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Abstract 

Response Surface Methodology is extensively used in applications involving multiple 

input variables (factors) which influence some output (response) variables, performance measures 

or certain quality characteristics of a process. These input variables are under the control of the 

experimenter. The main purpose of response surface methodology is to form a strategy for the 

experimentation by exploring the space of input variables (process) to develop a suitable functional 

relationship (model) between response and input variables.  This model is then used to find the 

optimum set of values of the process input variables which are expected to result in the desired 

optimum response. For identifying and fitting the appropriate response surface model, 

methodology makes use of fundamentals of experimental design, statistical modelling and 

optimization techniques. Besides response surface methodology being extensively used in 

agronomic experiments, it is also commonly used as an automated tool for model calibration and 

validation especially in modern computational multi-agent large-scale social-networks systems 

that are used in modeling and simulation of complex social networks. This methodology can be 

integrated in many large-scale simulation systems such as BioWar, ORA and is currently 

integrating in Vista, Construct, and DyNet.  This paper describes the fuzzy logic approach to fit 

the response surface model, analysis and the implementation of chosen method by using the 

agronomic experimental data. 

Key words: Response surface methodology; Least squares regression; Fuzzy logics and 

Regression. 

1 Response Surface Model 

We consider that the experimenter’s interest is to study the response variable (𝑦) which can 

be observed and is influenced by a set of 𝑝 -input variables 𝑥1, … , 𝑥𝑝 .  To approximate the 

underlying relationship of response with input variables, we approximate the unknown true 
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relationship with an appropriate empirical model of the form 𝑦 =  𝑓( 𝑥1, … , 𝑥𝑝)  +  𝜀, where the 

term 𝜀 represents the observed error in the response. Often, function 𝑓 is assumed to be a first-

order or second-order polynomial. This empirical model is termed as a response surface model.   

We assume that there is a curvature in the system and, thus, consider a second-order response 

model: 

𝑦 = 𝑎0 + ∑ 𝑎𝑖𝑥𝑖 + ∑ 𝑎𝑖𝑖𝑥𝑖
2 +  ∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗 + 𝜀;  𝑖, 𝑗(≠ 𝑖) = 1, … , 𝑝.       (1) 

It may be unlikely that a polynomial model will be a reasonable approximation of true 

functional relationship over the entire space of input variables; however, they work quite well for 

a relatively small region. The well-known method of ordinary least squares is generally used to fit 

the model. The response surface analysis is then performed using the fitted model. The model 

constants can be estimated most effectively by using appropriate experimental designs to collect 

data. Designs for fitting response surface are termed as response surface designs. The response 

surface methodology is a sequential procedure. When a point on the response surface is remote 

from the optimum, there is little curvature in the system and the first-order model will be 

appropriate. Once the region of the optimum is found, an improved model, such as second-order 

model, may be employed and analysis may be performed to locate the optimum. To find the levels 

( 𝑥1𝑠, … , 𝑥𝑝𝑠 ) of input-variables 𝑥1, … , 𝑥𝑝,  we optimize the predicted response. This point 

(𝑥1𝑠, … , 𝑥𝑝𝑠) is called the stationary point which could represent a point of maximum response, or 

a minimum response or a saddle point. By generating contour plots using computer software for 

response surface analysis, we can characterize the shape of the surface and locate the optimum 

with reasonable accuracy.   

2 Characterization of the Response-Surface Model 

Mathematically, we may obtain a general solution for the location of the stationary point 

of the second-order response model. In matrix notation, let fitted model be 

𝑦̂ = 𝑎̂0 + 𝐱T𝒂 + 𝐱T𝑨𝐱,             (2) 

where, 𝐱 is a 𝑝 x 1 vector of the input variables, 𝒂 is a 𝑝 x 1 vector of the first-order regression 

coefficients and 𝑨 is a 𝑝 x 𝑝 symmetric matrix having the pure quadratic coefficients (𝑎𝑖𝑖)  as 

main diagonal elements and one-half the mixed quadratic coefficients (𝑎𝑖𝑗; 𝑖 ⧣ 𝑗) as off-diagonal 

elements. That means, 

𝐱T = [𝑥1, … , 𝑥𝑝], 𝒂T = [𝑎̂1, … , 𝑎̂𝑝], 𝑨 = [

𝑎̂11 𝑎̂12/2
 𝑎̂22

 …
 …

 𝑎̂1𝑝/2

 𝑎̂2𝑝/2
  
  

                 …
   

 …
 𝑎̂𝑝𝑝

].              (3) 

The stationary point is 𝐱𝐬 = 𝑨−𝟏𝒂/2, and the predicted response at the stationary point 

𝐲𝐬 = 𝑎̂0 + 𝐱𝐬
𝐓𝒂/2.  We need to determine if the stationary point 𝐱𝐬  leads to a maximum or 
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minimum response or is a saddle point. This may be done easily by constructing and examining 

the contour plot of the fitted model if there are two or three input variables. Alternatively, we can 

conduct the canonical analysis. It is useful to transform the model into a new co-ordinate system 

choosing origin at the stationary point 𝐱𝐬 and then rotating the axes of the system until they are 

parallel to the principal axes of the fitted response model.  Denoting transformed input variables 

by 𝑤𝑖 and constants by 𝜆𝑖, fitted canonical form of the model is given by  

𝑦̂ = 𝑦𝑠 + ∑ 𝜆𝑖𝑤𝑖
2 , 𝑖 = 1, … , 𝑝.        (4) 

The constants 𝜆𝑖′s are also the eigen-values of the matrix 𝑨. If 𝜆𝑖′s are all positive, the 

stationary point  𝐱𝐬  is a point of minimum response; if 𝜆𝑖′s are all negative, 𝐱𝐬  is a point of 

maximum response; and if 𝜆𝑖′s have opposite signs, 𝐱𝐬 is a saddle point.  Further the response 

surface is steepest in the 𝑤𝑖 direction for which |𝜆𝑖| is the largest. 

In some applications, it may be necessary to find the relationship between the canonical 

variables, 𝑤𝑖  and the design (input) variables, 𝑥𝑖.  

3 Fitting Response-Surface Model: Method of Least Squares 

Classical statistical linear regression models are extensively used in almost every field of 

science wherein interest is in studying the cause-and-effect relationships among the multiple 

variables. The purpose of regression analysis is to explain the variation of a dependent variable in 

terms of the variation of explanatory variables. In regression analysis, the degree of contribution 

of each explanatory variable to the dependent variable is explained by their coefficients. Although, 

linear regression models and their estimations are well known, for the sake of completeness, we 

describe them in brevity. Rewriting the response surface model (1) as 

𝐲 = 𝐗𝐛 + 𝛜,                                           (5) 

   𝐲T = [𝑦1, … , 𝑦𝑛], 𝐛T = [𝑏0, 𝑏1, … , 𝑏𝑝], 𝐗 = [

1 𝑥11

 1 𝑥21

 𝑥12   …
 𝑥22   …

 𝑥1𝑝

 𝑥2𝑝
. .

 1 𝑥𝑛1

 .
 𝑥𝑛2 …

 .
 𝑥𝑛𝑝

],  𝛜T = [𝜖1, … , 𝜖𝑛], 

the well-known classical method of least squares results in the least squares estimates of the 

coefficients of the response-surface model as  𝐛̂ = (𝐗𝐓𝐗)−1𝐗𝐓𝐲. 

4 Fitting Response-Surface Model: Fuzzy Logic and Regression 

Crisp data, also known as precise data, are very common in our everyday life. The 

traditional science and technology pursuit for certainty in all its manifestations and almost all the 

mathematical theories are developed for handling such kind of data. However, in many cases, data 

have the characteristic of uncertainty. There are primarily two types of uncertainty. The first is 

probabilistic uncertainty, which is well developed overtime. The second is what is termed as fuzzy 
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uncertainty. Let us start with fuzzy data, which is a combination of fuzzy variable and random 

variable and can characterize both fuzziness and randomness. Fuzzy Logic as a superset of 

conventional (Boolean) logic was first introduced by Zadeh (1965, 1968) to handle the concept of 

partial truth. Fuzzy Logic is considered as the most powerful tool for dealing with imprecision and 

uncertainties. Zadeh proposed that fuzzy set can be applied to represent data which is fuzzy and 

this fuzziness can be represented by the degree of participation to a set called a membership 

function. Let X be a space of points. A fuzzy set 𝐀 in space X is characterized by a membership 

function, 𝝁𝑨(𝒙) and the value of 𝝁𝑨(𝒙) at x representing the grade of membership of x in A where 

𝝁𝑨: 𝑿 → [𝟎, 𝟏].  For traditional bivalent logic, the value of membership function of crisp data can 

only be 0 or 1, that means, outside the set, or within the set, respectively. However, a fuzzy set 

allows for its members to have degrees between 0 and 1. Thus, it can describe natural phenomenon 

more accurately. Further, conventional set theory and binary logic have three elementary binary 

operations, that is, intersection (and), union (or), and complement set (negation). The rules of 

binary operations were generalized in order to fitting fuzzy data. The fuzzy logic operations truth 

table is shown in Table 1. The generalized form of the operators works well for the fuzzy and for 

the bivalent data as well.  

Table 1: The Generalized form of operations; Truth table 

x and y min(𝑥, 𝑦) 

x or y max(𝑥, 𝑦) 

not x 1 − 𝑥 

 

5 Fuzzy Regression   

The classical linear regression has crisp coefficients and is bounded by some strict 

assumptions about the given data, that is, the unobserved error terms are mutually independent and 

identically distributed. However, if the data set is too small in size, or, if there is difficulty in 

verifying that the errors are normally distributed, or, if there is vagueness in the relationship 

between the dependent and independent variables, or, if there is ambiguity associated with the 

events, it is well known that the classical linear regression may fail to work satisfactorily. In such 

cases, alternatively, fuzzy linear regression may be more useful. Fuzzy linear regression (FLR) 

was first introduced by Tanaka (1982) and then further developed in Tanaka (1987). The FLR 

model includes a fuzzy output and non-fuzzy input variables and fuzzy coefficients. In this paper, 

however, our focus is on the type of fuzzy regression model considered by Tanaka (1987). The 

basic model assumes a fuzzy linear functional form   

𝑦̃ = 𝐴̃0 + 𝐴̃1𝑥1 + ⋯ + 𝐴̃𝑝𝑥𝑝,                 (6) 
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where 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑝]
𝑇
 is a vector of input variables, 𝐀̃ = [𝐴̃0, 𝐴̃1, … , 𝐴̃𝑝] is a vector of fuzzy 

coefficients presented in the form of symmetric triangular fuzzy data denoted by 𝐴𝑗̃ = (𝑎𝑗, 𝑐𝑗) with 

its membership function described as  

𝜇𝐴𝑗
(𝛼) = {

1 −
|𝑎𝑗−𝛼|

𝑐𝑗
, 𝑎𝑗 − 𝑐𝑗 ≤ 𝛼 ≤ 𝑎𝑗 + 𝑐𝑗; 𝑗 = 1,2, … , 𝑝,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
       (7) 

where 𝑎𝑗 is the central value and 𝑐𝑗 is the width. The membership function of the fuzzy output can 

be described as 

𝜇𝑌𝑖
(𝑦) = {

1 −
|𝑦𝑖−𝑦|

𝑒𝑖
, 𝑦𝑖 − 𝑒𝑖 ≤ 𝑦 ≤ 𝑦𝑖 + 𝑒𝑖; 𝑖 = 1,2, … , 𝑛,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
    (8) 

The degree of fitting of the fuzzy regression model to the given data 𝒀𝑖 = (𝑦𝑖, 𝑒𝑖)  is 

measured by an index  min𝑗[ℎ̅𝑗],  where 

ℎ̅𝑖 = 1 −
|𝑦𝑖−𝐱𝑖

𝑇𝛼|

∑ 𝑐𝑗|𝑥𝑖𝑗|−𝑒𝑖𝑗
.                                             (9) 

The vagueness of the fuzzy regression model is defined by 𝐽 = ∑ 𝑐𝑗 .𝑗   The fuzzy parameter 

𝐴̃𝑗
 
is obtained so as to minimize 𝐽 subject to ℎ̅𝑖 ≥ 𝐻, where 𝐻 is selected as the degree of fitting 

the model by the experimenter. 

The basic idea is to minimize the fuzziness of the model by minimizing the total support 

of the fuzzy coefficients subject to including all the given data. As a result, we can obtain the best 

fitted model for the given data by solving the conventional linear programming problem. 

min  𝐽 = 𝑚𝑐0 + ∑ ∑ 𝑐𝑖𝑥𝑖𝑗

𝑛

𝑖=1

𝑚

𝑗=1

 

s. t.   𝑦𝑗 ≥ ∑ 𝑎𝑖𝑥𝑖𝑗

𝑛

𝑖=1

− (1 − 𝐻) ∑ 𝑐𝑖𝑥𝑖𝑗

𝑛

𝑖=1

+ (1 − 𝐻)𝑒𝑗, 

           𝑦𝑗 ≤ ∑ 𝑎𝑖𝑥𝑖𝑗

𝑛

𝑖=1

+ (1 − 𝐻) ∑ 𝑐𝑖𝑥𝑖𝑗

𝑛

𝑖=1

− (1 − 𝐻)𝑒𝑗, 

𝑐𝑖 ≥ 0, 𝑖 = 0,1, … , 𝑛.                                                    (10) 

For the sake of completeness, Matlab 2018 programming codes for fitting the model are included 

in the appendix. 
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6 Illustration 

 

For illustration of the fuzzy response surface analysis, we have adapted the data from an 

experiment which was conducted at the Division of Agronomy, Indian Agricultural Research 

Institute, New Delhi [Data Source: Design Resources Server, www.iasri.res.in/design]. The main 

purpose of the experiment was to derive the optimum combination of Nitrogen (N) and Sulphur 

(S) for maximizing the yield of paddy crop. The experimenter recorded paddy yield (kg/ha) by 

applying four levels of Nitrogen as 0, 50, 100, 150 kg/ha and four levels of Sulphur as 0, 20, 40, 

60 kg/ha. The experiment was conducted using a RCB design in three replications. The experiment 

data are shown in Table 2. 

Table 2: Agronomy experiment data 

Yield 𝑦 Nitrogen 𝑥1 Sulphur 𝑥2 

4121.212 0 0 

4678.03 0 20 

4742.424 0 40 

4727.273 0 60 

6083.333 50 0 

6041.667 50 20 

6223.485 50 40 

6715.909 50 60 

6761.364 100 0 

6916.667 100 20 

6852.273 100 40 

6810.606 100 60 

6174.242 150 0 

7022.727 150 20 

7003.788 150 40 

6943.182 150 60 

 

The analysis of variance of the data revealed that replications were not significantly 

different, i.e., the replication mean square was smaller in comparison to the error mean square.   

For analysis, a second order response surface is considered using the inputs in order to fit 

the quadratic response surface. We have fitted the response model with coefficients 

𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, and 𝑎5:   

𝐸(𝑌𝑖𝑒𝑙𝑑) = 𝑎0 +  𝑎1𝑁 + 𝑎2 𝑆 + 𝑎3 𝑁2 + 𝑎4 𝑆2 +  𝑎5 𝑁𝑆          (11) 

The co-ordinates of stationary point and the predicted yield at the stationary point are 

computed. For fuzzy model to obtain fuzzy coefficients of response surface, we have assumed 1% 

spread of the yield which could be due to the measurement errors or due to other unknown sources. 

The upper bounds and the lower bounds of the predicted yield are obtained. The observed values 

are supposed to be in the interval of the computed bounds. For the algorithm, computer codes are 

prepared and the statistical software Matlab 2018 is used to analyze the data. 

http://www.iasri.res.in/design
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6.1 Response Surface:   Method of Least Squares 

By applying the method of ordinary least squares, the estimated coefficients of the response 

surface model are described in Table 3. 

Table 3: Estimated least squares coefficients,  𝒂̂𝟎, 𝒂̂𝟏, 𝒂̂𝟐, 𝒂̂𝟑, 𝒂̂𝟒, 𝐚𝐧𝐝 𝒂̂𝟓 

𝑎̂0 𝑎̂1 𝑎̂2 𝑎̂3 𝑎̂4  𝑎̂5 

4266.250 40.906 19.226 -0.175 -0.179 -0.008 

 

The co-ordinates of the stationary point,  𝐱𝒔 = (N=115.8582 kg/ha, S=51.2538 kg/ha) and 

the predicted yield at the stationary point is 𝑦𝑝𝑟𝑒𝑑 = 7128.60 kg/ha.  

After finding the stationary point, it is necessary to characterize the response surface in the 

immediate vicinity of this point. Characterizing the response surface means determining whether 

the stationary point is a point of maximum or minimum response or a saddle point. In order to find 

the nature of the stationary point, first we have transformed the model into a new coordinate system 

with the origin at the stationary point 𝑥0 and then rotated the axes of this system until they are 

parallel to the principal axes of the fitted response surface. This results in the fitted model 

𝑦 = 𝜆0 + 𝜆1𝑤1
2 + 𝜆2𝑤2

2,     (12) 

where {𝑤𝑖′𝑠} are the transformed independent variables (the canonical variables) and {𝜆𝑖′𝑠} are 

constants.  

Furthermore,  {𝜆𝑖′𝑠} are just the eigenvalues of the matrix 𝐀 = (𝑎3      0.5𝑎5
0.5𝑎5      𝑎4

). If the {𝜆𝑖′𝑠} 

are all positive, 𝑥0  is a point of minimum response; if they are all negative, 𝑥0  is a point of 

maximum response; and if they have opposite signs, 𝑥0 is a saddle point. In this example, the 

eigenvalues of 𝐀 are 𝜆1 = −0.1811 and 𝜆2 = −0.1724, implying that the stationary point is a 

point of maximum response. The quadratic response surface is shown in Figure 1. The contour 

plot is shown in Figure 2. 

Sometime, it may not be possible to operate the process at the stationary point. Then, we 

need to find the relationship between the canonical variables {𝑤𝑖} and the design variables {𝑥𝑖}, 

which can be illustrated by the following equation 

 𝐰 = 𝐌′(𝐱 − 𝐱0),     (13) 

where M is a (2 × 2)  orthogonal matrix. The columns of M are normalized eigenvectors 

associated with the {𝜆𝑖′𝑠}. In other words, the 𝑖th columns of M denoted 𝐦𝐢 is the solution to 

(𝐀 − λi𝐈)𝐌𝐢 = 𝟎,     (14) 

for which 𝑚1𝑖
2 + 𝑚2𝑖

2 = 1. 
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Figure 1: Response surface of agronomy experiment data 

Using mathematical software MATLAB 2018, the relationship between the canonical 

variables {𝑤𝑖} and the design variables {𝑥𝑖} is found to be 

[
𝑤1

𝑤2
] = [

0.5245 −0.8514
0.8514 0.5245

] [
𝑥1 − 115.8582
𝑥2 − 51.2538

], 

or, 

𝑤1 = 0.5245(𝑥1 − 115.8582) − 0.8514(𝑥2 − 51.2538), 

𝑤2 = 0.8514(𝑥1 − 115.8582) + 0.5245(𝑥2 − 51.2538). 

By the above equations, we can determine appropriate points at which to observe in the 

(𝑤1, 𝑤2) space and convert these points into the (𝑥1, 𝑥2) space to further explore the response 

surface around the stationary point 𝑥0 = (115.8582, 51.2538).  
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Figure 2: The Contour plot of the response surface of agronomy experiment data 

6.2 Response Surface: Method of Fuzzy Regression  

To fit the fuzzy response surface, we consider 1% spread for the yield accounting for 

measurement errors or yield losses due to unknown sources. We apply fuzzy regression model to 

obtain fuzzy coefficients of the response surface and calculate the upper and the lower bounds of 

the predicted yield. Estimated fuzzy coefficients of the response surface are given in Table 4.  

Table 4: Fuzzy coefficients of response surface model 

Fuzzy coefficients 𝐴0̃ 𝐴1̃ 𝐴2̃ 𝐴3̃ 𝐴4̃ 𝐴5̃ 

Center 𝑎𝑗 4227.421 43.134 19.802 -0.187 -0.142 -0.038 

Width 𝑐𝑗 253.632 2.842 0 0 0.040 0 

 

From the fitted fuzzy response surface using center (𝑎𝑗) coeffcients, the co-ordinates of 

stationary point is 𝑥0𝑐 = (109.624, 55.098)  and the predicted yield at the stationary point is 

𝑦𝑝𝑟𝑒𝑑,𝑐 = 7137.19.  

Further, let the eigenvalues of 𝐀̃  be {𝜆𝑖̃} . We obtain that 𝜆1̃ = −0.1941  and 𝜆2̃ =

−0.1355, which indicates that the stationary point of the predicted surface is a point of maximum 

response.  
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Besides, the range of co-ordinates of the maximum point is obtained. In order to 

maximizing the yield of paddy crop, the optimum levels of Nitrogen and Sulphur are expected to 

be in the interval [103.191, 115.124] (kg/ha) and [43.579, 75.917] (kg/ha), respectively. The 

interval of predicted yield is [6484.12, 7879.18] (kg/ha). 

The predicted yields from the fitted fuzzy response surface based on central values 𝑎𝑗, the 

upper bound (𝑎𝑗 + 𝑐𝑗), and the lower bound (𝑎𝑗 − 𝑐𝑗) are shown in the Figure 3.  

 

Figure 3: Fuzzy Response Surface 

For comparative results of the usual least squares response surface and fuzzy response 

surface models, we present in Table 5, the observed and predicted yields. The center predicted 

yields, the upper bounds, and the lower bounds are shown in the Figure 4. 

Table 5: Predicted yields 

Levels Observed 

𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 

Predicted     

𝑦𝑐𝑒𝑛𝑡𝑒𝑟 

Predicted 

𝑦𝑙𝑜𝑤𝑒𝑟 

Predicted 

𝑦𝑢𝑝𝑝𝑒𝑟 

Predicted 

𝑦𝑙𝑠𝑒 𝑁  𝑆 

0 0 4121.212 4227.422 3973.790 4481.054 4266.250 

0 20 4678.030 4566.526 4296.738 4836.314 4579.280 

0 40 4742.424 4791.771 4473.513 5110.028 4749.318 

0 60 4727.273 4903.156 4504.117 5302.196 4776.364 

50 0 6083.333 5915.874 5520.124 6311.625 5874.545 

50 20 6041.667 6217.412 5805.505 6629.319 6179.773 

50 40 6223.485 6405.090 5944.714 6865.466 6342.008 

50 60 6715.909 6478.910 5937.752 7020.067 6361.250 

100 0 6761.364 6667.855 6129.987 7205.724 6608.788 

100 20 6916.667 6931.826 6377.801 7485.851 6906.212 
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100 40 6852.273 7081.938 6479.444 7684.433 7060.644 

100 60 6810.606 7118.191 6434.915 7801.467 7072.084 

150 0 6174.242 6483.364 5803.377 7163.351 6468.977 

150 20 7022.727 6709.769 6013.626 7405.912 6758.598 

150 40 7003.788 6822.314 6077.702 7566.927 6905.227 

150 60 6943.182 6821.001 5995.606 7646.395 6908.864 

 

6.3 Error Analysis 

To make performance comparisons, we have calculated prediction errors denoted by 𝑒𝑓 =

𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑦𝑐𝑒𝑛𝑡𝑒𝑟  and 𝑒𝑙𝑠𝑒 = 𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝑦𝑙𝑠𝑒   and corresponding standardized errors 

𝑒𝑓𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =
𝑒𝑓

𝜎𝑒𝑓

, and 𝑒𝑙𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =
𝑒𝑙𝑠𝑒

𝜎𝑒𝑙𝑠𝑒 

, where 𝜎𝑒𝑓
 and 𝜎𝑒𝑙𝑠𝑒 

 denote the standard errors.  

Further, root mean squared errors are calculated as 𝑅𝑀𝑆𝐸 = √
∑ 𝑒2

𝑛−10
.   The coefficient of 

determination, denoted by 𝑅2, which is the proportion of variance in the dependent variable that 

could be explained by the regression model, is calculated as  𝑅2 = 1 −
∑ 𝑒2

∑(𝑦−𝑦̅)2 , where 𝑦̅ =

1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 . 

 

Figure 4:  Predicted yields 

We have plotted the prediction standardized errors due to fitted fuzzy and least squares 

response models in Figure 5 and calculated the error summary statistics:  root mean square error 

(RMSE) and 𝑅2 in Table 6.  
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Table 6: Prediction error statistics of fuzzy and least squares response models 

Data Point Fuzzy RSD RSD 

𝑥1 𝑥2 𝑒𝑓 𝑒𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝑒𝑙𝑠𝑒 𝑒𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 

0 0 -106.210 -0.550 -145.038 -0.791 

0 20 111.504 0.578 98.750 0.538 

0 40 -49.347 -0.256 -6.894 -0.038 

0 60 -175.883 -0.911 -49.091 -0.268 

50 0 167.459 0.867 208.788 1.138 

50 20 -175.745 -0.910 -138.106 -0.753 

50 40 -181.605 -0.941 -118.523 -0.646 

50 60 236.999 1.228 354.659 1.933 

100 0 93.509 0.484 152.576 0.832 

100 20 -15.159 -0.079 10.455 0.057 

100 40 -229.665 -1.190 -208.371 -1.136 

100 60 -307.585 -1.593 -261.478 -1.425 

150 0 -309.122 -1.601 -294.735 -1.607 

150 20 312.958 1.621 264.129 1.440 

150 40 181.474 0.940 98.561 0.537 

150 60 122.181 0.633 34.318 0.187 

RMSE 244.1883 232.0440 

𝑅2 0.958766 0.963171 

 

 

Figure 5: Standardized prediction errors 

7 Concluding remarks 

In the context of response surface methodology, we have considered fitting the quadratic 

response surface based on fuzzy regression and have compared it with that based on ordinary least 

squares method. Thus, we have shown the application of alternate method of fitting the model. By 
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considering an agronomic experiment data on paddy yield and different levels of Nitrogen and 

Sulphur, the estimated values of the optimum combination and the yield are obtained as fuzzy sets 

which represent the fuzziness of the system structure.  We have calculated the upper and the lower 

bounds of the predicted yield and carried error analysis which clearly indicates the comparative 

performance of two fitting methods with possible edge of the fuzzy regression over the ordinary 

least squares regression. 
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Appendix 

A1.  Least Squares Response Surface Model 

%% Least Squares Response Surface Model 

% First enter matrix B, which has diagonal elements as 

% the estimated regression coefficients of pure quadratic terms and off diagonal elements as 

% half of the estimated regression coefficients of cross product terms 

% Compute the co-ordinates of Stationary point x0= -0.5*Binv*bL, where bL is the vector 

% of estimated regression coefficients of linear terms 

% the stationary point is a point of maxima if the eigenvalues of B are -ve; 

%                      is a point of minima if the eigenvalues of B are +ve; 

%                      is a saddle point if some values are positive and other negative 

% compute y-pred at stationary point 

clear,clc 

data = xlsread('rsd.xls'); 

yield = data(:,1); 

N = data(:,2); 

S = data(:,3); 

NN = data(:,4); 

SS = data(:,5); 

NS = data(:,6); 

n = length(yield); 

%% Fit a second order response surface using the above data 

a = regress(yield,[ones(n,1),N,S,NN,SS,NS]) 

%% plot response surface 

N1 = min(N):5:max(N); 
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S1 = min(S):2:max(S); 

[Nm,Sm] = meshgrid(N1,S1); 

y = a(1)+a(2)*Nm+a(3)*Sm+a(4)*Nm.*Nm+a(5)*Sm.*Sm+a(6)*Nm.*Sm; 

surf(Nm,Sm,y),colormap HSV 

hold on 

%% Obtain the co-ordinates of the stationary point 

B = [a(4),0.5*a(6); 

    0.5*a(6),a(5)]; 

bL = [a(2);a(3)]; 

Binv = inv(B); 

x0 = -0.5*Binv*bL 

y_pred = a(1)+x0'*bL+x0'*B*x0 

%% Find the nature of the stationary point 

[V,D] = eig(B) 

% The eigenvalues of B are -ve.  

% Thus, the stationary point is a point of maxima. 

A2. Fuzzy Response Surface Model 

%% Fuzzy Response Surface Model 

% Considering 1% spread for yield and fuzzy coefficient of N and S. 

clear,clc 

data = xlsread('rsd.xls'); 

yield = data(:,1); 

N = data(:,2); 

S = data(:,3); 

NN = data(:,4); 



176                                                                PRANESH KUMAR AND JIEFEI YANG                                             [Vol. 17, No. 1 

SS = data(:,5); 

NS = data(:,6); 

n = length(yield); 

format long 

%% Fit a second order response surface using the above data 

X = [ones(n,1),N,S,NN,SS,NS]; 

a = regress(yield,X) 

%% Considering 1% spread for yield 

H = 0.5; 

e = yield.*0.01; 

f = [0;0;0;0;0;0;n;sum(N);sum(S);sum(NN);sum(SS);sum(NS)]; 

A1 = [X,(1-H)*X]; 

A2 = [-X,(1-H)*X]; 

A = -[A1;A2]; 

b1 = yield+(1-H)*e; 

b2 = -yield+(1-H)*e; 

b = -[b1;b2]; 

lb = [-10000*ones(6,1);zeros(6,1)]; 

[a,fval,exitflag,output,lambda] = linprog(f,A,b,[],[],lb); 

ac = a(1:6) 

aw = a(7:12) 

format long 

%% Obtain the co-ordinates of the central stationary point 

Bc = [ac(4),0.5*ac(6); 

    0.5*ac(6),ac(5)]; 
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bLc = [ac(2);ac(3)]; 

Binvc = inv(Bc); 

x0c = -0.5*Binvc*bLc 

y_predc = ac(1)+x0c'*bLc+x0c'*Bc*x0c 

%% The stationary point of bounds of yield 

au = ac+aw; 

al = ac-aw; 

Bu = [au(4),0.5*au(6); 

    0.5*au(6),au(5)]; 

bLu = [au(2);au(3)]; 

Binvu = inv(Bu); 

x0u = -0.5*Binvu*bLu 

y_predu = au(1)+x0u'*bLu+x0u'*Bu*x0u 

Bl = [al(4),0.5*al(6); 

    0.5*al(6),al(5)]; 

bLl = [al(2);al(3)]; 

Binvl = inv(Bl); 

x0l = -0.5*Binvl*bLl 

y_predl = al(1)+x0l'*bLl+x0l'*Bl*x0l 

%% Consider the bound of y_pred 

N1 = min(N):5:max(N); 

S1 = min(S):2:max(S); 

[Nm,Sm] = meshgrid(N1,S1); 

yu = au(1)+au(2)*Nm+au(3)*Sm+au(4)*Nm.*Nm+au(5)*Sm.*Sm+au(6)*Nm.*Sm; 

surf(Nm,Sm,yu),colormap HSV 
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hold on 

yl = al(1)+al(2)*Nm+al(3)*Sm+al(4)*Nm.*Nm+al(5)*Sm.*Sm+al(6)*Nm.*Sm; 

surf(Nm,Sm,yl) 

hold on 

%% plot center and bound of the response surface 

yc = ac(1)+ac(2)*Nm+ac(3)*Sm+ac(4)*Nm.*Nm+ac(5)*Sm.*Sm+ac(6)*Nm.*Sm; 

surf(Nm,Sm,yc) 

colormap HSV 

hold on 

xlabel('Nitrogen (kg/ha)') 

ylabel('Sulphur (kg/ha)') 

zlabel('Yield of Paddy (kg/ha)') 

%% Find the nature of the stationary point 

[V,D] = eig(Bc) 

% The eigenvalues of B are -ve.  

% Thus, the stationary point is a point of maxima.  


