDNN
W7 - - - - - - TDNN
V1 TDNN - - - - - -
V2 - TDNN - - - - -
V3 - - TDNN - - - -
V4 - - - TDNN - - -
V5 - - - - TDNN - -
V6 - - - - - TDNN -
V7 - - - - - - TDNN

When some time series have both linear and non-linear frequencies, it is very difficult
to detect the relationship between such a series using either ARIMA or TDNN. The developed
hybrid method has captured this complicated relationship significantly. It is important
to note that the authors attempted to model this complicated relationship using Wavelet-
ARIMA and Wavelet-TDNN, which proved to be less effective than the developed model.
Hence, the model fitting and forecast accuracy became worse because ARIMA was unable
to model non-linear frequencies and TDNN was unable to capture the linear relationship of
the linear frequencies.
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Model performance for the validation set (Table 9) shows that a combination of
ARIMA and TDNN models based on the non-linearity test along with the MODWT can
improve the overall accuracy. Finally, our developed hybrid method can give more ap-
propriate results than the other methods such as ARIMA, TDNN, Wavelet-ARIMA, and
Wavelet-TDNN models, especially for the series that contain linear and non-linear frequen-
cies. Forecasts of the tomato price series from the developed model are given in Figure
3.

Table 8: Results of Wavelet-ARIMA-TDNN model for all the decomposition
levels

Decomposition
Level

Training set Validation set Ljung-Box
test

RMSE MAE MAPE RMSE MAE MAPE Statistic P
value

1 463.48 331.44 25.05 524.19 415.35 23.74 6.00 0.92
2 453.52 314.16 23.45 458.34 353.15 18.93 11.54 0.48
3 481.20 341.22 26.83 587.90 474.78 24.38 12.52 0.41
4 505.52 351.16 27.38 751.53 624.70 32.02 9.84 0.63
5 510.13 356.81 28.49 861.84 726.78 37.73 12.68 0.39
6 511.64 359.27 28.57 754.63 611.60 30.34 10.21 0.60
7 526.08 367.91 27.51 814.63 637.90 31.83 15.28 0.23

Figure 2: MODWT of tomato price series at level 2
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Table 9: Forecasting ability of five different models in the validation set

Models RMSE MAE MAPE
ARIMA 973.02 808.02 47.04

Wavelet-ARIMA 822.93 650.61 31.80
TDNN 855.03 783.06 46.63

Wavelet-TDNN 595.83 462.56 30.49
Wavelet-ARIMA-TDNN 458.34 353.15 18.93

Figure 3: Actual and predicted tomato price series with its forecasts

5. Conclusion

This paper has developed a wavelet-ARIMA-TDNN model for forecasting the tomato
price series in the Mumbai market. In the developed model, the McLeod and Li test was
used to separate the frequencies into linear and non-linear frequencies, whereas ARIMA and
TDNN were applied to model the linear and non-linear frequencies, respectively. Addition-
ally, the developed model is confirmed to be superior to Wavelet-ARIMA, Wavelet-TDNN,
ARIMA, and TDNN for modelling the series consisting of linear and non-linear frequencies.
The choice of the best model was determined by forecast accuracy in the validation data set.

Finally, this study supports the following statements: (1) the linear time series model
(non-linear time series model) is not appropriate for modelling the non-linear time series
(linear time series); (2) wavelet decomposition (MODWT) improves the performance of the
both time series models; and (3) whenever some time series contain both linear and non-linear
frequencies, logical application of linear and non-linear models to the respective frequencies
helps to enhance the wavelet-hybrid model fitting and forecasting.

Future research on other important non-linear models (LSTM, SVR, WNN, and so
on) for modelling non-linear frequencies, as well as the use of different mother wavelets, is
expected to improve our hybrid model.



228 SATHEES KUMAR K. ET AL. [Vol. 22, No. 2

Acknowledgements

The authors are grateful to AGMARKNET for providing data for analysis.

References

Adamowski, J. and Chan, H. F. (2011). A wavelet neural network conjunction model for
groundwater level forecasting. Journal of Hydrology, 407, 28–40.

Anjoy, P., Paul, R. K., Sinha, K., Paul, A., and Ray, M. (2017). A hybrid wavelet based
neural networks model for predicting monthly WPI of pulses in india. Indian Journal
of Agricultural Science, 87, 834–839.

Antoniadis, A. (1997). Wavelets in statistics: a review. Journal of the Italian Statistical
Society, 6, 97–130.

Box George, E., Jenkins Gwilym, M., Reinsel Gregory, C., and Ljung Greta, M. (1976).
Time Series Analysis: Forecasting and Control. San Francisco: Holden Bay.

Daubechies, I. et al. (1992). Ten lectures on wavelets (siam, philadelphia, 1992). MR 93e,
42045.

Demuth, H. and Beale, M. (2002). Neural network toolbox for use with Matlab: User’s
guide, Natick, USA: Mathworks.

Hagen, M. and Menhaj, M. (1994). Training multilayer networks with the Marquardt algo-
rithm. IEEE Transactions on Neural Networks, 5, 989–993.

Jha, G. K. and Sinha, K. (2014). Time-delay neural networks for time series prediction: an
application to the monthly wholesale price of oilseeds in india. Neural Computing
and Applications, 24, 563–571.

Ljung, G. M. and Box, G. E. (1978). On a measure of lack of fit in time series models.
Biometrika, 65, 297–303.

Markham, I. S. and Rakes, T. R. (1998). The effect of sample size and variability of data on
the comparative performance of artificial neural networks and regression. Computers
& Operations Research, 25, 251–263.

McLeod, A. I. and Li, W. K. (1983). Diagnostic checking arma time series models using
squared-residual autocorrelations. Journal of Time Series Analysis, 4, 269–273.

Nury, A. H., Hasan, K., and Alam, M. J. B. (2017). Comparative study of wavelet-arima
and wavelet-ann models for temperature time series data in northeastern bangladesh.
Journal of King Saud University-Science, 29, 47–61.

Ogden, R. T. (1997). Essential Wavelets for Statistical Applications and Data Analysis.
Springer.

Paul, R. K., Paul, A., and Bhar, L. (2020). Wavelet-based combination approach for modeling
sub-divisional rainfall in india. Theoretical and Applied Climatology, 139, 949–963.

Percival, D. B. and Walden, A. T. (2000). Wavelet Methods for Time Series Analysis,
volume 4. Cambridge University Press.

Ray, M., Singh, K. N., Ramasubramanian, V., Paul, R. K., Mukherjee, A., and Rathod, S.
(2020). Integration of wavelet transform with ann and wnn for time series forecasting:
an application to indian monsoon rainfall. National Academy Science Letters, 43,
509–513.



2024] WAVELET-ARIMA-TDNN MODEL 229

Singla, S., Paul, R. K., and Shekhar, S. (2021). Modelling price volatility in onion using
wavelet based hybrid models. Indian Journal of Economics and Development, 17,
256–265.

Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27, 1134–
1142.


	Introduction
	Materials and Methods
	Wavelet Analysis 
	Maximal Overlap Discrete Wavelet Transform
	Wavelet-ARIMA-TDNN
	Non-linearity test
	ARIMA
	Time-Delay Neural Network

	Evaluation criteria
	Results and Discussion
	Conclusion

