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Abstract

The Kumaraswamy Power Lomax distribution is an extension of Power Lomax
distribution which can be applied many fields engineering, finance and medical research.
In this paper, we study a change point problem of this distribution. A procedure based on
Modified Information Criterion (MIC) is proposed to detect change point(s) in parameters
of this distribution through binary segmentation. The practical applications are provided
to illustrate the detection of multiple change points.
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1. Introduction

Lomax distribution (Lomax, 1954) is one of the more versatile forms of the Pareto
distributional forms. The extension works of Lomax distribution are carried out by many
researchers like Kumaraswamy-generalized Lomax distribution (Shams, 2013), type II
Topp-Leone Power Lomax (TIITLPL) distribution (Al-Marzouki, Jamal, Chesneau and
Elgarhy, 2020), Marshall-Olkin exponential Lomax distribution (Nagarjuna VBV and
Vishnu Vardhan, 2020), and Sine Power Lomax (Nagarjuna, Vardhan and Chesneau,
2021b) to utilizing generalized family of distributions by adding additional parameters to
the model.

In generalized family of distributions, Kumaraswamy generalized family of distri-
butions is a well know family and has been utilized by several researchers to come out
with new functional forms. To mention a few, there are the Kumaraswamy-Weibull
distribution (Cordeiro, Ortega and Nadarajah, 2010), Kumaraswamy-Burr XII (KBXII)
distribution (Paranaiba, Ortega, Cordeiro and Pascoa, 2013) and Kumaraswamy gener-
alized Power Lomax distribution(KPL)(Nagarjuna, Vardhan and Chesneau, 2021a).

Recently, the attractive properties of Power Lomax distributions and its mathemat-
ical tractability was presented by Nagarjuna et al. (2021a). The cumulative distribution
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function (cdf) and probability density function (pdf) of KPL distribution are

FKP L(x; ξ) = 1 −
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(2)
The different shapes of the KPL distribution has been observed at several parameters
of the distribution and very nicely depicted in Figure (1). From this Figure (1), we can
observe that the density curves of the KPL distributional are decreasing or uni-modal
shapes with very flexible to the skewness too.

Figure 1: Density curves of KPL distribution at different parameter values

Now-a-days, the study of Change Point (CP) problem is has grabbed the attention
of many researchers from industry, weather, quality control etc. Briefly, the CP problem
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is the problem to study a change or changes in data. A change in data represents the
point before which the data follows a distribution and follows a different distribution after
that point. Initial works in CP detection was by Page (1954, 1955), where the methods
for the detection of single and multiple points were addressed.

In general, the change point problem involves two steps: estimation and hypothesis
testing. In hypothesis testing step, we test the null hypothesis of no change versus the
alternative of at least one change in data. If the null hypothesis is rejected, we move from
the estimation step to estimate the location of change. Otherwise we stop and conclude
there is no change in data. To know about the theoritical developments and applications
of change point problems, readers can refer to the work of Chen and Gupta (2011). and
applications in this field.

2. Change Point Methodology

Let x1, x2, . . . , xn be a sequence of independent observations that follows a partic-
ular distribution. We would like to test the null hypothesis (H0) versus the alternative
hypothesis (H1), which refers in testing the presence of atmost one change point in the
data. For this problem, the binary segmentation procedure and MIC are used to search
for all possible change points.
We define the H0 and H1 as

H0 : ξ1 = ξ2 = . . . = ξn vs H1 : ξ1 = ξ2 = . . . = ξk ̸= ξk+1 = . . . = ξn

here ξi; i = 1, 2, . . . n is a parameter set of a particular distribution and ‘k’ is the position
of the change point. If a change point is detected then we choose H1, otherwise. Let us
assume that ‘k’ is the change point location and at this point the data gets divided into
segments, first segment will be from 1 to kth point and the second segment will start from
(k + 1)th and n.

Generally, for finding a change point problem there are two popular methods such
as, likelihood ratio test (LRT) and Bayesian procedures. Apart from these methods,
researchers have also shown interest in the well known for model selection that is Akaike
Information Criterion (AIC) and Bayes or Schwarz Information Criterion (BIC).

Chen and Gupta (1997) proposed a test to locate the change in variances of the
normal distribution using BIC. Later, Chen et al. (2006) pointed out, that the BIC
do not concentrate more on penalty term and it needs some modifications related to
the concepts of change point problems. They proposed a new information criterion and
named it as the Modified Information Criterion (MIC) which is the modification of the
approach based on BIC. This is done for refining the model complexity as a function of
the change location in the context of change point problem.

3. Binary Segmentation Procedure

Vostrikova (1981) developed the binary segmentation procedure which was shown to
be consistent. Such a procedure transfers the detection of multiple changes to a sequence
of consecutive steps of at most one change in each step. Before starting the procedure, at
each iteration we need to test for the goodness of fit of data to a particular distribution.
The steps involved in binary segmentation procedure are as follows:
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1. Under the H0 and H1, the general form of log-likelihood functions are given by
log L(X, ξ) and log L(X, ξ′, ξ′′). Here X ∼ fx(.); ξ′ is the parameter set of first
segment and ξ′′ is the parameter set of second segment.

2. Compute the MIC values under H0 and H1. The general expressions of MIC under
H0 and H1 are

H0 : MICn = −2 log LH0 + m log n

H1 : MICk = −2 log LH1 +
(

2m +
(2m

n
− 1

)2)
log n

here ‘m’ is the number of parameters; ‘n’ is the number of observations at each
iteration.

3. If MICn < min
1≤k<n

MICk, then we accept H0, i.e., there is no change point in the
data, otherwise we accept H1 meaning to that there exits a change point. At this
change point location, the dataset divide into two segments.

4. This will continue until the condition given in step-3 is satisfied, i.e., H0 is accepted.

As per the steps of the binary segmentation procedure, the log-likelihood functions
and MIC are presented below.

Step-1: Let us define the H0 and H1 based on the parameter set of KPL distribution.

H0 : ξ1 = ξ2 = . . . = ξn vs H1 : ξ1 = ξ2 = . . . = ξk ̸= ξk+1 = . . . = ξn

here ξi = (ai, bi, αi, βi, λi); i = 1, 2, . . . n which are the parameters of KPL distribu-
tion.

Under H0 and H1, the log-likelihood functions of KPL distributions are
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The maximum likelihood estimators (MLEs) of KPL distribution for H0 and H1 are

∂

∂a
log LH0 = n

a
+

n∑
i=1

log Υi +
n∑

i=1
(1 − b) log Υi

(Υ−a
i − 1) = 0



2022] CHANGE POINT DETECTION OF KPL DISTRIBUTION 163
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Step-2: The MIC under the null hypothesis (H0) is defined as

H0 : MICn = −2 log LH0 + 5 log n (3)

where ‘5’ is the number of parameters to be estimated in the KPL distribution. The MIC
under the alternative hypothesis (H1) is defined as

H1 : MICk = −2 log LH1 +
(

10 +
(10

n
− 1

)2)
log n (4)

for a fixed change at location k.

Once, the MICn and MICk are obtained, we check for the condition given in step-3
of binary segmentation procedure. In CPA, the change point is the index of each data
point from 1 to n samples. Even after partition, the detection of change point will be
indicated by its actual index of ‘n’ samples.
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4. Applications of KPL distribution in Change Point Detection

The practical applications of Change point detection was considered to the following
real data sets as Floyd river data (Mudholkar and Hutson, 1996) and Eruption data (da
Silva, de Andrade, Maciel, Campos and Cordeiro, 2013).

Floyd River Data: The dataset is about the recordings of annual flood discharge rates
(in ft3/s) from the Floyd River at James, Iowa. There are total of 39 samples measured
between the period of 1935-1973 with 10 years of split.

Table 1: The Annual Flood Discharge Rates of Floyd River

Years Flood Discharge in (ft3/s)
1935-1944 1460, 4050, 3570, 2060, 1300, 1390, 1720, 6280, 1360, 7440,
1945-1954 5320, 1400, 3240, 2710, 4520, 4840, 8320, 13900, 71500, 6250,
1955-1964 2260,318, 1330, 970, 1920, 15100, 2870, 20600, 3810, 726,
1965-1973 7500, 7170, 2000, 829, 17300, 4740, 13400, 2940, 5660.

Now applying the binary segmentation procedure, the following points are observed.

The MICn > min
1≤k<n

MICk i.e., 771.167 > 743.3059. So, this indicates that there is
a shift/change in the floods of the years.

1. The first change point location is at k = 18 (MICk = 742.3649). So, the total
sample (n = 39) gets divided into two segments. First segment is from 1 to 18 data
points and rest of them fall under second segment.

2. Continuing the procedure with 18 samples and 21 samples, two more change points
are observed. One in the first segment (n = 18) and other in the second segment
(n = 21).

3. The second change point is detected at 11th location (MICk = 297.6745) of the
first 18 samples. Similarly, the 3rd change point is observed at 32nd location of the
second segment (n = 21) with MICk = 421.9489.

4. One more change point is noticed between the 19th and 32rd location, i.e., at k = 25
with MICk = 248.5449.

5. In the above step, the condition given in step-3 of binary segmentation procedure
is satisfied, hence the procedure will get terminated.

6. In total, in this dataset, four change points are detected at k = 18 (Flood dis-
charge rate=13900ft3/s); k = 11 (Flood discharge rate=5320ft3/s); k = 32 (Flood
discharge rate=7170ft3/s) and k = 25 (Flood discharge rate=248.5449ft3/s).

The entire description is depicted in Figures (2-4). The distribution fit at every iteration
is computed and the same is presented in Figure (4).
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Figure 2: Change point detection using KPL for Floyd river data

Figure 3: Change point detection values using KPL distribution

Change Point detection of KPL distribution
Floyd river data

1:39 MICn : 770.9735
k-18 MICk : 742.3649
K-S p-value: 0.9455

1:18 MICn : 302.6363
k-11 MICk : 297.6745
K-S p-value: 0.0429

19:39 MICn : 434.3627
k-32 MICk : 421.9489
K-S p-value: 0.0665

19:32 MICn : 255.17
k-25 MICk : 248.5449
K-S p-value: 0.0133

Figure 4: Floyd river data - Decision tree
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Eruption Data:

This dataset is about the waiting times (in seconds), between 65 successive eruptions
of the Kiama Blowhole. These values were recorded with the aid of digital watch on Jim
Irish and the data values are: 83, 51, 87, 60, 28,95, 8, 27, 15, 10, 18, 16, 29, 54,91, 8, 17,
55, 10, 35, 47, 77, 36, 17, 21,36, 18, 40, 10, 7, 34, 27, 28, 56, 8, 25, 68, 146, 89, 18, 73,
69, 9,37, 10, 82, 29, 8, 60, 61, 61, 18, 169, 25, 8, 26, 11, 83, 11, 42, 17, 14, 9, 12.

Now applying the binary segmentation procedure, the following points are observed.

The MICn > min
1≤k<n

MICk i.e.,609.2285 > 541.1450. So, this indicates that there is
a shift/change in the eruption waiting times.

1. The first change point location is at k = 26 (MICk = 541.1450). So, the total
sample (n = 64) gets divided into two segments. First segment is from 1 to 26 data
points and rest of them fall under second segment.

2. Continuing the procedure with 26 samples and 38 samples, two more change points
are observed. One in the first segment (n = 26) and other in the second segment
(n = 38).

3. The second change point is detected at 15th location (MICk = 128.2241) of the
first 25 samples. Similarly, the 3rd change point is observed at 42nd location of the
second segment (n = 38) with MICk = 334.2032.

4. Here, again the second segment gets divided into two segments. We observed
that, two more change points are detected i.e., at k = 35 (between 27th and 42th

data points) (MICk = 94.8768) and k = 60 (between 43rd and 64th data points)
(MICk = 201.8235).

5. One more change point is noticed between the 1st and 15th location, i.e., at k =
6 (MICk = 55.5510).

6. In the above step, the condition given in step-3 of binary segmentation procedure
is satisfied, hence the procedure will get terminated.

7. In total, in this dataset, six change points are detected at k = 26 (Eruption wait-
ing time=36s); k = 15 (Eruption waiting time=91s); k = 42 (Eruption waiting
time=9s); k = 35 (Eruption waiting time=8s); k = 51 (Eruption waiting time=61s);
and k = 6 (Eruption waiting time=95s).

The entire description is depicted in Figures (5-7). The distribution fit at every
iteration is computed and the same is presented in Figure (7).
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Figure 5: Change point detection using KPL CPD for Eruption data

Figure 6: Change point detection values using KPL distribution

Change Point detection of KPL distribution
Eruption data

1:64 MICn : 609.2285
k-26 MICk : 541.145
K-S p-value: 0.5935

1:26 MICn : 162.0102
k-15 MICk : 128.2241
K-S p-value: 0.4875

1:15 MICn : 65.7274
k-6 MICk : 55.5510
K-S p-value: 0.6802

27:64 MICn : 372.0206
k-42 MICk : 334.2032
K-S p-value: 0.8509

27:42 MICn : 112.3910
k-35 MICk : 94.8768
K-S p-value: 0.1136

43:64 MICn : 213.9596
k-51 MICk : 201.8235
K-S p-value:0.2365

Figure 7: Eruption data - Decision tree
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5. Discussions

In this paper, we discussed that, the KPL distribution plays an important role to
detect multiple change points. For the datasets considered, at each and every iteration
test for goodness of fit and computed MIC values are computed. The tree diagram
representation is based on the algorithm of binary segmentation.
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