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Abstract

This article explores the price movement and dependency among major pulses in India
namely Moong, Masur, Urad and Arhar. To achieve our objective we have considered the
well-known DCC-MGARCH model. A two-step estimation procedure, first, identifying the
appropriate mean model using VAR and then the variance model using DCC-MGARCH has
been performed. An attempt has also been made to document the comparative performance
of the DCC-MGARCH model under both classical and Bayesian framework. The model
parameters have been estimated using MLE and MCMC methods. The robustness of
the Bayesian DCC-MGARCH model is evaluated under different prior settings and the
number of MCMC samples drawn. Empirical studies indicate the superiority of Bayesian
DCC-MGARCH model with errors satisfying multivariate t distribution for modelling the
pulses series. The results suggest that the Bayesian DCC-MGARCH models outperforms
the competing models in terms of parameters standard error, information criteria and its
interpretability. This study also revealed the existence of co-movement of pulse prices to be
dynamic, where prices of Moong and Urad exhibit the highest degree of dependency among
them. The findings of this study can better assist the stakeholders in formulating policy
decisions focusing on enhancing income of the pulse cultivators of India.

Key words: Pulses; VAR; MGARCH; DCC; Bayesian.
AMS Subject Classifications: 62M10

1. Introduction

India is one of the largest importer, producer, processor and consumer of pulses in the
world. Thus pulses are an integral part of Indian agricultural system. Indian agriculture till
date is largely dependent on monsoons. Pulses being no exception rely largely on monsoons.
To aggravate the situation further, pulses are grown mainly on marginal lands. These factors
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together contribute to the high level of fluctuations in pulse production and prices in India.
Leading to the scenario that Indian farmers are not readily taking up cultivation of pulses
despite of government ensuring high wholesale prices in recent years. Among the pulses,
Moong, Masur, Urad and Arhar together are cultivated at around 50% of the total pulse
growing area and account for more than 40% of the total production. In addition to it, these
pulses face the inherent problem of fluctuation in production and prices. The movement of
prices among the commodities can be short lived or long lived, depending upon the nature
of the commodities. The fluctuation in prices leads to volatility and heterocedasticity is
an important characteristic of volatility. There are various models reported in literature
to model the volatility of a series. In recent years due to liberalisation of the markets in
domestic as well as international markets the prices of the commodities move together over
markets and time. It is due to this very reason that the researchers were compelled to
look for models that can model more than one series together, the multivariate modelling
approach. Different multivariate time-series models are used for forecasting, but after the
pioneering work of Sims (1977), Vector Autoregressive (VAR) model have become the most
popular among them for correlated series. This phenomenon of correlation is also observed
in agricultural data series. The VAR model is useful only for modelling the mean or the first
order moment of the series. Thus to have a better understanding of the series, modelling
and forecasting volatility has been a major area of time series research for years.

Traditional econometric models assume a constant one-period forecast variances. To
generalize this implausible assumption, Engle (1982) introduced a new class of stochastic
process called Autoregressive Conditional Heteroscedasticity (ARCH) which is very useful
where underlying forecast variances may change over time and is predicted by the past fore-
cast errors. However, ARCH model has some drawbacks such as high number of unknown
parameters and rapid decay of unconditional autocorrelation function of squared residu-
als etc. To overcome these difficulties, Bollerslev (1986) proposed the Generalized ARCH
(GARCH) model in which conditional variance is also a linear function of its own lags. This
model is also a weighted average of past squared residuals, but it has declining weights that
never go completely to zero. It provides flexible lag structure and it permits parsimonious
descriptions in most of the situations. The ability of GARCH model to capture volatility has
been widely studied in literature (Lama et al., 2015). A multivariate GARCH (MGARCH)
model framework was proposed to model more than one series at a time. A class of MGARCH
models have been developed over time. Engle and Kroner (1995) introduced a multivariate
structure of GARCH model known as BEKK (Baba, Engle, Kraft and Kroner) model which
is the direct generalization of univariate GARCH model and have huge flexibility. Bollerslev
(1990) developed a relatively flexible approach known as Constant Conditional Correlation
(CCC) model which allowed for combination of univariate GARCH model, with an assump-
tion of constant correlation among the series over time. Engle (2002) proposed a new class of
multivariate GARCH model known as Dynamic Conditional Correlation (DCC) model which
has the flexibility of the univariate GARCH models coupled with parsimonious parametric
model for the correlations. DCC model allows the conditional correlation to vary over time,
adding dynamicity to the model. These models along with other variants of MGARCH mod-
els are explained lucidly by Bauwens et al. (2006). The use of these models for modelling the
degree of interactions among various volatile commodities and markets can be widely seen
in literature (Chevallier, 2012; Lean and Teng, 2013; Lin and Li, 2015; Gupta et al., 2019).
It is also interesting to note that most of the financial series exhibits leptokurtic behaviour
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which has been documented well. There are number of ways to deal with this problem, such
as the use of stable Paretian distribution with a characteristic exponent less than two to
replace the normal error setting (Fama, 1965), discrete mixture of normal distributions can
be used to explain the observed patterns of significant kurtosis and a positive skewness of
data (Hull and White, 1998), but the use of Student-t distribution to model the error term
is a promising alternative among them (Ku, 2008).

In recent times the use of Bayesian paradigm in time series literature has gained
popularity. Researches have harnessed the benefits of Bayesian inference to interpret time
series models explaining volatility process efficiently. Univariate as well as multivariate
models have been estimated using Bayesian framework (Fioruci et al., 2014). But, the use of
Bayesian DCC-MGARCH model is very limited till date (Shiferaw, 2019). Furthermore, in
majority of the cases the application is based on financial markets, very little efforts have been
made to analyse volatile agricultural commodities. Hence, we undertake this study with two
major objectives; first we model the multivariate agricultural price series in two step process
using combination of VAR and DCC-MGARCH model. In the first step VAR has been used
to capture the linear dependency among the series and then the DCC-MGARCH model
has been used in the second step upon the residuals obtained from VAR model to capture
the dynamic movement of non-linear volatile component among the series (Mohammadi
and Tan, 2015; Lama et al., 2016; Chen et al., 2020). Secondly, this study also compares
the performance of DCC-MGARCH model under Maximum Likelihood Estimation (MLE)
and Bayesian framework using different error distributions for appropriate modelling of the
inherent kurtosis nature of the series. Such comparative analyses are very few in multivariate
time series literature (Shiferaw, 2019). The driving force behind implementation of Bayesian
framework in the present study can be attributed largely to these three properties of Bayesian
estimation:

1. Constraints on the model parameters to ensure positive variance are achieved in Bayesian
framework by assigning priors to the model parameters.

2. The Bayesian framework also provides reliable results for finite samples and heavy
tailed data sets (Hall and Yao, 2003).

3. The comparison of models is more consistent in Bayesian framework as it makes use
of not only the estimates as in MLE, but also the marginal likelihood and Bayes factor
or posterior model probabilities (Miazhynskaia and Dorffner, 2006).

The very basic assumption of a Bayesian framework is that the data is not exhaustive
to explain all the underlying behavior of the series. Thus priors are to be assigned to
the parameters of the model and then posterior is estimated under that prior information.
Bayesian analysis also provides the density of the parameters of the model unlike the point
or interval estimates provided by the classical approaches. Further, in Section 2 brief details
of the VAR, MGARCH models and testing of MARCH effect have been described, followed
by empirical results in Section 3. Section 4 of this paper deals with the discussion of the
results. Finally, the paper is concluded in Section 5.
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2. Theoretical background
2.1. VAR model

Let Y = (yi, yor, - - - ,yNt)T denote an (N x 1) vector of time series variables. The
basic p-lag vector autoregressive VAR(p) model has the form:

Y, =A+BY, 1+ ByY, o+ BsY, 3+...+B)Y,_, +¢ (1)

where, A is N x 1 vector of intercepts , B;(i = 1,2,...,p) is N x N matrices of parameters and
e, “Y N(0,%). The number of parameters to be estimated in the VAR model is N(1 + Np)

which increases with the number of variables (N) and number of lags (p).

2.2. MGARCH models

For a multivariate time series v, = (Y11, Yor, - - - ,yNt)T the MGARCH model is given
by:
y = H, %, (2)

where, Htl/ is Nx N positive-definite matrix and of the conditional variance of y;. N is the
number of series and t = 1,2,...,n (number of observations). It is with the specification of
conditional variance that the MGARCH model changes.The core issues in MGARCH model
is to construct the conditional variance-covariance matrix H;. A relatively easy estimation
approach is the CCC model introduced by Bollerslev (1990). This model assumes the condi-
tional correlations to be constant. This restriction strongly reduces the number of unknown
parameter and thus simplified the estimation. In case of CCC model the H; represented as

follows:
Ht - DtRDt (3)

1 1
where, D; = diag(hfis, ..., h{y,) and R is a symmetric positive-definite matrix whose
elements are (constant) conditional correlations:

1 for i=j(i,j=1,2,...,N);

pij otherwise.

R(i.j) = {

1 1
Here hiyy, ..., hin, are conditional variances of each series estimated from univariate GARCH
models. Thus each conditional covariance is given by (Bollerslev, 1990):

hij,t = Pij\/ hii,thjj,t- (4)

In case of DCC the R matrix is also time varying thus making it dynamic. The representation

of the model is as follows:
Ht - DthDt (5)

where, R, = diag(Q;) "*Q,diag(Qy)""/* and Q; = (1 — o — 8) R+ aw,_qu}_, + fQ;_1 and
uy = Dy Yy,. R is the unconditional covariance matrix of u;. And the conditional covariances

are given by:
hije = Gijar) Piihjje/ /Gt Qige- (6)

Q; is written as GARCH(1, 1) type equation and then transformed to get R;.
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2.3. Parameter estimation
2.3.1. Maximum likelihood estimation

The log likelihood estimator (Engle, 2002) is as follows:
Ytjt—1 ~ N(O, Ht)

~
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Now this equation is to be maximized over the parameters of the model. The main advantage
of this estimation procedure is that it allows the model to be estimated even when the
covariance matrix is very large. The essence of estimation of DCC model lies in the fact that
it is a two-step estimation procedure. The first one being the estimation of the volatility
part and the next one is the correlation part. Thus the likelihood can be written as the sum
of the volatility and correlation components. To do so we denote the D by ¢ and R by ¢,
now the likelihood can be written as :

L (807 ¢) = L, (90) + LC(QO, ¢)

The volatility component is represented as:

Lu(9) = = 3 [nlog (2n) + log DI + 7 D;
and the correlation part as:

Lelp.0) = —5 3 [(og |l + =T Bi'ey — f=0)].

The two-step maximization is done and the estimates are obtained as follows:

¢ = argmaz {L,(p)}
and then take this value as given in the second stage as maxy {L.($, @)}

In this estimation procedure maximum at second step is a function of the first step
parameter estimates. Thus to ensure the consistency, first step estimates’ consistency will
ensure the consistency of the second step as long as the function is continuous in the neighbor-
hood of the true parameters. The error distribution can be multivariate normal distribution
or the multivariate Student-t distribution depending on the kurtosis of the data. The density
function of the multivariate ¢ distribution is given by:

oy D(w+k)/2) eTe, |72
Pl = T(v/2) [w(v — 2)]* [1 v = 21

where, v is the degree of freedoms of ¢ distribution and I'(.) is the Gamma function.

(8)
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2.3.2. Bayesian estimation

The MLE method is the classical approach for parameter estimation of the GARCH
models. The Bayesian estimation technique is different from MLE and is growing rapidly.
This technique is based on the generation of the posterior distribution based on the prior
distribution through various techniques such as Markov Chain Monte Carlo (MCMC). In our
study we have adopted Metropolis-Hastings (MH) algorithm where the GARCH parameters
are updated by blocks (one block for a and one block for ) while the degrees of freedom
parameter is sampled using an optimized rejection technique from a translated exponential
source density. The basis of Bayesian estimation is the Bayes’ Theorem. Let us consider the
parametric space 6 which is the vector of the parameters of the model with a prior density
function 7 (f) and Y is the data vector. According, to Bayes’ rule the posterior density

m(0Y) o< LY [0) (6) 9)
where, L(Y |0) is the likelihood function same as in 7.

At first model is fitted using MLE technique and the obtained log likelihood value is
noted. Then the priors are defined for the parameters. Incorporating both log likelihood and
prior, facilitating the algorithm to draw samples from the posterior distribution following
the Bayes’ rule. It generates Markov chain for each parameters based on the initial value.
The ML estimates of parameters are taken as initial value for sampling in the present study.
Based on the extensive review of literature Gaussian proposal density is taken for the current
study. A new value of each parameter '™, where § € 0* = (w,a, 3, DCC,, DCCp) is
obtained with the acceptance probability « (67716%) = min (1,7(6"1, §%)) for each § € 6* =
(w,a, B, DCC,,, DCCy) where, r (6™, 6%) = 7 (6"1Y) /7 (6']Y). The new value is either
accepted or rejected and this will be continued until a sufficient number of iterations are
obtained.

2.3.3. Model evaluation criteria

Standard model evaluation criteria, such as Akaike information criterion (AIC) and
Bayesian information criterion (BIC), are used to compare the performance of different
models. These criteria penalize the decrease in the degrees of freedom when more variables
are added. The AIC and BIC values for GARCH model with Gaussian distributed errors
are computed by:

AIC = 2log(likelihood) 4+ 2T

BIC = 2log(likelihood) + log(Tk)

where, k is model degrees of freedom. In case of models estimated using Bayesian technique
these AIC and BIC evaluation criteria are not applicable as it involves samples estimated
through MCMC from posterior distribution. Hence, Deviance Information criterion (DIC)
is used as we have assumed posterior distributions to be normally distributed. The formula
is as follows:

DIC = 2E[D(6M)] — D(E[9M])

where OM is the set of parameters in model M and D(.) is the deviance function defined as
minus twice the log-likelihood function. So, given a sample from the posterior distribution
of OM, it is straightforward to approximate the DIC. The implementation of the models to
the dataset was done using R software and a schematic representation is given in Figure 1.
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3. Empirical results
3.1. Data description

The four major pulses series namely price index of Moong, Masur, Urad and Arhar
are used in this study. The source of the data being Office of the Economic Adviser, Ministry
of Commerce and Industry, Government of India (https://eaindustry.nic.in/). These
series very well depict the properties of typical agricultural price data with inherent fluctua-
tions as shown in Figure 2 . Each series (monthly) contained 312 data points (April, 1994 to
March, 2020) and the entire series was used for model development purpose. The statistical
properties of the dataset are presented in the Table 1. We also explore the stationarity of the
series by implementing the augmented Dickey—Fuller (ADF) test and we find in Table 1 that
the series are stationary after first order differencing. The visual inspection from Figure 3 of
the stationary series clearly indicated the presence of volatility at several time-epochs. The
data set was tested for the presence of seasonality using the correlogram. The ACF (auto
correlation function) in Figure 4 for all the series was devoid of any oscillatory pattern,
indicating absence of any seasonality. In addition, skewness and kurtosis of the stationary
series were computed along with the correlation coefficients. Table 2 shows a fair degree of
linear dependency was observed among the series ranging from 0.364 to 0.593. It is evident
from Table 3 that the stationary series tends to be non-skewed apart from Urad showing
moderate skewness and leptokurtosis being a common feature to all.

170 225
175

120
125
20 25

Figure 2: Time plot of the series

Table 1: Summary statistics of different pulses

Properties Moong Masur Urad Arhar
Mean 78.49 92.25 86.88  89.66
Median 61.90 74.95 76.00 70.10
Standard Deviation 43.32 4497 45.69  42.91
Kurtosis -1.18 -0.86 0.84 0.64
Skewness 0.52 0.57 1.07 1.06
Minimum 23.66 28.84 28.60  34.60

Maximum 178.10  198.80 247.60 222.80
C.V(%) 55.20 48.75 52.58  47.86
ADF (Level) -3.32 -2.93 -2.89 -3.20

ADF (1st Differenced) -4.90%  -4.51%  -4.71% -4.72%*
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Figure 3: Plot of the first differenced series
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Figure 4: ACF plots of the original series

3.2. Fitting VAR model

The VAR model as discussed earlier was fitted to the stationary dataset. The appro-
priate order of the VAR model was selected based on Bayesian information criterion (BIC)
and Hannan and Quinn (HQ) information criterion. We focused on these two criteria as
they penalize depending on the sample size, unlike AIC which penalizes each parameter by
a factor of 2. The lag order with lowest values for both the criteria was selected (BIC: 8.893;
HQ: 8.777). We obtained VAR (1) model for the present investigation. The estimates of the
model given in Table 4 reveal linear dependency within and between the series at first lag.
Within series dependency ranged between 0.219 to 0.428 and 0.003 to 0.293 for between the
series. The strongest linear dependency within series was found for Urad (0.428) and Arhar
and Masur (0.293) exhibited highest between series association. As a standard statistical
practice we carried out the diagnostic check of the residuals to determine the suitability of
the fitted model. To this end, we start with obtaining the Q-Q plot given in Figure 5 for
the residuals of each series to verify the normality assumption. The Q-Q plot in Figure 5
indicates the residuals violating normality assumption as they do not align with the straight
line. Further, we moved on with studying the non-linearity of the residuals and presence
of heteroscedasticity each at univariate (individual residuals) and multivariate (all residuals
together) framework. The results in Table 5 point that residuals series are non-linear in
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Table 2: Correlation matrix of the stationary series

Moong Masur Urad Arhar

Moong 1 0.364  0.519  0.457

Masur  0.364 1 0.412  0.550

Urad 0.519 0.412 1 0.593

Arhar 0.457 0.550  0.593 1
Table 3: Descriptive statistics of the stationary series

Statistics Moong Masur Urad Arhar
Mean 0.403 0.429  0.476 0.371
Standard Deviation — 2.942 3.066 4.601 4.388
Kurtosis 5.337 3.597  7.579  9.003
Skewness 0.119 0.251  1.098 -0.393

[Vol. 23, No. 2

nature as the null hypothesis of linearity is not accepted for BDS test. Then, the presence
of heteroscedasticity is confirmed for both univariate and multivariate framework by the
ARCH- Lagrange multiplier (LM) and Multivariate ARCH-LM tests respectively. For both
the tests, null hypothesis of homocedasticity is not accepted as evident from Table 5. Fi-
nally, we conclude the residuals to be non-normal, non-linear and heteroscedastic (volatility
clustering) in nature. These characteristics of the residuals demands for further modelling
using MGARCH model in general and DCC-MGARCH model in particular as we aim at
understanding the dynamic co-movement in the volatility structure.

Table 4: Estimates of VAR(1) model

Series Moong Masur Urad Arhar
Moong (-1) 0.347 0.003  -0.022  0.091
(0.064) (0.066) (0.044) (0.049)

Masur (-1) 0.153 0.316 0.012 0.058
(0.065)  (0.067) (0.045) (0.049)

Urad (-1) 0.202 -0.130 0.428 0.190
(0.088)  (0.091) (0.061) (0.067)

Arhar (-1) 0.293 0.178  -0.027  0.219
(0.095)  (0.097) (0.065) (0.072)

C 0.231 0.217 0.156 0.112
(0.1565) (0.158) (0.215) (0.231)

AIC 8.598

Values in the parenthesis are Standard Errors.

3.3.

Fitting DCC-MGARCH models

The stationary series were tested for the presence of dynamic conditional correlation
using Engle and Sheppard Test of Dynamic Correlation (Engle and Sheppard, 2001). The
test statistic value (9.257) was rejected at 5% level of significance, confirming the presence
of dynamic properties of the series. Thus we decided for the application of DCC model. To
begin the implementation of the DCC model we have to first identify the volatility model,
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in this study we have used DCC-MGARCH model in 5 with an assumption of the errors to
be multivariate normal and the multivariate t distribution. The parameters were estimated
both by the MLE and Bayesian framework.

The results of the DCC model estimated using MLE with multivariate Normal and
multivariate t errors are reported in Table 6. It is clear from the Table 6 that ARCH («)
parameters for Masur, Urad and Arhar along with the DCC, are not significant at 5% when
estimated using MLE for both the error distributions. However, the lower value of BIC
for DCC model with multivariate ¢ error suggests its superiority over the other model for

modelling the pulses series. This result cast a doubt in the appropriateness of the model
fitted.

Then, we turned our attention into the Bayesian estimation procedure. Essentially,
Bayesian estimation starts with defining prior distribution for all the parameters of the
model. In this study we have defined the priors based on results obtained by Fioruci et al.
(2014) and Shiferaw (2019). We use truncated Normal priors on the GARCH parameters «
and [ as follows:

pla) ~ ¢No(alp, ) H{a € R}
p(B) ~ ¢N1 (B, X)I{5 € R}

where p and ¥ are the hyperparameters, 1{.} is the indicator function and ¢N, is the d-
dimensional Normal density. The values of the hyperparamters are kept fixed. The prior
distributions are normal owing to its conjugate nature. The w, DCC, and DCCp are
assigned N ~ (0,10) priors, whereas the priors for a and [ are varied with a total of 5
different combinations. The prior combinations are as follows: The prior combinations are
as follows:

Prior 1:a~ N (0.1,0.01),8 ~ N (0.4,0.01)
Prior 2:a ~ N(0.2,0.03), 8 ~ N (0.5,0.03)
Prior 3 N (0.3,0.05), 3 ~ N (0.6,0.05)
Prior 4:a ~ N (0.4,0.07),5 ~ N (0.7,0.07)

Prior 5:a ~ N (0.5,0.09),3 ~ N (0.8,0.09).

These combinations allow us to test the sensitivity of parameter estimates of the
model with regards to change in distribution or the parameters of the distribution. As, in
our investigation we have used normal priors, hence we judge the sensitivity by varying mean
and variance within a specified range. The prior settings used for simulation study can be
broadly classified into two groups. In the first group (Prior 1, Prior 2 and Prior 3) where
the sum of «, § are < 1 and the second group (Prior 4 and Prior 5) where the sum of «,
are > 1. These groups are formed intentionally to study the impact of «, S on the overall
parameter estimation of the model. Along with the sensitivity of the priors we have also
evaluated the effect of various sample sizes of MCMC draws on parameter estimates. The
results reported in Table 6 are of prior 2 specifications with 10,000 MCMC draws. Results
are encouraging as parameters estimate along with its standard error clearly indicates its
statistical significance. Moreover, the DCC model with multivariate t errors has lower DIC
values as compared with the multivariate Normal errors. This indicates the superiority of
the model over the other one. The superiority of DCC-MARCH model with multivariate ¢
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Figure 5: Q-Q plots of the residuals after fitting VAR(1) model

distribution to model leptokurtic pulses price series goes with the findings in literature (Ku,
2008).

Table 5: Residual diagnostics of the VAR (1) model

Test Moong Masur Urad Arhar
ARCH-LM  90.942* 13.482* 23.776* 23.776*
BDS 6.290*  3.726%  5.441*  4.161*
MARCH 241.467*

*Significant at 5% level of significance

4. Discussions

The series under consideration were modelled following standard statistical procedures
with VAR-DCC-MARCH models. VAR model was first applied for capturing the mean
dependency of the multivariate framework. Residuals obtained from VAR model was used
as an input for the DCC-MGARCH model for further analysis. In this study we have
used the variant of DCC model after obtaining a positive result of DCC test. The DCC
model parameters were estimated using the classical MLE method as well as the Bayesian
method. The results from MLE estimates were not encouraging as all the parameters were
not statistically significant. Thus result raises a very vital question upon the reliability of
the model to explain the dynamic nature of correlation present between the series. Thus, to
have further insight we decided to estimate the parameters using the Bayesian method. The
results obtained through the Bayesian framework were very positive. As, looking into the
parameters value along with its standard errors we can validate its statistical significance.
The standard errors of each parameter under Bayesian framework are smaller as compared
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Table 6: Parameter estimates of the DCC-MGARCH (1,1) model

Multivariate Normal error distribution Multivariate ¢ error distribution
Parameters

MLE Bayesian MLE Bayesian
. 0.020 0.169 0.020 0.213
Moong (0.024) (0.007) (0.024) (0.014)
N 0.150 0.193 0.150 0.153
Moong (0.037) (0.005) (0.037) (0.011)
5 0.846* 0.785 0.846* 0.821
Moong (0.046) (0.005) (0.046) (0.010)
. 0.059 0.573 0.059 0.511
Masur (0.141) (0.042) (0.141) (0.036)
N 0.06 0.229 0.06 0.163
Masur
(0.048) (0.017) (0.048) (0.012)
5 0.937* 0.729 0.937* 0.774
Masur (0.068) (0.017) (0.068) (0.012)
. 0.109 0.723 0.109 0.839
Urad (0.506) (0.029) (0.505) (0.072)
N 0.067 0.151 0.067 0.177
Urad
(0.099) (0.006) (0.099) (0.009)
5 0.930* 0.813 0.931* 0.75
Urad (0.152) (0.007) (0.151) (0.013)
" 0.051 0.753 0.051 1.504
Arhar (0.078) (0.037) (0.078) (0.089)
o 0.189 0.285 0.189 0.247
rhar
(0.044) (0.015) (0.044) (0.020)
5 0.805* 0.668 0.805* 0.654
Arhar (0.043) (0.014) (0.043) (0.011)
0.003 0.029 0.003 0.02
DCC,
« 0.007 0.002 0.008 0.002
DOC (0.914*) (0.282) (0.923*) ( 0.31 :
g (0.024) (0.011) (0.043) (0.037)

*Significant at 5% significance level. Values in the parenthesis are standard errors.

to that of MLE estimates as reported in Table 6.

Though we have modelled four series together, we can isolate the bivariate combi-
nations for better interpretation of the DCC among them. A total of 6 such combinations
were formed between them, namely Moong-Masur, Moong-Urad, Moong-Arhar, Masur-Urad,
Masur-Arhar and Urad-Arhar. The dynamic correlation between each of the six combina-
tions was studied under MLE and Bayesian framework. The mean, minimum and maximum
values for each dynamic correlation are reported in Table 7 obtained from DCC-MGARCH
model with multivariate t error distribution. The mean values for each combination are
similar to 1 decimal place for MLE and Bayesian estimates but the maximum and minimum
values differ noticeable for the two estimation procedure. The wider ranges of the dynamic
correlation estimated under Bayesian DCC model indicates the efficiency of the model in cap-
turing the dynamic co-movement among the series. Figure 6 depicts the DCC plots for all
6 combination of the series estimated under both techniques using multivariate t error. The
figure highlights the inability of MLE estimates in capturing the co-movement efficiently
over time between all the series as the correlation estimated do not fluctuate much over
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time, unlike the fluctuations as noticed in the original series. This is mainly due to model
parameters not being statistically significant and most importantly the DC'C\,. Whereas the
dynamic correlation exhibited by the Bayesian model seems to have explained the inherent
fluctuations present in the original series. For instance, the Moong-Masur prices have fluctu-
ated considerably between the period April, 2010 and March, 2016 similarly if we look into
the DCC plot in Figure 6 a similar pattern of highly variable correlation is found between
the series for the period. In Table 2 the dynamic correlation was found to be highest be-
tween Moong-Urad series (0.600) followed by Urad-Arhar (0.529), Masur-Arhar (0.483) and
lowest among Moong-Masur (0.288). These dynamic correlation patterns fit with the linear
correlation obtained between the stationary series.

Bayesian estimation comes with obvious advantages over the classical approach and
has been put forward by our empirical illustration. As the Bayesian estimates are dependent
upon the prior distribution and MCMC algorithm for generating posterior estimates, it is
important to assess the sensitivity of the estimates with respect to the priors used and the
MCMC samples drawn. In our implementation we have considered both these aspects. A
total of 5 different prior settings under normal distribution has been tried with and increment
of 0.1 in mean and 0.02 in the variance of the normal distribution. This has yielded us two
fold results, first the sensitivity has been tested and second we could identify the optimal
prior setting for our implementation. We document that the model estimates are quite robust
with respect to the priors as we could only obtain slight changes in the estimates for prior
1 and prior 2 and rest of the prior settings (prior 3, prior 4 and prior 5) provided similar
results as that of prior 2. Thus we have reported in Table 8 the estimates obtained from
prior 1 and prior 2 settings only. After obtaining the optimal prior settings (prior 2) based
on lower DIC value, we concentrate our efforts towards the sample size of MCMC draws.
Two different sample sizes were tried 10,000 and 15,000 with 20% burn-in samples i.e., 2000
and 3000 respectively. In the similar lines we could not find any significant difference among
the estimates obtained. Hence, all the results presented for Bayesian estimates are obtained
from 10,000 MCMC draws with 2,000 samples as burn-in.

As forecasting is essential for time series problems, however assessing forecasting
performance in volatility problems is difficult as we are forecasting conditional covariance
or correlation (Livingston and Nur, 2023). Hence we can compare the forecasted values of
conditional variances with the true values and compute correlation among them as a measure
of association among them (Table 9). The correlation between the original series and the
forecasted conditional variances were found to be 0.67, -0.98, -0.67 and 0.89 respectively for
Moong, Masur, Urad and Arhar.

5. Conclusions

In this study we have employed the VAR-DCC-MARCH model to volatile pulses
price. In the first step the multivariate series is modelled using VAR model to capture
the linear dependency and DCC-MGARCH model for capturing the dynamic co-movement
among them. We document the superiority of the multivariate ¢ innovations for modelling the
leptokurtic behaviour of the series over the multivariate normal assumption of the errors.
Our comparative analysis between the MLE and Bayesian estimation approach for DCC-
MGARCH model provided comprehensive results highlighting the appropriateness of the
Bayesian DCC-MGARCH model in terms of lower DIC values and standard errors of the
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Table 7: Descriptive statistics of the dynamic conditional correlation

Table

Descriptive Statistics

Series Mean . Minimum‘ Maximum'
MLE Bayesian MLE Bayesian MLE Bayesian
Moong-Masur 0.227 0.208 0.205 0.095 0.249 0.288
Moong-Urad  0.458 0.455 0.433 0.307 0.492 0.600
Moong-Arhar 0.342 0.354 0.324 0.261 0.359 0.436
Masur- Urad  0.266 0.273 0.229 0.107 0.301 0.365
Masur- Arhar 0.424 0.417 0.407 0.340 0.437 0.483
Urad-Arhar  0.434 0.441 0.399 0.353 0.463 0.529

8:

Bayesian DCC-MGARCH model

Individual GARCH (1,1) estimates under different prior settings for

Prior Distribution O Moong ﬂlﬂoong O Masur ﬂﬂfasur QUrad ﬂUrad X Arhar BArhar DIC
Prior 1 MVN 0.208 0.771 0.248 0.717 0.146 0.818 0.279  0.660 5708.382
Prior 2 0.193 0.785 0.229 0.729  0.151 0.813 0.285 0.668 5705.396
Prior 1 MVT 0.153 0.821 0.163 0.774 0.177 0.750 0.247  0.654 5553.357
Prior 2 0.153 0.821 0.163 0.774 0.177 0.750 0.247  0.654 5553.357
Table 9: Values of the original and forecasted conditional variance

Original Values

Forecasted Conditional variance

Months Moong Masur Urad Arhar Moong Masur Urad Arhar
Apr-20 161.9 166.6 180.4 1554 20.1 43.8 426 12.7
May-20 167.1  167.8 187.5 156.7 19.5 41.6  40.6 13.6
Jun-20  163.7  172.6 183.8 158.3 19.0 39.7  38.9 14.3
Jul-20 161.4  175.3 181.5 159.8 18.5 37.8 373 14.9
Aug-20 1584  175.9 180.7 160.6 18.1 36.2 35.9 15.4
Sep-20  152.7  177.0 177.4 165.5 17.7 34.7 347 15.8
Oct-20 151.2  181.2 181.3 173.3 17.3 33.3  33.6 16.1
Nov-20 153.5  185.1 1879 174.2 16.9 32.0 326 16.5
Dec-20 156.6  182.3 190.8 168.8 16.6 30.8  31.7 16.8
Jan-21  155.0  184.1 193.8 166.5 16.3 29.7  30.9 17.0
Feb-21  157.8  185.1 196.4 172.9 16.0 28.7  30.1 17.3
Mar-21  157.3  187.4 196.5 174.7 15.7 277 294 17.5

model parameters. To add into the results, we also obtained the optimal prior setting for the
dataset which is robust to the change in the distributional parameters and the sample size
of the MCMC algorithm. The pulses series were found to have first order regressive relation
among themselves. DCC-MGARCH models provided exciting insights into the dynamicity of
the pulses. Results of this investigation have revealed the existence of dynamic co-movement
among them with highest between Moong-Urad and lowest in Moong-Masur combinations.
The findings of this study can better assist the stakeholders in formulating policy decisions
focusing on enhancing income of the pulse cultivators of India. This study can be extended
using different advanced MCMC algorithms and other multivariate volatility models.
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