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Abstract
In this paper we develop a superior and ideal statistical model to provide optimal

modelling for the number of deaths resulting from COVID-19 infections. This paper intro-
duces the power modified Lindley-geometric distribution, a novel versatile three-parameter
discrete model built on the T-X methodology. In addition, to providing a generalized geomet-
ric distribution we offer a thorough list of its mathematical characteristics. The parameter of
the new model is estimated using four different estimation techniques: maximum likelihood,
Cramer-von Mises, least-square, and weighted least-square. The simulation experiment uses
four distinct estimating approaches to test the accuracy of the model parameters. Addition-
ally, we applied two datasets to the COVID-19 mortality data for the United Kingdom and
Egypt. These two instances of actual data were used to highlight the significance of our
distribution for modelling and fitting this particular kind of discrete data.

Key words: T-X family, Maximum likelihood; Cramer-von Mises; Least-square; Weighted
least-square; Data analysis.
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1. Introduction

In our modern period, the abundance of data coming in from all fields has submerged
the interest in defining new flexible distributions. “Thoroughly changing” a baseline dis-
tribution is an easy and quick way to define these mathematical objects. The study of
tail properties and improving the goodness-of-fit of the associated models have both been
demonstrated to benefit from the addition of parameter(s). The most well-liked distribution
among those that have been suggested is the T-X family of distributions by Alzaatreh et al.
(2013). The following peculiar transformation is one of the most practical transformers for
T-X family of distributions W (F (x)) = −log(1 − F (x)), where the cumulative density func-
tion (CDF) of random variable X is represented by the notation F (x). To put it another
way, W (F (x)) is used to modify the distribution described by F (x) and define a new family
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of distributions based on a changed CDF. With the help of the T-X family, one may quickly
build discrete distributions in addition to continuous distributions. The T-geometric family,
which are the discrete analogues of the distribution of the random variable T , was defined
and explored by Alzaatreh et al. (2012) as a result. The CDF of T-geometric family is given
by

G(x; ϕ, b) =
−log(p(x+1))�

0

r(t; ϕ)dt = R[−log(p(x+1)); ϕ, p)] = R[b(x + 1); ϕ, b], x = 0, 1, 2, ...,

(1)
where b = −log p > 0 and ϕ the parameters of the CDF R(x; ϕ). Some of the families avail-
able in the modern literature are the Pareto-geometric, Weibull-geometric, Burr-geometric
and exponentiated exponential -
geometric distribution by Alzaatreh et al. (2012), Kumaraswamy-geometric distribution by
Akinsete et al. (2014) and exponentiated Weibull-geometric distribution by Famoye (2019).
The comprehensive review of T-X family of distributions may be found in Tomy et al. (2019).

Chesneau et al. (2021b) introduce a novel two-parameter lifetime distribution that is
the power version of the modified Lindley distribution and call it as power modified Lindley
(PML) distribution. It offers a compelling substitute for the Weibull and power Lindley
distributions as its primary goal. Let T be a random variable with the PML distribution.
The probability density function (PDF) and the CDF are each defined as

r(t; α, θ) = θα

1 + θ
tα−1e−2θtα

[
(1 + θ)eθtα + 2θtα − 1

]
, t > 0, (2)

R(t; α, θ) = 1 −
[
1 + θtα

1 + θ
e−θtα

]
e−θtα

, t > 0, (3)

where α >0 and θ >0. This distribution is derived by using the power parameter α in
modified Lindely distribution, has been proposed by Chesneau et al. (2021a).

This paper introduces a flexible three parameter discrete distribution called power
modified Lindley-geometric, which is based on T-geometric family of distribution and power
modified Lindley distribution. The main driving force behind the development of this new
discrete distribution was the fact that, in contrast to the amount of literature on continuous
cases, there was a dearth of research on the discrete families of distributions. Another fact is
that there are lots of researchers work to understand the patterns of the COVID-19 epidemic
and offer models that better suit the data and can be used to estimate the anticipated number
of cases and deaths to assist the government in making decisions on preventative measures.
And the new distribution is suitable for fitting COVID-19 data sets, which is the main
goal of this study. Another motivator is the characteristics of the suggested distribution
itself. In other words, the newly proposed discrete distribution features a probability mass
function (PMF) that is right-skewed, symmetric and left-skewed. Additionally, the new
distribution features hazard rate functions (HRF) that are increasing, decreasing and upside-
down bathtub-shaped. Additionally, we provided a comparison of the various estimation
techniques.
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Following is an outline of the remaining content: In Section 2, we provide a brand-new
discrete family of distributions. Section 3, a special case of the obtained new discrete discrete
family of distribution and its probabilistic characteristics are studied in detail. Section
4 discussed least-squares, weighted least squares, and the Cramer von Mises technique in
addition to maximum likelihood estimation. A thorough simulation analysis is employed in
Section 5 to evaluate the performance of these estimators. Applications to the two COVID-
19 data sets used to demonstrate how the new distribution performs are detailed in Section
6. A few closing thoughts are provided in Section 7.

2. Discrete power modified Lindley-X family of distribution

In this section, we introduce the discrete power modified Lindley-X (PML-X) family
of distributions, a new discrete family of distributions. Utilising the Alzaatreh et al. (2013)
T-X generalization technique, we enable the transformed random variable T to have the
PML distribution and the transformer random variable X is a discrete random variable,
with W (F (x)) = −log(1 − F (x)). Then the CDF of new family is given by

G(x; α, θ, ℑ) =
−log(1−F (x;ℑ))�

0

r(t; α, θ)dt = R(−log(1 − F (x; ℑ)))

= 1 −
[
1 + θ[−log(1 − F (x; ℑ))]α

1 + θ
e−θ[−log(1−F (x;ℑ))]α

]
e−θ[−log(1−F (x;ℑ))]α (4)

The corresponding PMF of the PML-X family of discrete distributions becomes.

g(x; α, θ, ℑ) = G(x) − G(x − 1)

=
[
1 + θ[−log(1 − F (x − 1; ℑ))]α

1 + θ
e−θ[−log(1−F (x−1;ℑ))]α

]
e−θ[−log(1−F (x−1;ℑ))]α

−
[
1 + θ[−log(1 − F (x; ℑ))]α

1 + θ
e−θ[−log(1−F (x;ℑ))]α

]
e−θ[−log(1−F (x;ℑ))]α (5)

where α > 0, θ > 0 and ℑ the parameters of the CDF F (x; ℑ), and the range of variation
of PML-X family of distribution depends on the random variable X with CDF F (x; ℑ).

In the following section, we examine one member of this family, the power modified
Lindley-geometric distribution, and provide its detailed features. The geometric distribution
was chosen because it has a simplified CDF form.

3. Power modified Lindley-geometric distribution

Let’s make the assumption that the transformed distribution is geometric with pa-
rameter p, 0 < p < 1, and that the survival function S(x) = 1 − F (x) = p(x+1).Then, the
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PMF of the new model using Equation (5) is given by

g(x; α, θ, b) =
[
1 + θ(bx)α

1 + θ
e−θ(bx)α

]
e−θ(bx)α

−
[
1 + θ(b(x + 1))α

1 + θ
e−θ(b(x+1))α

]
e−θ(b(x+1))α ; x = 0, 1, 2, .... (6)

where b = −log p >0, α >0 and θ >0. We call this new distribution the power modified
Lindley-geometric (PMLG) distribution with parameters b, α and θ. Note that,

lim
x→+∞

g(x; α, θ, b) = 0, lim
x→0

g(x; α, θ, b) = 0 when b → 0 and

lim
x→0

g(x; α, θ, b) = 1 when b → ∞.

The corresponding CDF is given by

G(x; α, θ, b) = 1 −
[
1 + θ(b(x + 1))α

1 + θ
e−θ(b(x+1))α

]
e−θ(b(x+1))α ; x = 0, 1, 2, ... (7)

and the hazard rate function (HRF) corresponding to the CDF is provided by

h(x; α, θ, b)) =

[
1 + θ(bx)α

1+θ
e−θ(bx)α

]
e−θ(bx)α −

[
1 + θ(b(x+1))α

1+θ
e−θ(b(x+1))α

]
e−θ(b(x+1))α[

1 + θ(b(x+1))α

1+θ
e−θ(b(x+1))α

]
e−θ(b(x+1))α

A graphic illustration of the PMF of the PMLG distribution in various forms is
shown in Figure 1. These graphs demonstrate the possibility of right-skewed, symmetric,
left-skewed, increasing decreasing curves for the PMF of the PMLG distribution. The HRF
of the PMLG distribution in Figure 2 is depicted in some of its potential shapes for various
parameter values. Figures show that the HRF can have a variety of shapes, including
increasing, decreasing and upside-down bathtub shapes. As a result, the PMLG distribution
is excellent at modelling a variety of data sets.

3.1. Probability generating function, rth moment function, mean and variance

The probability generating function (PGF) of PMLG distribution is given by

p(s) = 1 + (s − 1)
∞∑

x=1
sx−1

[
1 + θ(bx)α

1 + θ
e−θ(bx)α

]
e−θ(bx)α

. (8)

Using Equation (6), the non-central rth moment of the PMLG distribution can be calculated
as follows:

µ′
r =

∞∑
x=0

xrg(x; α, θ, b)

=
∞∑

x=0
xr

[
1 + θ(bx)α

1 + θ
e−θ(bx)α

]
e−θ(bx)α −

∞∑
x=0

xr

[
1 + θ(b(x + 1))α

1 + θ
e−θ(b(x+1))α

]
e−θ(b(x+1))α

.
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In particular, the first two moments of the PMLG distribution are given by

µ′
1 = E(X) =

∞∑
x=1

[
1 + θ(bx)α

1 + θ
e−θ(bx)α

]
e−θ(bx)α

. (9)

µ′
2 =

∞∑
x=1

(2x − 1)
[
1 + θ(bx)α

1 + θ
e−θ(bx)α

]
e−θ(bx)α

. (10)

The variance of PMLG distribution is given as

V (X) =
∞∑

x=1
(2x − 1)

[
1 + θ(bx)α

1 + θ
e−θ(bx)α

]
e−θ(bx)α −

 ∞∑
x=1

[
1 + θ(bx)α

1 + θ
e−θ(bx)α

]
e−θ(bx)α

2

.

(11)

Table 1 shows the mean and variance of the PMLG distribution for different values of
b, α and θ using statistical software. From this, we are able to understand that the variance
decreases with α and θ for different values of b. Furthermore, based on the values of b, α
and θ, the mean can be equal, lower or larger than its variance. As a result, many data sets
can be modelled using the characteristics of the PMLG distribution.

Table 1: The mean (variance) of PMLG for various choices of parameters

α −→ 0.5 1 2
θ ↓

b = 0.25 0.5 15.1411(337.0099) 8.8333( 61.9832) 5.1041( 6.0108)
1.5 3.3854( 49.6625) 2.4523(7.0107) 2.5990(2.2115)
2.5 1.0478(7.7934) 1.2522( 2.4986) 1.8552(1.3915)

b = 1 0.5 7.4605(143.5667) 1.8484(3.8987) 0.9007(0.4569)
1.5 0.6757(3.7225) 0.3203(0.3896) 0.2555(0.1952)
2.5 0.1470(0.3978) 0.0943(0.1015) 0.0869( 0.0795)

b = 1.75 0.5 4.6069(72.9978) 0.8633( 1.2649) 0.2662(0.1998)
1.5 0.3096(1.1287) 0.0837(0.0890) 0.0103(0.0102)
2.5 0.0532(0.1039) 0.0129(0.0131) 0.0005(0.0005)

3.2. Infinite divisibility

The Central Limit Theorem and waiting time distributions are closely related to
infinite divisibility. In accordance with Steutel and Van Harn (2003), If p(x), x ∈ N0 is
infinitely divisible, then p(x) < e−1 for all x ∈ N. We can observe that for the PMLG
distribution with parameters b = 0.4, α =2 and θ = 5, r(1) = 0.4346001 > e−1 = 0.367. It
follows that the PMLG distribution is not infinitely divisible. Additionally, since the discrete
concepts of self-decomposable and stable distributions are subclasses of infinitely divisible
distributions, we are able to conclude that the PMLG distribution cannot be either of these
properties.
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Figure 1: PMFs of some parameter values for the PMLG distribution
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Figure 2: HRFs of some parameter values for the PMLG distribution
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4. Parameter estimation

In this section, we focus on the many classical estimating techniques. There are
numerous and different classical approaches, some of which rely on the theory of maximisa-
tion and others on the theory of minimization. This section includes, maximum likelihood,
Cramer-von-Mises, least squares and weighted least squares approaches of estimation as part
of four classical estimation methods.

4.1. Maximum likelihood approach of estimation

If we choose x1, x2, . . . , xn to be a random sample from the PMLG distribution with
unknown parameters b, α and θ and, the likelihood function is given by

L(α, θ, b) =
n∏

i=1
g(xi; α, θ, b)

=
n∏

i=1

[
1 + θ(bxi)α

1 + θ
e−θ(bxi)α

]
e−θ(bxi)α −

[
1 + θ(b(xi + 1))α

1 + θ
e−θ(b(xi+1))α

]
e−θ(b(xi+1))α

.

The log-likelihood function follows immediately as

ℓ(b, α, θ) = log [L(b, α, θ)]

=
n∑

i=1
log


[
1 + θ(bxi)α

1 + θ
e−θ(bxi)α

]
e−θ(bxi)α

−
[
1 + θ(b(xi + 1))α

1 + θ
e−θ(b(xi+1))α

]
e−θ(b(xi+1))α

.

The first derivatives of ℓ(b, α, θ) with respect to b, α and θ are

∂ℓ(b, α, θ)
∂b

=
n∑

i=1

αθ∆1
b

{
e−θ(bxi)α

1+θ
[1 − θ(bxi)α] −

[
1 + θ

1+θ
∆1

]}
[
1 + θ

1+θ
∆1

]
e−θ(bxi)α −

[
1 + θ

1+θ
∆2

]
e−θ(b(xi+1))α

−
n∑

i=1

αθ∆2
b

{
e−θ(b(xi+1))α

1+θ
[1 − θ(b(xi + 1))α] −

[
1 + θ

1+θ
∆2

]}
[
1 + θ

1+θ
∆1

]
e−θ(bxi)α −

[
1 + θ

1+θ
∆2

]
e−θ(b(xi+1))α

∂ℓ(b, α, θ)
∂α

=
n∑

i=1

θ∆1log(bxi)
{

e−θ(bxi)α

1+θ
[1 − θ(bxi)α] −

[
1 + θ

1+θ
∆1

]}
[
1 + θ

1+θ
∆1

]
e−θ(bxi)α −

[
1 + θ

1+θ
∆2

]
e−θ(b(xi+1))α

−
n∑

i=1

θ∆2log(b(xi + 1))
{

e−θ(b(xi+1))α

1+θ
[1 − θ(b(xi + 1))α] −

[
1 + θ

1+θ
∆2

]}
[
1 + θ

1+θ
∆1

]
e−θ(bxi)α −

[
1 + θ

1+θ
∆2

]
e−θ(b(xi+1))α
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∂ℓ(b, α, θ)
∂θ

=
n∑

i=1

∆1
{

e−θ(bxi)α

(1+θ)2 [(1 + θ)(1 − θ(bxi)α) − θ] −
[
1 + θ

1+θ
∆1

]}
[
1 + θ

1+θ
∆1

]
e−θ(bxi)α −

[
1 + θ

1+θ
∆2

]
e−θ(b(xi+1))α

−
n∑

i=1

∆2
{

e−θ(b(xi+1))α

(1+θ)2 [(1 + θ)(1 − θ(b(xi + 1))α) − θ] −
[
1 + θ

1+θ
∆2

]}
[
1 + θ

1+θ
∆1

]
e−θ(bxi)α −

[
1 + θ

1+θ
∆2

]
e−θ(b(xi+1))α

Where, ∆1 = e−θ(bxi)α(bxi)αand ∆2 = e−θ(b(xi+1))α(b(xi + 1))α.

Setting ∂ℓ(b,α,θ)
∂b

= 0, ∂ℓ(b,α,θ)
∂α

= 0 and ∂ℓ(b,α,θ)
∂θ

= 0, and then solving the equations
iteratively will yield the maximum likelihood (ML) estimators of b, α and θ. These equations
are complicated to solve analytically. One can use mathematical software to get numerical
solutions.

4.2. Cramer-von-Mises approach of estimation

The Cramer-von-Mises (CVM ) estimation approach is a significant estimation method
that was discussed in Macdonald (1971). The CVM estimation technique’s parameters can
be calculated by minimising the function CVM in respect to the unknown parameters.

CV M = 1
12 +

n∑
i=1

{
G(xi; α, θ, b) − 2i − 1

2n

}

= 1
12 +

n∑
i=1

{
1 −

[
1 + θ(b(xi + 1))α

1 + θ
e−θ(b(xi+1))α

]
e−θ(b(xi+1))α − 2i − 1

2n

}

4.3. Least square approach of estimation

Assume that x1, x2, . . . , xn is a randomly selected sample of size n from the PMLG
distribution and that x1:n, x2:n, . . . , xn:n signifies a corresponding ordered sample. Conse-
quently, the following quantity can be minimized to produce least squares (LS) estimators
for PMLG parameters

LS =
n∑

i=1

{
G(xi:n; α, θ, b) − i

n + 1

}2

=
n∑

i=1

{
1 −

[
1 + θ(b(xi:n + 1))α

1 + θ
e−θ(b(xi:n+1))α

]
e−θ(b(xi:n+1))α − i

n + 1

}2

with respect to b, α and θ respectively.

4.4. Weighted least square approach of estimation

The weighted least square (WLS) estimators of the unknown parameters for the
PMLG distribution are derived in this subsection. Let x1, x2, . . . , xn be a random sample and
x1:n, x2:n, . . . , xn:n be the corresponding ordered sample of size n from the PMLG distribution.
The following sum of squares errors can be minimised to generate the PMLG estimators
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WLS =
n∑

i=1

(n + 1)2(n + 2)
i(n − i + 1)

{
G(xi:n; α, θ, b) − i

n + 1

}2

=
n∑

i=1

(n + 1)2(n + 2)
i(n − i + 1)

{
1 −

[
1 + θ(b(xi:n + 1))α

1 + θ
e−θ(b(xi:n+1))α

]
e−θ(b(xi:n+1))α − i

n + 1

}2

with respect to b, α and θ respectively.

5. Simulation

Here, a simulation study is used to examine how well various estimates of the PMLG
distribution work. Using the PMLG distribution, we produce random data with varying
sample sizes and parameter values. The simulation research is run N= 1000 times with n
= 50, 100, 150, and 200 as the sample size and the chosen parameter values. We compute
the ML, CVM, LS and WLS estimates of b, α and θ. Based on the calculated results esti-
mates, average biases (Bias) and mean squared errors (MSEs) measurements are calculated.
The results of this simulation are shown in Tables 2 and 3. We can draw the following
interpretations from the tables:

• With larger sample sizes, all estimates experience a decreasing trend in MSEs and Bias
decays towards zero.

• The LS estimates MSEs are lower than those for the ML, WLS, and CVM estimates.

Table 2: The Bias and MSE of the ML, CVM, LS and WLS estimates for b=0.5,
α=0.4 and θ=0.045

n Bias(b̂) MSE(b̂) Bias(α̂) MSE(α̂) Bias(θ̂) MSE (θ̂)
50 ML 0.0322 1.3889 -0.4728 0.2365 -0.3687 0.2769

CVM -0.0348 0.0829 -0.4892 0.2447 -0.3869 0.1582
LS -0.0005 0.2704e-04 -0.0001 0.4885e-06 -0.0001 0.1155e-05

WLS -0.0303 0.2046 -0.4945 0.2471 -0.3941 0.1595
100 ML -0.0168 0.5318 -0.4434 0.2217 -0.3553 0.1421

CVM -0.0050 0.0335 -0.1889 0.0945 -0.1284 0.0627
LS -0.0002 0.2899e-05 -0.3202e-04 0.6908e-07 -0.4317e-04 0.1450e-06

WLS -0.0178 0.1858 -0.4163 0.2080 -0.3249 0.1388
150 ML 0.0267 0.4623 0.0003 0.4505e-04 0.0093 0.0537

CVM 0.0009 0.0001 -0.0045 0.0023 0.0042 0.0020
LS -0.6792e-05 0.4697e-06 -0.2010e-05 0.1184e-07 -0.2032e-06 0.2626e-07

WLS -0.0084 0.0997 -0.2404 0.1202 -0.1848 0.0779
200 ML 0.0003 0.6853e-04 -0.1957e-04 0.3828e-06 -0.0002 0.5283e-04

CVM 0.0003 0.5130e-04 -0.0010 0.0005 0.0009 0.0005
LS -0.3016e-06 0.9838e-07 -0.6776e-06 0.2865e-08 -0.7719e-06 0.590e-08

WLS 0.37691e-04 0.1421e-05 -0.0005 0.0002 0.0005 0.0002
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Table 3: The Bias and MSE of the ML, CVM, LS and WLS estimates for b=0.6,
α=0.5 and θ=0.05

n Bias(b̂) MSE(b̂) Bias(α̂) MSE(α̂) Bias(θ̂) MSE (θ̂)
50 ML -0.0143 0.3723 -0.5719 0.3436 -0.4532 0.5205

CVM -0.0172 0.1487 -0.4736 0.2841 -0.3554 0.19245
LS -0.0007 0.1823e-04 -0.0003 0.383e-04 0.0001 0.4367e-04

WLS -0.0459 0.0101 -0.5860 0.3519 -0.4846 0.2451
100 ML -0.0043 -0.0043 -0.3523 0.2123 -0.2616 0.4132

CVM -0.0107 0.0010 -0.1783 0.1071 -0.1120 0.0706
LS -0.0002 0.2613e-05 -0.1761e-04 0.2295e-07 -0.2939e-04 0.7558 e-07

WLS -0.0220 0.0301 -0.3597 0.2156 -0.282 0.1592
150 ML 0.0028 0.0070 0.1515e-04 0.21181e-06 -0.0007 0.0003

CVM -0.0030 0.0002 -0.0389 0.0233 -0.0291 0.0157
LS -0.3115e-04 0.2720e-06 -0.3128e-05 0.2699e-08 -0.5645e-05 0.8846e-08

WLS 0.0030 0.0095 -0.0027 0.0015 0.0026 0.0017
200 ML 0.0007 0.0002 -0.6898e-05 0.1166e-06 -0.0007 0.0002

CVM 0.9024e-04 0.4348e-05 -0.0011 0.0006 0.0006 0.0002
LS -0.1707e-04 0.1457e-06 -0.1788e-05 0.1598e-08 -0.3128e-06 0.4894e-08

WLS 0.0009 0.0007 -0.0012 0.0007 0.0007 0.0003

6. Application

This section uses two actual count data sets to demonstrate the significance of the
PMLG distribution over the existing models, namely exponentiated exponential-geometric
(EEG) distribution and Kumaraswamy-geometric (KG) distribution, in modelling count data
from the field of medicine. We used the maximum likelihood method to estimate the val-
ues of the unknown parameters in order to compare these distributions. Additionally, the
estimated log-likelihood function (ℓ̂), Akaike Information Criterion (AIC ), correct Akaike
information criterion (AICc), Anderson-Darling statistic (A), Cramér von Mises statistic
(W ) and Kolmogorov-Smirnov (K-S) statistic with p-value (p-V ) are used to compare the
fitted distributions. The following displays the considered data sets.

Data set I:The first data set shows the number of COVID-19-related deaths that
occurred on a daily basis in the United Kingdom from August 1 through August 28, 2021.
This information is obtained from the website
https : //www.worldometers.info/coronavirus/country/uk/, which lists the number of
deaths caused by COVID-19 in the United Kingdom on a daily basis. The data set is
provided below.
{65, 24, 138, 119, 86, 92, 103, 39, 37, 140, 104, 94, 100, 91, 61, 26, 170, 111, 113, 114, 104,
49, 40, 174, 149, 140, 100, 133}

Data set II:The second data set, which has 42 observations and is available on the
Worldometer website through
https : //www.worldometers.info/coronavirus/country/Egypt/, shows the number of daily
COVID-19 infection-related deaths that occurred in Egypt from 13 March to 30 April 2020.
The data are as follows.
{1, 2, 4, 5, 1, 1, 3, 6, 6, 4, 1, 5, 6, 6, 8, 5, 7, 7, 9, 9, 15, 17, 11, 13, 5, 14, 5, 13, 9, 19, 15, 11,



214 MEENU JOSE AND LISHAMOL TOMY [Vol. 22, No. 2

14, 12, 11, 7, 13, 10, 20, 22, 21, 12}

Tables 4, 5, 6 and 7, contain the MLEs, (−ℓ̂), AIC and goodness-of-fit tests for
COVID-19 data sets. The analysis yields the PMLG distribution with the lowest −ℓ̂, AIC,
AICc, HQIC, A, W, K-S statistic, and highest p-V s. The PMLG distribution is the appro-
priate one based on these results. We can say from the two applications that the PMLG
distribution is the best model for capturing the daily deaths by COVID-19.

Figure 3 gives the total time test (TTT )-plots of PMLG distribution for the COVID-
19 data sets. The TTT -plots shows increasing HRF, allowing us to fit PMLG distribution.
Figure 4 display the probability-probability (PP) plots for the two data sets, respectively.
The PMLG distribution offers a better fit for the COVID-19 data sets, which support the
findings in Tables 4, 5, 6 and 7.

Table 4: Estimated values, −ℓ̂, AIC, and AICc for the data set I

Distribution Estimates −ℓ̂ AIC AICc
α̂ = 2.5303 143.5036 293.0072 294.0072

PMLG θ̂ = 8.6018
b̂ = 0.0039

EEG α̂ = 4.8971 146.008 296.0161 296.4961
θ̂ = 0.9774
p = 0.9941 144.3038 294.6075 295.6075

KG α̂ = 3.1638
θ̂ = 10.4923

Table 5: A, W and K-S with p-V s for the data set I

Distribution A W K-S p-V s
PMLG 0.5679 0.0941 0.14277 0.6179

EEG 1.0461 0.2023 0.2072 0.1805
KG 0.7393 0.1351 0.1720 0.3785

Table 6: Estimated values, −ℓ̂ and AIC and AICc for the data set II

Distribution Estimates −ℓ̂ AIC AICc
α̂ = 1.7357 129.0244 264.0489 264.6805

PMLG θ̂ = 11.6800
b̂ = 0.0227

EEG α̂ = 2.6088 130.1956 264.3913 264.699
θ̂ = 0.8385
p = 0.9734 129.243 264.486 265.1176

KG α̂ = 1.9437
θ̂ = 14.2437
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Table 7: A, W and K-S with p-V s for the data set II

Distribution A W K-S p-V s
PMLG 0.4625 0.0725 0.10275 0.767

EEG 0.8018 0.1447 0.13774, 0.403
KG 0.5264 0.0871 0.10979 0.692
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Figure 3: TTT-plots for the COVID-19 (a) data set I and (b) data set II
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Figure 4: PP-plots for the COVID-19 (a) data set I and (b) data set II

7. Conclusion

In this study, we suggested an entirely novel family of discrete PML-X distributions.
PMLG distribution is a specific instance of this family that is thoroughly researched. ML,
CVM, OLS and WLS techniques have been used to estimate the model parameters. A sim-
ulation study is conducted to evaluate the effectiveness of the various estimating techniques.
In order to demonstrate the significance and adaptability of defined distribution, two real
data sets are analysed at the end. We anticipate that the suggested model will replace
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various types of discrete distributions found in the statistical literature.
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