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Abstract
Mixed models have widespread appeal in many areas of statistical modeling from

biostatistics to small area estimation. Here we review a variety of recent approaches for
modernizing linear mixed model prediction including robust prediction via the observed best
predictor (OBP) to prediction for new test data using a classified random effect, namely clas-
sified mixed model prediction (CMMP). Finally, a brief mention will be made to a proposal
for using mixed model prediction to project outside of the range of the training data using
classified mixed model projections.
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1. Introduction

It is now well accepted that it is necessary to borrow strength from relevant domains
and resources to increase the efficiency of direct estimates and that linear mixed models
provide a pathway to do so. In this regard, the empirical best linear unbiased prediction, or
EBLUP, method has had a dominant influence (e.g., Rao 2003; Jiang and Lahiri 2006). The
method utilizes a linear mixed effects model (e.g., Jiang 2007) in order to borrow strength.
The standard procedure of computing the EBLUP is the following. First one derives the
best predictor (BP) of the mixed effects of interests, such as the small area means. Then,
one replaces the vector of the fixed effects by its maximum likelihood estimator (MLE),
assuming that the variance components are known (up to this stage one obtains the best
linear unbiased predictor, or BLUP). Finally, one replaces the unknown variance components
by their ML or REML estimators. It follows that the EBLUP is the BP, in which the unknown
fixed parameters, including the fixed effects and variance components, are estimated either
by ML or REML. The latter are known to be asymptotically optimal under estimation
considerations (e.g., Jiang 2007). However, in many cases, such as in SAE, the problem of
main interest is prediction, rather than estimation. The implication is that the EBLUP may
be regarded as a hybrid of optimal prediction (i.e., BP) and optimal estimation (e.g., ML).
Nevertheless, if prediction is of main interest, it would be more natural to have a purely
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predictive procedure, in which both the predictor and estimator are derived from predictive
considerations.

2. A general framework for the observed best predictor (OBP)

First, consider a general mixed model prediction problem (e.g., Robinson 1991). The
assumed model is y = Xβ + Zv + e, where X,Z are known matrices; β is a vector of fixed
effects; v, e are vectors random effects and errors, respectively, such that v ∼ N(0, G), e ∼
N(0,Σ), and v, e are uncorrelated. Suppose that the true underlying model is y = µ+Zv+e,
where µ = E(y). Here, again, E without subscript represents expectation with respect to
the true distribution, which may be unknown but is not model-dependent. Following Jiang
et al. (2011), our interest is prediction of a vector of mixed effects that can be expressed as
θ = F ′µ + R′v, where F,R are known matrices. Suppose that G,Σ are known. Then, the
best predictor (BP) of θ, in the sense of minimum MSPE, under the assumed model is given
by Ea(θ|y) = F ′µ+R′Ea(v|y) = F ′Xβ +R′GZ ′V −1(y−Xβ), where Ea denotes expectation
under the assumed model, V = Var(y) = Σ +ZGZ ′ and β is the true vector of fixed effects,
under the assumed model. If we write B = R′GZ ′V −1 and Γ = F ′ −B, then the BP can be
expressed as

Ea(θ|y) = F ′y − Γ(y −Xβ). (1)

Now let θ̌ denote the right side of (1) with a fixed, but arbitrary β. Then, it can be shown
that MSPE(θ̌) = E(I1 − 2I2 + (y − Xβ)′Γ′Γ(y − Xβ)}, where I1, I2 do not depend on β.
Thus, the best predictive estimator (BPE) (Jiang et al. 2011) of β is obtained by minimizing
the expression inside the expectation, that is, β̃ = (X ′Γ′ΓX)−1X ′Γ′Γy, assuming that Γ′Γ is
nonsingular and X is full rank. Once the BPE is obtained, the OBP of θ (Jiang et al. 2011),
is given by the right side of (1) with β replaced by β̃. On the other hand, the BLUP of θ
is given by the right side of (1) with β replaced by β̂ = (X ′V −1X)−1X ′V −1y, which is the
MLE of β. To compare the predictive performance of the OBP and BLUP, let us consider a
class of empirical best predictors (EBPs) that can be expressed as

θ̌ = F ′y − Γ(y −Xβ̌), (2)

where β̌ is a weighted least squares (WLS) estimator of β expressed as β̌ = (X ′WX)−1X ′Wy
and W is a positive definite weighting matrix. Note that (2) is the BP (1) with β replaced
by β̌ (and hence explains the name EBP). Also note that the BPE and MLE are special
cases of the WLS, hence the OBP and BLUP are special cases of the EBP.

2.1. Special Case 1: The Fay-Herriott Model

The Fay-Herriot model (Fay and Herriot 1979) is widely used in small area estimation
(SAE). It was proposed to estimate the per-capita income of small places with population
size less than 1,000. The model can be expressed as a mixed effects model:

yi = x′
iβ + vi + ei, i = 1, . . . ,m, (3)

where xi is a vector of known covariates, β is a vector of unknown regression coefficients,
vi’s are area-specific random effects and ei’s are sampling errors. It is assumed that the vi’s
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and ei’s are independent with vi ∼ N(0, A) and ei ∼ N(0, Di). The variance A is unknown,
but the sampling variances Di’s are assumed known. The problem of interest is estimation
of the small area means, which, at least by a higher-order approximation, are equal to the
mixed effects θi = x′

iβ + vi, i = 1, . . . ,m. Thus, without loss of generality, we treat the θi’s
as the small area means, so the problem is prediction of the mixed effects.

One should note that the true small area means should not depend on the assumed
model. In fact, it is easy to see that under the weak assumption

yi = µi + vi + ei, we have θi = E(yi|vi) = E(yi) + vi, i = 1, . . . ,m, (4)

where µi = E(yi). The advantage of expressions (4) is that they are not model-dependent,
which is a key to our approach. Here, E denotes the expectation with respect to the true
distribution of yi, which may be unknown, but not model-dependent. The most popular
precision measure of a predictor is its mean squared prediction error (MSPE; e.g., Prasad &
Rao 1990, Das et al. 2004). Write θ = (θi)1≤i≤m and let θ̃ = (θ̃i)1≤i≤m be a predictor of θ.
Then, the (overall) MSPE of θ̃ is given by

MSPE(θ̃) = E(|θ̃ − θ|2) =
m∑
i=1

E(θ̃i − θi)2. (5)

Once again, the expectation in (5) is with respect to the true underlying distribution (of
whatever random quantities that are involved), which is unknown but not model-dependent.
Under the assumed Fay-Herriot model, and given the parameters ψ = (β′, A)′, the BP is
given by

θ̃(ψ) = Em,ψ(θ|y) =
[
x′
iβ + A

A+Di

(yi − x′
iβ)
]

1≤i≤m
, (6)

or θ̃(ψ)i = x′
iβ + Bi(yi − x′

iβ), 1 ≤ i ≤ m, where Bi = A/(A + Di), and Em,ψ represents
(conditional) expectation under the assumed model with ψ being the true parameter vector.
Note that Em,ψ is different from E unless the model is correct, and ψ is the true parameter
vector. For simplicity, let us assume, for now, that A is known. Then, the precision of θ̃(ψ),
which is now denoted by θ̃(β) because A is no longer a parameter, is measured by

MSPE{θ̃(β)} =
m∑
i=1

E{Biyi − θi + x′
iβ(1 −Bi)}2 = I1 + 2I2 + I3, (7)

where I1 = ∑m
i=1 E(Biyi − θi)2, I2 = ∑m

i=1 x
′
iβ(1 − Bi)E(Biyi − θi), and I3 = ∑m

i=1(x′
iβ)2(1 −

Bi)2. Note that I1 does not depend on β. As for I2, we have E(Biyi − θi) = (Bi − 1)E(yi).
Thus, we have I2 = −∑m

i=1(1 − Bi)2x′
iβE(yi). It follows that the left side of (7) can be

expressed as

MSPE{θ̃(β)} = E
{
I1 +

m∑
i=1

(1 −Bi)2(x′
iβ)2 − 2

m∑
i=1

(1 −Bi)2x′
iβyi

}
. (8)

The right side of (8) suggests a natural estimator of β, by minimizing the expression inside
the expectation, which is equivalent to minimizing Q(β) = ∑m

i=1(1 −Bi)2(x′
iβ)2 − 2∑m

i=1(1 −
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Bi)2x′
iβyi = β′X ′Γ2Xβ − 2y′Γ2Xβ, where X = (x′

i)1≤i≤m, y = (yi)1≤i≤m and Γ = diag(1 −
Bi, 1 ≤ i ≤ m). A closed-form solution is given by

β̃ = (X ′Γ2X)−1X ′Γ2y =
{

m∑
i=1

(1 −Bi)2xix
′
i

}−1 m∑
i=1

(1 −Bi)2xiyi. (9)

Here we assume, without loss of generality, that X is of full column Note that β̃ is different
from the MLE of β,

β̂ = (X ′V −1X)−1X ′V −1y =
(

m∑
i=1

xix
′
i

A+Di

)−1 m∑
i=1

xiyi
A+Di

, (10)

where V = diag(A+Di, 1 ≤ i ≤ m) = Var(y). While β̂ maximizes the likelihood function, β̃
minimizes the “observed” MSPE which is the expression inside the expectation on the right
side of (8). We call β̃ given by (9) the best predictive estimator, or BPE, of β. Note that the
BPE has the property that its expected value,

E(β̃) = (X ′Γ2X)−1X ′Γ2E(y), (11)
is the β that minimizes MSPE{θ̃(β)}. However, the expression (11) is not computable.

A predictor of the mixed effects θ is then obtained by replacing β in the BP (6) by its
BPE. We call this predictor the observed best predictor, or OBP. The reason is that the BPE
is the minimizer of the observed MSPE. If the observed MSPE were the true MSPE, the BPE
would give us the BP. However, because, instead, we are dealing with the observed MSPE,
the corresponding predictor (obtained by the same procedure with the MSPE replaced by
the observed MSPE) should be called the observed BP.

2.2. Special Case 2: The nested error regression model

Consider sampling from finite subpopulations Pi = {Yik, k = 1, . . . , Ni}, i = 1, . . . ,m.
Suppose that auxiliary data Xikl, k = 1, . . . , Ni, l = 1, . . . , p are available for each Pi, and a
super-population nested-error regression model (Battese et al. 1988) hold for all subpopula-
tions:

Yik = X ′
ikβ + vi + eik, k = 1, . . . , Ni, (12)

where Xik = (Xikl)1≤l≤p, the vi’s are small-area specific random effects, and eik’s are addi-
tional errors, such that the random effects and errors are independent with vi ∼ N(0, σ2

v)
and eik ∼ N(0, σ2

e). The small area mean for Pi is then µi = N−1
i

∑Ni
k=1 Yik.

Now suppose that yij, j = 1, . . . , ni are observed for the ith subpopulation, i =
1, . . . ,m. Let the corresponding auxiliary data be xij, j = 1, . . . , ni, i = 1, . . . ,m. Write
yi = (yij)1≤j≤ni

, y = (yi)1≤i≤m, ȳi· = n−1
i

∑ni
j=1 yij and x̄i· = n−1

i

∑ni
j=1 xij. Let ψ = (β′, σ2

v , σ
2
e)′

denote the vector of parameters under the nested-error regression model (12). Under this
model with ψ being the true parameter vector, the BP for µi is

µ̃i(ψ) = Em,ψ(µi|y) = 1
Ni


ni∑
j=1

yij +
∑
k/∈Ii

Em,ψ(Yi,k|yi)


= X̄ ′

iβ +
{
ni
Ni

+
(

1 − ni
Ni

)
niσ

2
v

σ2
e + niσ2

v

}
(ȳi· − x̄′

i·β), (13)
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where Em,ψ denotes the model-based conditional expectation given that ψ is the true pa-
rameter vector, Ii is the set of sampled indexes such that Yik is in the sample iff k ∈ Ii,
and X̄i = N−1

i

∑Ni
k=1 Xik is the subpopulation mean of the Xik’s for the ith subpopulation

(which is known). Note that (13) is a model-based BP. The performance of the model-based
BP is then evaluated by the design-based MSPE. This is because the latter is almost free
of model assumptions, and therefore robust to model misspecifications [we could not do this
under the Fay-Herriot model, however, because the sampling data were not available at the
unit level; instead, we considered a model under very weak assumptions]. The design-based
MSPE is given by MSPE{µ̃(ψ)} = Ed{|µ̃(ψ) − µ|2} = ∑m

i=1 Ed{µ̃i(ψ) − µi}2, where
µ̃(ψ) = [µ̃i(ψ)]1≤i≤m, µ = (µi)1≤i≤m and Ed denotes the design-based expectation. Assume,
for simplicity, simple random sampling within each subpopulation Pi. Then, it can be shown
that

MSPE = Ed

[
m∑
i=1

{µ̃2
i (ψ) − 2ai(σ2

v , σ
2
e)X̄ ′

iβȳi· + bi(σ2
v , σ

2
e)µ̂2

i }
]
, (14)

where ai(σ2
v , σ

2
e) = (1−ni/Ni)σ2

e/(σ2
e+niσ2

v) and bi(σ2
v , σ

2
e) = 1−2[ni/Ni+(1−ni/Ni){niσ2

v/(σ2
e+

niσ
2
v)}]. Thus, the BPE of ψ is obtained by minimizingQ(ψ) = ∑m

i=1{µ̃2
i (ψ)−2ai(σ2

v , σ
2
e)X̄ ′

iβȳi·+
bi(σ2

v , σ
2
e)µ̂2

i }, which is the expression inside the expectation in (14). Here µ̂2
i is a design-based

unbiased estimator of µ2
i , given by µ̂2

i = n−1
i

∑ni
j=1 y

2
ij−(Ni−1){Ni(ni−1)}−1∑ni

j=1(yij− ȳi·)2.
A similar numerical procedure can be developed to compute the BPE. Given the BPE
ψ̃ = (β̃′, σ̃2

v , σ̃
2
e)′, the OBP of µi is given by µ̃i = µ̃i(ψ̃), 1 ≤ i ≤ m, where µ̃i(ψ) is given by

(13).

2.3. Estimation of MSPE of OBP

Obtaining a measure of uncertainty for OBP is particularly challenging. This is
because the OBP is derived by taking into account of the potential model misspecification.
Therefore, to derive a measure of uncertainty, the potential model misspecification also needs
to be taken into consideration when considering measures of uncertainty. More importantly,
it is desirable to evaluate uncertainty due to the potential model misspecification.

A standard measure of uncertainty is the MSPE. Let us first consider this under a
Fay-Herriot model. In proposing the OBP, Jiang et al. (2011) also proposed an MSPE
estimator under potential model misspecification, which we call the JNR estimator in the
sequel. The authors showed that the JNR estimator is second-order unbiased, that is, its
bias is o(m−1). However, the estimator is known to have large variation. To see why, note
that the leading term of the JNR estimator has the expression

(θ̂i − yi)2 +Di(2B̂i − 1), (15)

where θ̂i is the OBP of θi, Bi = A/(A + Di, and B̂i is Bi with A replaced by Â, the BPE
of A. The direct estimator, yi, is involved in (15), which has large variation compared to,
for example, Â. The latter is an estimator based on all of the data, yi, xi, 1 ≤ i ≤ m, which
has relatively small variation. In particular, the JNR estimator has a significantly nonzero
chance of taking negative values.

In addition to the JNR estimator, Jiang et al. (2011) also proposed a bootstrap
MSPE estimator. Although the bootstrap estimator is gauranteed non-negative, its bias was



212 J. SUNIL RAO [SPL. PROC.

shown to be significantly larger than the JNR estimator. The method also seemed lack of
theoretical justification, in which the bootstrap samples were drown independently under
the model y∗

i ∼ θ̂i + e∗
i , where θ̂i is the OBP and e∗

i ∼ N(0, Di), 1 ≤ i ≤ m.

Liu et al. (2022a) proposed a OBOR estimator for the MSPE of OBP. Here, OBOR
is an abbreviation of one-bring-one-route. It is called OBOR because the estimator consists
of averages of terms, where each term involves yi, plus one other yj for j ̸= i. The average
is over m − 1 such yj’s for j ̸= i. The idea can be generalized to one-bring-two, one-bring-
three, etc., but the computational burden mounts as this moves on. In this regard, the JNR
estimator may also be viewed as a special case of one-bring-none. Although the OBOR
estimator reduces the variation over the JNR estimator, the result was not all satisfactory,
compared to a much better estimator found later.

A well-known method for obtaining a second-order unbiased MSPE estimator is the
Prasad-Rao (PR) linearization method (Prasad and Rao 1990). The method is developed
under the assumption that the underlying model is correct. In fact, the assumed model is
substantially used in the derivation of the P-R MSPE estimator. Given that, it would be
surprising to learn that, in spite of the model misspecification, the PR MSPE estimator for
OBP is, still, mostly correct. In fact, Liu et al. (2022b) found that the PR MSPE estimator
remains first-order unbiased in the sense that the bias of the estimator is O(m−1), even if
the underlying model is misspecified in its mean function. Furthermore, the same authors
showed the PR MSPE estimator can be modified to achieve the second-order unbiasedness,
again under the potential model misspecification in the mean function.

3. Classified mixed model prediction (CMMP)

The world has been witnessing an information explosion in many areas of society
from medicine to economics and business to social media for instance. The rapid increase
in the unprecedented amount of data has resulted in many new important shifts of interest
in the types of questions that can be potentially answered. These new shifts are focusing
more and more attention on knowledge at individual or subject levels. One of the currently
“hot” areas is precision medicine. The National Research Council of the United States in
2014 defined the latter as the “ability to classify individuals into subpopulations that differ
in their susceptibility to a particular disease, in the biology and/or prognosis of those disease
they may develop, or in their response to a specific treatment. Preventive or therapeutic
interventions can then be concentrated on those who will benefit, sparing expense and side
effects for those who will not”. Another area, in economic studies, is family economics,
which applies basic economic concepts to families, which are viewed as (small) firms or
companies. For example, China Household Finance Survey, the largest non-governmental
household panel survey since 2009, has so far collected massive financial and economical
data at household level. The latest wave, conducted in the summer of 2017, had more than
40,000 nationally and provincially representative households. More than 10,000 registered
users worldwide are using the data for their studies about China. In particular, the data
provide important information about household finance, which is a driving force of China’s
national economy (e.g., Zhang et al. 2014, Gan, Yin and Tan 2016).

The target of classical statistical inference is a (large) population, from which data
are collected, and to be used to make inference about the same population parameters, such
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as the mean, proportion, and regression coefficients. However, in each of the above subject
matter disciplines, the primary interest is inference at the subject levels. For example, in
precision medicine, the subject may be a patient, or small group of patients sharing similar
characteristics; in family economics, the subject is typically a family, whose definition may
vary depending on factors such as culture or interest.

Nevertheless, it should be noted that making inference about a specific subject does
not mean that the inference is based only on data collected from the subject, which is key.
The idea can be best explained using a mixed effects model (MEM; e.g., Jiang 2007). There
are fixed effects and random effects in a MEM. The fixed effects are parameters that are
common for all of the subjects; the random effects are typically subject-specific. The fixed
effects are estimated using all of the data, that is, combining all subjects, but what about
the random effects? This question has direct implications on how one predicts accurately
from such models (e.g. Welham et al. 2004). In mixed model prediction (MMP), the best
predictor for a characteristic of interest associated with a specific subject is derived, which
depends on the subject-specific data as well as the fixed effects and variance components,
which are population parameters. Thus, through MMP, inference about the subject-specific
characteristic borrows strength from data from other subjects, as well as information from
other sources.

In a significant recent development toward potentially much broader, modern-time
applications, Jiang et al. (2018) proposed a method called classified mixed model prediction
(CMMP) for two types of prediction problems - predicting the mixed effect associated with
a set of new observations and predicting future values associated with new sets of covariates.
The basic idea is to create a “match” between a group or cluster in the population, for which
one wishes to make prediction, and a (massive) training data, with known groups or clusters.
Once such a match is built, the traditional MMP method can be utilized to make accurate
predictions. Even more interestingly, it can handle the situation where a real match may
not exist.

To illustrate the CMMP method, let us focus on prediction of a mixed effect associated
with new observations. Suppose that we have a set of training data, yij, i = 1, . . . ,m, j =
1, . . . , ni in the sense that their classifications are known, that is, one knows which group, i,
that yij belongs to. The assumed model is a linear mixed model (LMM; e.g., Jiang 2007):

yi = E(yi|α) + ϵi = Xiβ + Ziαi + ϵi, (16)

where yi = (yij)1≤j≤ni
, Xi = (x′

ij)1≤j≤ni
is a matrix of known covariates, β is a vector of

unknown regression coefficients (the fixed effects), Zi is a known ni × q matrix, αi is a q × 1
vector of group-specific random effects, ϵi is an ni × 1 vector of errors, and α = (αi)1≤i≤m.
It is assumed that the αi’s and ϵi’s are independent, with αi ∼ N(0, G) and ϵi ∼ N(0, Ri),
where the covariance matrices G and Ri depend on a vector ψ of dispersion parameters, or
variance components. Our goal is to make a classified prediction for a mixed effect associated
with a new observation, yn. Suppose that

yn = E(yn|α) + ϵn = x′
nβ + z′

nαI + ϵn, (17)

where xn, zn are known vectors, I ∈ {1, . . . ,m} but one does not know which element i,
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1 ≤ i ≤ m, is equal to I. Furthermore, ϵn is a new error that is independent of yi, 1 ≤ i ≤ m,
and has mean zero. The mixed effect of interest is θ = E(yn|α) = yn − ϵn. From the training
data, one can estimate the parameters, β and ψ. Thus, we can assume that estimators
β̂, ψ̂ are available for β, ψ, respectively. Suppose that I = i. Then, it can be shown that
E(θ|y1, . . . , ym) = E(θ|yi) and, according to the normal theory,

E(θ|yi) = x′
nβ + z′

nGZ
′
i(Ri + ZiGZ

′
i)−1(yi −Xiβ). (18)

The right side of (18) is the BP under the assumed LMM, if the true parameters, β and ψ,
are known. Because the latter are unknown, we replace them by β̂ and ψ̂, respectively. The
result is called an empirical best predictor (EBP), noted by θ̃(i). In practice, however, I is
unknown. In order to identify I, we consider the MSPE of predicting θ by the BP when
I is classified as i, that is MSPEi = E{θ̃(i) − θ}2 = E{θ̃2

(i)} − 2E{θ̃(i)θ} + E(θ2). Using the
expression θ = yn − ϵn, we have E{θ̃(i)θ} = E{θ̃(i)yn} − E{θ̃(i)ϵn} = E{θ̃(i)yn}. Thus, we have

MSPEi = E{θ̃2
(i) − 2θ̃(i)yn + θ2}. (19)

Note that the E in (19) denotes the true expectation, which may be unknown; nevertheless,
the observed MSPE corresponding to (4) is the expression inside the expectation. Therefore,
a natural idea is to identify I as the index i that minimizes the observed MSPE. Because θ2

does not depend on i, this is equivalent to

I = argmini{θ̃2
(i) − 2θ̃(i)yn}. (20)

Denote the I identified by (20) by Î. Then, the classified mixed-effect predictor (CMMP) of
θ is given by θ̂ = θ̃(Î).

The basic idea of CMMP has been extended to multiple new observations from the
same, unknown group, and to prediction of a future observation. See Jiang et al. (2018) for
details. An important concept being exploited by CMMP is the idea that it captures what
is not captured by the fixed effect (the uncaptured) through the classified random effect. It
is important to note that the primary interest is not to identify the correct “match”, I. In
fact, in many applications such a match may not exist, that is, there is no group among
the training that matches exactly the group corresponding to the new observations. Even
if the exact match does exist, as the number of training data groups, m, increases, the
probability of identifying the correct group, that is, P(Î = I), goes to zero (as opposed to
going to one, as one might expect). But, regardless, the CMMP of the mixed effect, θ, is
consistent (in fact, converges in L2 to the true mixed effect), which is all we care about. For
example, it was demonstrated that CMMP significantly outperform the traditional regression
prediction whether or not the true match exists. The rationale behind the mismatch-led-
correct-prediction is because, as m increases, the difference between different groups becomes
smaller and smaller; thus, even though there is no exact match, there is a “close match”
between one of the training data groups and the new group, of which CMMP is able to take
advantage. This important, and interesting, feature makes the CMMP idea practically more
attractive because, in practice, an exact match may not exist but a close resemblance may
well be expected.
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Following the initial work of CMMP, Sun et al. (2018) extended the idea to classified
prediction of mixed effects associated with binary outcomes, such as conditional probabilities
associated with a group of new observations, and demonstrated similar properties to CMMP
for the resulting classified predictor. A number of recent results have been derived to extend
the idea of CMMP to topics like functional data analysis (Xiu & Jiang (2024)) and a psuedo-
Bayesian version of CMMP (Ma & Jiang (2023)).

3.1. Estimation of MSPE for CMMP

A standard uncertainty measure for a predictor is the MSPE. A “gold standard” for
the MSPE estimation is to produce a second-order unbiased MSPE estimator, that is, the
order of bias of the MSPE estimator is o(m−1), where m is the total number of clusters
in the training data. Typically, the o(m−1) term is, in fact, O(m−2), but this difference
is usually ignored. For the most part, there have been two approaches for producing a
second-order unbiased MSPE estimator. The first is the Prasad-Rao linearization method
(Prasad & Rao 1990). The approach uses Taylor series expansion to obtain a second-order
approximation to the MSPE, then corrects the bias, again to the second-order, to produce
an MSPE estimator whose bias is o(m−1). Various extensions of the Prasad-Rao method
have been developed; see, for example, Datta & Lahiri (2000), Jiang & Lahiri (2001), Das,
Jiang & Rao (2004), and Datta, Rao & Smith (2005). Although the method often leads to an
analytic expression of the MSPE estimator, the derivation is tedious, and the final expression
is likely to be complicated. More importantly, errors often occur in the process of analytic
derivations as well as computer programming based on the lengthy expressions. Furthermore,
the linearization method does not apply to situations where a non-differentiable operation
is involved in obtaining the predictor, such as shrinkage estimation (e.g., Tibshirani 1996),
CMMP (Jiang et al. 2018), as well as the CMMP described in what follows in the next
section.

The second approach to second-order unbiased MSPE estimation is resampling meth-
ods. Jiang, Lahiri & Wan (2002; hereafter JLW) proposed a jackknife method to estimate
the MSPE of an empirical best predictor (EBP). The method avoids tedious derivations
of the Prasad-Rao method, and is “one formula for all”. On the other hand, there are re-
strictions on the class of predictors to which JLW applies. Namely, JLW only applies to
empirical best predictor (EBP), that is, predictor obtained by replacing the parameters in-
volved in the best predictor (BP), which is the conditional expectation, by their (consistent)
estimators. The CMMP predictor, however, is not an EBP, because it involves a matching
process. Jiang, Lahiri & Nguyen (2018) proposed a Monte-Carlo jackknife method, called
McJack, which potentially applies to CMMP; however, the method is computationally very
expensive. Another resampling-based approach is double bootstrapping (DB; Hall & Maiti
2006a,b). Although DB is capable of producing a second-order unbiased MSPE estimator, it
is, perhaps, computationally even more intensive than the McJack. It is also unclear whether
DB can be extended to CMMP.

In a way, the method to be proposed below may be viewed as a hybrid of the lineariza-
tion method and resampling method, by combining the best part of each method. In short,
we use a simple, analytic approach to obtain the leading term of our MSPE estimator, and
a Monte-Carlo method to take care a remaining, lower-order term. The computational cost
for the Monte-Carlo part is much lesser compared to McJack. For example, the computa-
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tional burden of our method is about 1/m3 to 1/m2 of that for McJack. More importantly,
the method provides a unified, conceptually easy solution to a difficult problem, that is,
obtaining a second-order unbiased MSPE estimator for CMMP.

Let θ be the mixed effect corresponding to the new observations, and θ̂ the CMMP
predictor of θ. The MSPE of θ̂ can be expressed as MSPE = E(θ̂− θ)2 = E

[
E{(θ̂ − θ)2|y}

]
,

where y represents the available data. Suppose that the underlying distribution of y de-
pends on a vector of unknown parameters, ϕ. Then, the conditional expectation inside the
expectation is a function of y and ϕ, which can be written as a(y, ϕ) = E{(θ̂ − θ)2|y} =
θ̂2 − 2θ̂E(θ|y) + E(θ2|y) = θ̂2 − 2θ̂a1(y, ϕ) + a2(y, ϕ), where aj(y, ϕ) = E(θj|y), j = 1, 2. If
we replace the ϕ in a(y, ψ) by ϕ̂, a consistent estimator of ϕ, the result is a first-order un-
biased estimator, that is, we have E{a(y, ϕ̂) − a(y, ϕ)} = O(m−1). On the other hand, both
MSPE = E{a(y, ϕ)} and E{a(y, ϕ̂)} are functions of ϕ, denoted by b(ϕ) and c(ϕ), respec-
tively. It follows that d(ϕ) = b(ϕ) − c(ϕ) = O(m−1); thus, if we replace, again, to replace ϕ
by ϕ̂ in d(ϕ), the difference is a lower-order term, that is, d(ϕ̂) − d(ϕ) = oP(m−1) [see, e.g.,
Jiang 2010, sec. 3.4 for notation like oP and OP]. Now consider the estimator

M̂SPE = a(y, ϕ̂) + d(ϕ̂) = a(y, ϕ̂) + b(ϕ̂) − c(ϕ̂). (21)

We have E(M̂SPE) = E{a(y, ϕ)} + E{a(y, ϕ̂) − a(y, ϕ)} + E{d(ϕ̂)} = MSPE + E{d(ϕ̂) −
d(ϕ)} = MSPE + o(m−1). Essentially, this one-line, heuristic derivation shows the second-
order unbiasedness of the proposed MSPE estimator, (21), provided that the terms involved
can be evaluated.

Note that the leading term, a(y, ϕ̂), in (21) is guaranteed positive, a desirable property
for an MSPE estimator. The lower-order term, b(ϕ̂) − c(ϕ̂), corresponds to a bias correction
to the leading term. This term is typically much more difficult to evaluate than the leading
term. We propose to approximate this term using a Monte-Carlo method. Let Pϕ denote the
distribution of y with ϕ being the true parameter vector. Given ϕ, one can generate y under
Pϕ. Let y[k] denote y generated under the kth Monte-Carlo sample, k = 1, . . . , K. Then, by
the law of large numbers, we have b(ϕ)−c(ϕ) ≈ K−1∑K

k=1

{
a(y[k], ϕ) − a(y[k], ϕ̂[k])

}
≡ dK(ϕ),

where ϕ̂[k] denotes ϕ̂ based on y[k]. If K is sufficiently large, which one has control over during
the Monte-Carlo simulation, the difference between the two sides of the approximation is
o(m−1). Note that y[k], k = 1, . . . , K also depend on ϕ. Then, a Monte-Carlo assisted MSPE
estimator (Nguyuen et al. 2022), is given by

M̂SPEK = a(y, ϕ̂) + dK(ϕ̂) = a(y, ϕ̂) +K−1
K∑
k=1

{
a(y[k], ϕ̂) − a(y[k], ϕ̂[k])

}
(22)

where y[k], k = 1, . . . , K are generated as above with ϕ = ϕ̂, and ϕ̂[k] is, again, the estimator of
ϕ based on y[k]. (22) is called the Sumca estimator of the MSPE of θ̂ (Sumca is abbreviation
of “simple, unified, Monte-Caro assisted”).
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4. Classified mixed model projections

In many practical problems, there is interest in the estimation of mixed effect pro-
jections for new data that are outside the range of the training data. Examples include
predicting extreme small area means for rare populations or making treatment decisions
for patients who do not fit typical risk profiles. Standard methods have long been known
to struggle with such problems since the training data may not provide enough informa-
tion about potential model changes for these new data values (extrapolation bias). Rao
et al. (2024) proposed a new framework called Prediction Using Random-effect Extrapo-
lation (PURE) which involves constructing a generalized independent variable hull (gIVH)
to isolate a minority training set which is “close” to the prediction space, followed by a
regrouping of the minority data according to the response variable which results in a new
(but misspecified) random effect distribution. This misspecification reflects “extrapolated
random effects” which prove vital to capture information that is needed for accurate model
projections. Projections were then made using classified mixed model prediction (CMMP)
(Jiang et al. 2018) with the regrouped minority data. Let us assume that, for i = 1, . . . ,m,
y(k) follow a mixed model as follows:

y
(k)
i = X

(k)
i βk + Z

(k)
i bi + εi, (23)

where y(k)
i = (yij)1≤j≤n(k)

i
, X(k)

i = (x(k)
ij )T

1≤j≤n(k)
i

is a matrix of known covariates, Z(k)
i is a

matrix of known covariates, βk is a p-vector of unknown regression coefficients (the fixed
effects), bi is q-vector of group-specific random effects, and εi is an vector of errors. Notice
the different notation for the random effects from the previous CMMP in order to distinguish
the two methods.

The subscript (k) denotes the population k, and 1 ≤ k ≤ K. It is assumed that
bi ∼ N(0, G), εi ∼ N(0, Ri) and they are independent, and the covariance matrices G
and Ri depend on a vector ψ of variance components. Note βk is different for different
population k, and the random effects bi are the same across k populations. The total number
of observations in each population is n(k) = ∑m

i=1 n
(k)
i , and the overall total population

n = ∑K
i=1 n

(k). Note that n = ∑m
i=1 ni where ni is the number of observations in the group

i. If the data follows (23), people usually fit a one component mixed model that assumed
only one set of fixed effects parameters when the true model information is unknown, which
results in a convenient but “misspecified” model fit.

Assume new test observations, which follow:
yn,j = x′

nβn + z′
nbI + εn,j, 1 ≤ j ≤ nnew, (24)

where xn and zn are known vectors, and I belongs to one of the m groups. The new errors
εn,j are independent with mean zero, and variance Rnew and are assumed independent of
the training data. Notice βn ̸= βk, 1 ≤ k ≤ K. The mixed effect we wish to predict is
θn = E(yn,j | bI) = x′

nβ + z′
nbI where I ∈ {1, . . . ,m} but we do not know which group I

belongs to.

4.1. Generalized independent variable hull

Conn et al. (2015) proposed one possible definition of “the range of observation data”
which turns to early works on outlier detection in simple linear regression analysis. Cook
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(1979) referred that the smallest convex set containing all design points of a full-rank linear
regression model as the independent variable hull (IVH). The IVH definition is based on
linear model which require full rank of design matrix and i.i.d Gaussian error. Therefore, it
can not be applied to generalized models such as binary response or random effects. Cook
(1979) notes that design points with maximum prediction variance will be located on the
boundary of IVH, then Conn et al. (2015) defined a generalized independent variable hull
(gIVH) as a set of all predicted locations S0 for which

var(λi) ≤ max(var(λS)), (25)

where i ∈ S0, λi corresponds to the mean prediction at i, S denoted the set of locations
where data are observed, and λS denotes predictions at S. Conn et al. (2015) proposed
that the gIVH can be applied to determine whether predictions are interpolations (predictive
design points lying inside the gIVH) or extrapolations (predictive design points lying outside
the gIVH). This uses the generalization,

µ = Xaugβaug, (26)
where Xaug is an augmented design matrix to accommodate the random effects design ma-
trix Z and βaug is the corresponding regression parameter vector. We can then write the
prediction variance as,

var(λ̂) = var(µ̂) = Xaugvar(β̂aug)X ′
aug. (27)

One possibility is to use a flexible generalized additive model (GAM) (Hastie and Tibshirani,
1990) and then estimate the appropriate form of var(β̂aug). If y is not on the linear predictor
scale (e.g. generalized linear models outside of the normal model), then the delta method
can be used to estimate var(λ̂) (Conn et al. 2015). Outside of these situations, simulation
based methods like bootstrapping can be used to estimate the variance.

4.2. Prediction Using Random-effects Extrapolation (PURE)

Suppose we have a set of training data and test data as in (23) and (24). Let πk denote
the percentage of the population that comes from the population k, and ∑K

k=1 πk = 1. If
K = 2, we have π1 percent of the population comes from the minority and the rest 1 − π1
population comes from the majority. We define the following relevant features:

1. Extreme data: This is the test dataset which may or may not be outside of range of
the training data. Both cases can be handled here.

2. Majority data: Notationally, we can concatenate all observations in the full training
data as L = {(xl, yl); l = 1, . . . , (n1 +n2 + . . .+nm)}. Then define the majority dataset
as those further away from the test data. Let ‡ denotes the majority, we have a distance
measure d‡ = |median(var(λ‡)) − max(var(λS))| where var(λ‡) > max(var(λS)) and
λ‡ denotes the λ that calculated from the majority data. Similarly, d† denotes the
distance measure for the minority data and d‡ > d†. Therefore:

L ‡ = {(xl, yl)|d‡ > d†}.
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The original groupings are maintained so the majority data can be re-expressed ac-
cording to the groupings.

3. Minority data: This portion of the data that is the complement of the majority data.
This is found by a minority data decision rule to be described.

L † = {(xl, yl)|d† ≤ d‡}.

Again, the original groupings are maintained so the minority data can be re-expressed
according to these groupings.

4. Re-grouped minority data L †
R: For this, we take the minority data and re-group it ac-

cording to a hierarchical clustering algorithm with respect to the responses y resulting
in mr = m groupings with potentially revised memberships.

Rao et al. (2024) presented comprehensive simulation studies and analysis of data
from the National Longitudinal Mortality Study (NLMS) which demonstrated superior pre-
dictive performance in these very challenging paradigms. An asymptotic analysis revealed
why PURE resulted in more accurate projections.
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