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Abstract
This article provides a brief review on design selection under model misspecification in

linear and generalized linear models. Design selection for fitting a hypothesized model is one
of the main focuses of response surface methodology. However, if the assumptions regard-
ing the relationship between the response and the covariates are incorrect, then the design
based on the assumed model may not provide accurate results. In generalized linear models
(GLMs), a certain form of the linear predictor and the link function of the model is usually
assumed and the selected designs are based on these assumptions. Model misspecification
in GLMs can arise when the form of the linear predictor and/or the link function assumed
is not correct. Many researchers have proposed several methods for selecting appropriate
designs accounting for model bias and the prediction variance for both linear and generalized
linear models. The literature review presented here discusses several existing methods in the
literature based on the mean squared error criterion for comparing/selecting designs robust
to the possible misspecification in the model. Several papers based on robust designs for
GLMs are highlighted here. The method of comparing designs by quantile dispersion graphs
(QDGs) approach addressing the linear predictor misspecification problem using an unknown
function and the link function misspecification problem using a family of link functions is
discussed in detail. A numerical example based on real data is provided to illustrate the
QDGs methodology.

Key words: Family of link functions; Mean squared error of prediction; Quantile dispersion
graphs; Robust designs.

1. Introduction

One of the main purposes of response surface methodology (RSM) is to choose an
appropriate design for fitting a hypothesized model. Usually a low-degree polynomial or
a simple linear model is used to explain the complex and possibly non linear relationship
between the response variable and the inputs/covariates. Since the simple fitted model may
not adequately approximate the unknown functional relationship that depicts the true mean
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response, there is always a chance of estimates being biased. Thus, giving rise to the model
misspecification problem. Due to this reason the chosen design should protect against the
possibility of a sizeable model bias. Box and Draper (Box & Draper (1959) and Box &
Draper (1963)) introduced the so-called integrated mean squared error (IMSE) criterion
which accounts for both prediction variance and model bias and advised experimenters to
choose designs on the basis of the IMSE. Instead of looking at an overall measure like the
average MSE, Giovannitti-Jensen & Myers (1989) and Vining & Myers (1991) used a graph-
ical approach to evaluate how a design performs over every portion of the region of interest
in terms of IMSE. More recently, Mukhopadhyay & Khuri (2008) presented the technique
of qunatile plots for evaluating and comparing response surface designs on the basis of the
mean squared error of prediction (MSEP). Four MSEP-related criteria functions free of any
unknown parameters that pertain to the unfitted true model and error variance were pro-
posed. They obtained plots of the quantiles of these criterion functions on concentric spheres
within a region of interest. These quantile plots gave complete information concerning the
distribution of each criterion function over the selected spheres.

Recently, there has been an increase in interest among researchers to study designs
robust to model misspecification in the context of generalized linear models (GLMs). Model
misspecification in GLMs is a little more complex than in linear models, since in GLMs along
with simple form of the linear predictor, the experimenter also assumes a form for the link
function. If the assumptions regarding the functional form of the linear predictor or/and the
link function are incorrect, then the inference drawn from the fitted model may not provide
accurate results, giving rise to model misspecification problem in GLMs.

Selecting robust designs for GLMs have been studied by Abdelbasit & Butler (2006),
Woods et al. (2006) and Dror & Steinberg (2006). In the context of logistic regression models,
Adewale & Wiens (2009) used the average mean-squared error criterion to generate designs
less sensitive to possible misspecifications in the linear predictors. Their work was extended
by Adewale & Xu (2010) where misspecification in both linear predictors and link functions
were considered. More recently, Mukhopadhyay & Khuri (2012) used quantile dispersion
graphs based on MSEP to compare designs for GLMs in the presence of model misspeci-
fication in linear predictors. Their approach accounted for the bias of the fitted model’s
parameter estimates in addition to their variances.

2. Model Misspecification in GLMs

GLMs are usually specified by three components:

• Distributional component: It is assumed that the data of size n y1, . . . , yn, are inde-
pendent and have the following density function,

s(yj|θj, φ) = exp
[
yjθj − b(θj)

a(φ) + c(yj, φ)
]
, j = 1, . . . , n, (1)

where b(·), c(·) are known functions and φ is the unknown dispersion parameter. The
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mean and variance of yj are, E(yj) = µj = db(θj)
dθj

and Var (yj) = σ2
j = a(φ)d

2b(θj)
dθ2

j
,

respectively.

• Linear Predictor: The linear predictor, denoted by η(x), is a function of the p control
variables x = (x1, . . . , xp)T .

• Link function: The linear predictor η(x) is related to the mean response, µ(x), through
a link function g, where the inverse of g, denoted by h, is assumed to exist. The true
relationship between η and x being usually unknown and of highly nonlinear nature.

As mentioned above, the true relationship between η(x) and the vector x of control variables
is usually unknown. The experimenter approximates the unknown relationship by a low-order
polynomial model of the form,

η(x) = zT (x)β, (2)
where, zT (x) is a known vector function of x and β is a p×1 vector of unknown parameters.
Under the assumed model, the estimated mean response is,

µ̂(x) = h[η̂(x)] = h[zT (x)β̂], (3)

where β̂ is a maximum likelihood estimate of β. However, suppose the true functional form
of the linear predictor is different from the fitted form and is actually,

ηT (x) = zT (x)β + f(x), (4)

where f(x) is not known and the true mean response is,

µT (x) = h[ηT (x)] = h[zT (x)β + f(x)]. (5)

The MSEP for the estimated mean response when the linear predictor is misspecified from
Mukhopadhyay & Khuri (2012) is given by

MSEP[µ̂(x)] .=
[
dh[η(x)]
dη(x) + f(x)d

2h[η(x)]
dη2(x)

]2

Var [η̂(x)]

+
{

Bias [η̂(x)]
[
dh[η(x)]
dη(x) + f(x)d

2h[η(x)]
dη2(x)

]}2

, (6)

where,

Bias [η̂(x)] = E[η̂(x)]− ηT (x) = zT (x)E(β̂)− zT (x)β − f(x)
= zT (x) Bias (β̂)− f(x),

and
Var [η̂(x)] = zT (x) Var (β̂)z(x).
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The bias and variance of β̂ under a misspecified linear predictor are

Bias (β̂) .= H−1
n b, (7)

and
Var (β̂) .= 1

N
H−1
n H̃nH−1

n , (8)

where Hn = ZTPWZ, H̃n = ZTPWTZ, and b = ZT P(µT −µ)
a(φ) ; Z is a matrix with rows

zT (xj), j = 1, . . . , n and P is an n × n diagonal matrix with elements nj

N
with N is the

total number of observations, i.e., N = ∑n
j=1 nj. Both, W and WT are n × n diagonal

matrices with elements, wj (= dµj/dηj

a(φ) ), wT,j (= Var (yj)
a2(φ) ), respectively, where Var (yj) is the

true variance of yj.

A scaled version of the MSEP (SMSEP) was used for design comparison. Their main
goal was to select designs with lower values of SMSEP. For comparing two designs say D1 and
D2, if the SMSEP of D1 was lower than D2 then design D1 was said to have better prediction
capability than D2. Thus, implying that the predictive performance of design D1 is more
robust to misspecification in the linear predictor than D2. However, two major difficulties in
using the SMSEP as a design criterion was its dependency on the unknown model parameters
and f(x). Mukhopadhyay & Khuri (2012) addressed the linear predictor misspecification
problem by an unknown function which was estimated using parametric empirical kriging
at any point in the design region. The dependence of SMSEP on the model parameters was
answered by the quantile dispersion graphs (QDGs) approach.

Das et al. (2015) considered robust GLM designs for misspecification in both linear
predictors and link functions. To address the possibility of incorrect forms of link functions,
they used the works of Prentice (1976); Pregibon (1980); Aranda-Ordaz (1981); Guerrero &
Johnson (1982); Stukel (1988); Czado (1989, 1997) on generalized family of link functions
for GLMs.

A family of parametric link functions were defined, relating η(x) and µ(x) by µ =
E(y|x) = h(α, η), where h(α, ·) is inverse of the parametric link function parameterized by
α the link parameter vector (Czado, 1997). Thus, for misspecification in both the linear
predictor as well as the link function, the assumed model is

µ(x) = h[α0, η(x)],

where h(α0, ·) is the assumed link function belonging to the family Λ = {h(α, ·) : α ∈ Ω},
and the true model

µT (x) = h[αT , ηT (x)],
is

ηT (x) = Z(x)β + f(x)
is the true linear predictor and αT the true link parameter. The MSEP of µ̂(x) from Das
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et al. (2015) is given by

MSEP [µ̂(x)] = V ar[µ̂(x)] +Bias[µ̂(x)][Bias{µ̂(x)}]T ,

where

V ar[µ̂(x)] =
[
∂h

∂η

]
(α0,ηT (x))

Z(x)V ar(β̂)ZT (x)
[
∂h

∂η

]T
(α0,ηT (x))

,

and

Bias[µ̂(x)] =
[
∂h

∂α

]
(αT ,ηT (x)

(α0 −αT )

+
[
∂h

∂η

]
(α0,ηT (x))

[Z(x)Bias(β̂)− f(x)],

The asymptotic bias and variance of β̂ are given by

Bias(β̂) = H−1
n b, and

V ar(β̂) = 1
N

H−1
n H̃nH−1

n ,

where
b =

n∑
i=1

1
N

∂µi
∂β

[V ar(yi)]−1(µT,i − µi),

H̃n = 1
N

n∑
i=1

∂µi
∂β

[V ar(yi)]−1[V ar(yT,i)][V ar(yi)]−1 ∂µi

∂βT ,

and

Hn = 1
N

n∑
i=1

∂µi
∂β

[V ar(yi)]−1 ∂µi

∂βT −
1
N

n∑
i=1

q∑
j=1

∂2θij

∂β∂βT (yij − µij)ni.

See Das et al. (2015) for details.

2.1. Example

We consider a real data set (Calandra Granaria data (Adewale & Xu, 2010)) containing
information about studying the mortality of grain beetle after exposure to ethylene oxide
(C2H4O). This same example was considered in Das et al. (2015). The response variable
y is the proportion of killed grain beetle after one-hour exposure of 10 different levels of
concentrations of C2H4O, which is considered as the explanatory variable (x) of the model.
Here, we compare three designs: (i) the design D7 (original design), (ii) the design D8
(“Naive” design) and (iii) the regular optimal design D9 (Adewale & Xu, 2010) under a
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misspecified linear predictor. The data set and design settings can be found in Table 7 of
Das et al. (2015).

We start fitting the data with the linear predictor

η(x) = β0 + β1x, (9)

and use the logistic link function. After estimating the unknown parameters of the model
using maximum likelihood estimation method, we see β̂0 = −3.4429 and β̂1 = 14.4404,
and the deviance of the fitted model is 36.2498 with 8 degrees of freedom. The observed
information provides that the P-value is less than 0.0001, showing a lack of fit due to the
possible misspecification of the linear predictor of the model. So, we add an unknown
function to the previous linear predictor to have the modified linear predictor as

η(x) = β0 + β1x+ f(x). (10)

The values of the unknown function f are first estimated at design points using the method
given in Section 4.1 of Das et al. (2015) and then estimated at any points other than the
design points using parametric empirical kriging. We see that the deviance of the fitted
model after adding an unknown function f is decreased to 4.9778, showing an improvement
of the fit by addressing the linear predictor misspecification of the model.

For comparing the performance of three designs concerning the proximity to the cen-
ter/boundary of the design region, the experimental region R = {x : 0.0330 ≤ x ≤ 0.3940}
is divided into several concentric regions Rν parametrized by some parameter ν ∈ [0.5, 1].
The designs are compared based on the minimum and maximum quantiles of the estimated
MSEP values over randomly selected 1000 samples from Rν and 1000 samples from a 95%
confidence region C of the regression parameter vector β. The minimum and maximum
quantiles of the three designs for ν = 0.6, 0.7, 0.8, 0.9, are shown in Figure 1, which is known
as the quantile dispersion graphs (QDGs). From the QDGs, we see that the minimum quan-
tiles are close to each other for all designs. The maximum quantiles of D9 are larger than
D7 and D8 if p > 0.5 for all values of ν. So, the prediction capabilities of D7 and D8 are
better than the design D9, while designs D7 and D8 have comparable prediction capabilities
throughout the region as the maximum quantiles are very close to each other for all values
of ν. It can also be noted by observing the differences of maximum and minimum quantiles
of the designs that D7 and D8 are more robust than D9 with respect to the changes of the
values of β. More details about this example can be found in Section 5.3 of Das et al. (2015).

3. Some New Directions

Though the topic of model misspecification and its effect on design selection has been
discussed by several researchers for single response linear and generalized linear models, very
little work has been done in the multivariate response case. However, in many experimental
situations, instead of one response, several such responses are recorded for the same subject.
This is very common in drug testing experiments where along with efficacy of the drug,
toxic effect of the drug are also measured, and the two responses are then modeled using
a bivariate distribution. Very recently, Das & Mukhopadhyay (2019) discussed the effect
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Figure 1: Quantile dispersion graphs for designs D7, D8, and D9. This figure is
reproduced from Figure 3 of Das et al. (2015).

of such misspecification on design selection for multinomial GLMs and proposed the use of
quantile dispersion graphs to select robust designs. While multivariate kriging was used to
tackle the unknown functional relationships between the linear predictors and covariates,
a parametric link function family for the multinomial distribution (Das & Mukhopadhyay
(2014)) was used for possible link function correction. Compromised exact D- optimal designs
which are robust to possible misspecifications in the model and link functions were discussed
recently by Singh & Mukhopadhyay (2019) for gene sequence studies modeled by count time
series models.
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