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Abstract
A Reliability Demonstration Test (RDT) demonstrates whether a product has met a

certain reliability requirement with a specific confidence. This paper deals with construction
of RDTs for a two-component parallel system subject to constant-stress partially accelerated
life testing (CSPALT) using periodic mode of inspection and Weibull life distribution. The
data from periodic inspection consist of number of failures of systems due to each component
in each inspection period. In CSPALT the test specimens are allocated to two test chambers
with test items running at normal operating condition in one and at accelerated condition in
the other till the termination of the experiment. The optimal test plan consists in obtaining
optimal number of allocations in each test chamber and optimal inspections points. RDTs
based on optimal test plan are carried out for mean lives of components as well as the system.
A numerical example is presented to illustrate the method developed.

Key words: Reliability demonstration tests; Partially accelerated life tests; Periodic inspec-
tion; Two-component parallel system; Weibull life distribution; D-optimality criterion.

1. Introduction

Accelerated life tests (ALTs) facilitate bringing about early failures in highly reliable
items lasting for several years and hence obtaining reliability information about them in
timely manner. This in turn helps the manufacturer to sustain in competitive market where
technology is constantly changing with change in consumers’ tastes. The book by Nelson
(2009) gives a detailed account of Accelerated Tests. The data from a periodic inspection
referred to as “grouped data” or “interval data” comprises number of failures in each inspec-
tion period. In contrast to continuous inspection wherein exact failure times of the test units
are observed, periodic inspection requires less testing effort and is administratively conve-
nient as compared to continuous inspection. In the literature the periodic inspection has
been used by many authors, for example, Kulldorff (1961); Ehrenfeld (1962); Nelson (1977);
Archer (1982); Flygare et al. (1985); Meeker (1986); Yum and Choi (1989); Seo and Yum
(1991); Ahmad et al. (1994); Islam and Ahmad (1994); Ahmad and Islam (1996); Ahmad
et al. (2006). A PALT is modelled using an acceleration factor (AF) and a life distribution,
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where AF is defined as the ratio of a reliability measure, say mean life, at use condition to
that at accelerated condition. AF= k (say) means that the unit under consideration runs k
times longer at normal operating condition than at accelerated condition. In CSPALT the
test specimens are allocated to two test chambers with test items running at normal oper-
ating condition in one and at accelerated condition in the other till the termination of the
experiment. ALTs have been studied extensively in the literature see for example, Srivastava
(2017) and Chen et al. (2018).

The theory of testing statistical hypotheses provides the tools for reliability demon-
stration. If either the life distribution or its parameters are unknown, then the problem of
reliability demonstration is that of obtaining suitable data and using them to test the null
hypothesis that R(t0)≥R0 against the alternative that R(t0) < R0, where t0 is the specified
time point and R0 is desired reliability. We wish to test whether the reliability of the device
at age t0, R(t0) satisfies the requirement that R(t0)≥R0. Nelson (1977) has provided the
optimal demonstration tests with grouped inspection data from an exponential distribution
and has also explained how to use the results for a Weibull distribution with known shape pa-
rameter. Optimal demonstration tests with grouped inspection data for logistic, log-logistic,
normal/Gaussian, and log-normal distributions have been obtained Wei and Bau (1987).

The present paper deals with formulation of reliability demonstration tests for a two-
component parallel system subject to CSPALT using periodic mode of inspection and Weibull
life distribution. The Weibull life distribution incorporates various failure rates-increasing,
decreasing and constant and is therefore of importance in industries manufacturing electronic
and mechanical components. It adequately fits the life of several types of capacitors and
resistors, such as electrolytic aluminium and tantalum capacitors and carbon film resistors
(Yang, 2007; Shaw, 1987).

2. Notation

δ Weibull shape parameter
µ1 Weibull scale parameter for component 1
µ2 Weibull scale parameter for component 2
λ1 Exponential Scale parameter for component 1
λ2 Exponential scale parameter for component 2
A Acceleration Factor, A > 1
R (t) Reliability function
n Total number of two-component parallel systems
w1j, wA1j The number of systems failing due to component 1 in (tj−1, tj] ,

j = 1, 2, . . . k + 1 in chamber 1 and chamber 2, respectively
w2j, wA2j The number of systems failing due to component 2 in (tj−1, tj] ,

j = 1, 2, . . . k + 1 in chamber 1 and chamber 2, respectively
P1j, PA1j The probability of failure of a system due to component 1 in (tj−1, tj] ,

j = 1, 2, . . . k + 1 in chamber 1 and chamber 2, respectively
P2j, PA2j The probability of failure of a system due to component 2 in (tj−1, tj] ,

j = 1, 2, . . . k + 1 in chamber 1 and chamber 2, respectively
N(0, 1) Standard normal distribution
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Figure 1: Structure of periodic inspection in chamber 1

Figure 2: Structure of periodic inspection in Chamber 2

3. Formulation of likelihood function

n independent parallel systems each with two independent components are put to test
under CSPALT. Out of n systems n1 systems are put to test in test chamber 1 where they are
run under normal operating condition, and n2 systems are put to test in test chamber 2 where
they are run at accelerated condition. The systems are examined for failures periodically at
optimally spaced inspection t1, t2, ... , tk+1. Let, t0 = 0 and tk+1 = ∞. Define ρ as the
proportion of units that are allocated in chamber 1, and 1−ρ as the proportion of units that
are allocated in chamber 2.

The structures of periodic inspection of systems at chamber 1 and chamber 2 are
displayed in Figure 1 and Figure 2, respectively.

Assume that the lifetimes of test units are iid as Weibull with shape parameter δ
known and scale parameter µ unknown. That is, the pdf, cdf, and reliability function of
lifetime T at normal operating condition are:

f (t) = µδ(µt)δ−1e−(µt)δ

, t ≥ 0 , (1)

F (t) = 1 − e−(µt)δ

, t ≥ 0 , (2)
and

F (t) = e−(µt)δ

, t ≥ 0 , (3)
respectively, and the pdf, cdf, and reliability function of lifetime T at accelerated operating
condition are given as

f (t) = Aµδ(µt)δ−1e−A(µt)δ

, t ≥ 0 , (4)

F (t) = 1 − e−A(µt)δ

, t ≥ 0 , (5)
and

F (t) = e−A(µt)δ

, t ≥ 0 , (6)
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Assuming transformation times yj = tj
δ, j = 1, . . . , k + 1, are iid from an exponential

distribution with failure rate λ = µδ.

So the Weibull distribution reduces to the exponential distribution with pdf, cdf, and
reliability function under accelerated condition as:

f (y) = Aλe−Aλy, y > 0 , (7)

F (y) = 1 − e−Aλy, y > 0 , (8)
and

F (y) = e−Aλy, y > 0 , (9)

respectively. At normal operating condition, A = 1 in the above equations. The
probability of failure of a system due to component 1 under normal operating condition in
(yj−1, yj] , j = 1, 2, . . . k + 1,

P1j =
ˆ yj

yj−1

F2 (y) f1 (y) dy ,

giving

P1j = e−λ1yj−1 − e−λ1yj +
λ1
(
e−(λ1+λ2)yj − e−(λ1+λ2)yj−1

)
λ1 + λ2

, for j = 1, 2, . . . , k + 1. (10)

The probability of failure of a system due to component 2 under normal operating condition
in (yj−1, yj] , j = 1, 2, . . . k + 1,

P2j =
ˆ yj

yj−1

F1 (y) f2 (y) dy ,

giving

P2j = e−λ2yj−1 − e−λ2yj +
λ2
(
e−(λ1+λ2)yj − e−(λ1+λ2)yj−1

)
λ1 + λ2

, for j = 1, 2, . . . , k + 1. (11)

The probability of failure of a system due to component 1 under accelerated condition in
(yj−1, yj] , j = 1, 2, . . . k + 1,

PA1j =
ˆ yj

yj−1

F2 (y) f1 (y) dy ,

giving

PA1j = e−Aλ1yj−1 −e−Aλ1yj +
λ1
(
e−A(λ1+λ2)yj − e−A(λ1+λ2)yj−1

)
λ1 + λ2

, for j = 1, 2, . . . , k+1. (12)

The probability of failure of a system due to component 2 under accelerated condition in
(yj−1, yj] , j = 1, 2, . . . k + 1,

PA2j =
ˆ yj

yj−1

F1 (y) f2 (y) dy ,
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giving

PA2j = e−Aλ2yj−1 −e−Aλ2yj +
λ2
(
e−A(λ1+λ2)yj − e−A(λ1+λ2)yj−1

)
λ1 + λ2

, for j = 1, 2, . . . , k+1. (13)

At stress level, the grouped data wij, j = 1, 2, . . . , k + 1 are multinomially distributed with
parameters ni and Pij, j = 1, 2, . . . , k + 1. The likelihood function of parallel system for
independent components is then given by

L (λ1, λ2, A) = L1L2, (14)

where L1 is the likelihood corresponding to systems’ failures in chamber 1 (normal operating
condition) is:

L1 = n1!
k+1∏

j=1
(w1j + w2j)!

−1 k+1∏
j=1

P
w1j

1j P
w2j

2j

 ,

L2 is the likelihood systems’ failures in chamber 2 (accelerated operating condition) is:

L2 = n2!
k+1∏

j=1
( wA1j + wA2j)!

−1 k+1∏
j=1

P
wA1j

A1j P
wA2j

A2j

 ,

L = L1L2 ,

From properties of Multinomial Distribution,

w1j + w2j = n1j, and, wA1j + wA2j = n2j,∑k+1
j=1 (P 1j + (P 2j) = 1, and, ∑k+1

j=1 (P A1j + PA2j) = 1 ,

Thus, the log-likelihood function is a function of unknown parameters λ1, λ2, and A
given as:

lnL(λ1, λ2, A) = lnL1 + lnL2.

lnL(λ1, λ2, A)

=ln


n1!

k+1∏
j=1

(w1j + w2j)!
−1k+1∏

j=1
P

w1j

1j P
w2j

2j


 ·

n2!
k+1∏

j=1
( wA1j + wA2j)!

−1k+1∏
j=1

P
wA1j

A1j P
wA2j

A2j





= ln (n1!) + ln (n2!) −
k+1∑
j=1

ln(w1j + w2j)! −
k+1∑
j=1

ln (wA1j + wA2j) !

+
k+1∑
j=1

w1jln(P 1j) +
k+1∑
j=1

w2jln (P2j) +
k+1∑
j=1

wA1jln(P A1j) +
k+1∑
j=1

wA2jln(P A2j)
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=
k+1∑
j=1

w1jln(P 1j) +
k+1∑
j=1

w2jln(P 2j) +
k+1∑
j=1

wA1jln(P A1j) +
k+1∑
j=1

wA2jln(P A2j) + C, (15)

where C is a constant independent of parameters. Maximum Likelihood (ML Estimates
of λ1, λ2, and A are obtained by maximizing lnL (λ1, λ2, A) using NMaximize option of
Mathematica 10 software package.

If λ̂ is the ML estimate for λ = µδ in the transformed problem, then µ̂ = λ̂1/δ is the
ML estimate for µ.

4. Fisher information matrix

The Fisher Information Matrix (Nelson, 1977) is given by,
F = nρF1 + n (1 − ρ) F2,

where,

Fi =


E
[
−∂2lnLi

∂λ1
2

]
E
[
− ∂2lnLi

∂λ1∂λ2

]
E
[
−∂2lnLi

∂λ1∂A

]
E
[
− ∂2lnLi

∂λ1∂λ2

]
E
[
−∂2lnLi

∂λ2
2

]
E
[
−∂2lnLi

∂λ2∂A

]
E
[
−∂2lnLi

∂λ1∂A

]
E
[
−∂2lnLi

∂λ2∂A

]
E
[
−∂2lnLi

∂A2

]
 , i = 1, 2. (16)

5. Optimization problem

The optimum plan consists in determining optimum allocation ρ and optimal in-
spection times using D-optimality which consists in maximizing the determinant of Fisher
information matrix which is the same as the reciprocal of the asymptotic variance-covariance
matrix. The volume of the asymptotic joint confidence region of parameters, say, (µ, δ) is
proportional to the square root of the determinant of the inverse of the Fisher information
matrix, |F −1|1/2, at a fixed confidence level. In other words, it is inversely proportional to
|F |1/2. Consequently, a smaller value of the determinant would correspond to a higher (joint)
precision of the estimators of µ, δ. The D-optimality criterion is therefore preferred to other
optimality criteria existing in the literature such as A-optimality criterion, C-optimality
or variance-optimality criterion. Thus, the optimization problem for determining optimal
allocation and two inspection points y1 and y2 with y3 specified is:

Maximize |F |

s.t.0 < ρ < 1, 0 < y1 < y2 < y3. (17)
Using transformed problem tj = yj

δ, j =1, 2, 3, we get inspection points t1 and t2 with t3
specified.

6. Reliability demonstration testing

In the present section, reliability demonstration testing for the mean life of the com-
ponents and the system comprising these components has been presented. The acceptance
of the null hypothesis in Section 6.1 and Section 6.2 corresponds to a demonstration of mean
life of at least the specified value with confidence 100((1 − α1)%), where α1 is the probability
of committing Type-I error.
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6.1. Reliability demonstration for components

For component i, i = 1, 2, the objective is to test:

H0i : 1
µ i

≥ 1
µ i0

, versusH1i : 1
µ i

<
1
µ i0

, (18)

where µi = λi
1/δ and µi0 = λi0

1/δ (18) is equivalent to testing

H0i : 1
µδ

i
≥ 1

µδ
i0

, versus H1i : 1
µδ

i
< 1

µδ
i0

,

or,

H0i : 1
λ i

≥ 1
λ i0, versus H1i : 1

λ i
< 1

λ i0,

where 1
λ i0 is a specified mean life of component i, and 1

λ̂ i
is estimated value of 1

λi
.

Under H0i, the test statistic ((Nelson, 1977))

Ti =
1
λ̂i

− 1
λi0√

est.var
(
1/ λ̂i

) ∼ N (0, 1) as n → ∞ . (19)

6.2. Reliability demonstration test for system

The time to failure of a two-component parallel structure is not Weibull distributed,
even if both components have Weibull distributed times to failure.

The MTTF (mean time to failure) of the 2-component parallel system is,

MTTF =
ˆ ∞

0
R (t) dt =

Γ
(

1
δ

)
δ

(
1

λ1
1/δ

+ 1
λ2

1/δ
− 1

(λ1 + λ2)1/δ

)
.

Under H03: MTTF≥ MTTF 0 versus H13 : MTTF < MTTF 0 the test statistic
(Nelson, 1977),

Ts = (Est.MTTF − MTTF 0)√
Est.variance of Est.MTTF

∼ N (0, 1) as n → ∞, (20)

where

Est.MTTF = Γ( 1
δ )

δ

(
1

λ̂
1/δ
1

+ 1
λ̂

1/δ
2

− 1

(λ̂1+λ̂2)1/δ

)
= h(say).

h1 = dh

dλ1
, h2 = dh

dλ2
, h3 = dh

dA
,

h =

h1
h2
h3

 , hT = [h1 h2 h3]

Est.variance of Est.MTTF = hT F −1h.
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7. Numerical example

Let the total number of inspection k = 5, λ1 = 0.1 and λ2 = 0.5, inspection times
y0 = 0, y5 = 30, y6 = ∞ , acceleration factor A = 1.7, for n = 35 items put to test. The
optimal allocation ρ = 0.521892, and times inspection times y1 = 2,y2 = 4,y3 = 8, and y4 =
16. The simulated data is depicted in Table 1.1.

Table 1: Simulated data

Intervals Chamber 1 Chamber 2
Component 1 Component 2 Component 1 Component 2

(0, 2] 3 1 0 3
(2, 4] 3 0 2 5
(4, 8] 2 3 0 2
(8,16] 3 0 0 4
(16,30] 2 0 0 1
(30, ∞) 1 0 0 0

7.1. Hypothesis testing problem for component 1

H01 : 1
λ1

≥ 10 versus H11 : 1
λ1

< 10

Under H01, the test statistic:

T1 = −0.786602

Thus accept H01 at 5% level of significance.

7.2. Hypothesis testing Problem for component 2

H02 : 1
λ2

≥ 2 versus H12 : 1
λ2

< 2

Under H02, the test statistic:

T2 = 2.71621

Thus, accept H02 at 5% level of significance.

7.3. Hypothesis testing problem for the 2-component parallel system

Under H03: MTTF≥ 5 versus H13 : MTTF < 5 the test statistic,

Ts = 1.04019

Thus, accept H03 at 5% level of significance. Thus, components as well as the system
meet the specified reliability requirements.
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8. Conclusion

The paper deals with reliability demonstration tests for a two-component parallel
system with subject to CSPALT under periodic inspection using Weibull life distribution.
The optimal plan consists in determining optimal allocation and optimal inspection times
using D-optimality criterion. The method proposed is illustrated using a numerical example.

The future scope of RDTs under normal operating or accelerated conditions is vast
and still unexploited.

These tests can be also constructed for two-component parallel systems with de-
pendent components. RDTs can also be formulated for other reliability systems such as
series-parallel, parallel-series, and k-out-of-n system, etc. Conducting RDTs for small sam-
ple size for various reliability systems is still an open problem. Parametric approach has
been used in the present paper. The tests can also be formulated using Non-parametric and
Bayesian approaches.
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