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Abstract

In human genetics, Bayesian semiparametric approaches have proven especially effec-
tive in disease gene association studies, where genetic heterogeneity and complex interactions
are common. They are particularly advantageous in stratified subpopulation settings with
an unknown number of subgroups. Unlike traditional parametric models that require pre-
specifying the number of subpopulations, nonparametric methods such as Dirichlet Process
mixture models allow the number and structure of subpopulations to be learned from the
data. This flexibility enables more accurate detection of disease-associated variants while
accounting for population structure, which are key challenges in complex trait analysis and
precision medicine. This work provides an overview of how Dirichlet Process based mix-
ture models can be used to flexibly model gene-gene and gene-environment interactions and
identify disease-associated variants in complex, stratified populations with unknown hetero-
geneity.
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1. Introduction
1.1. Gene-gene and gene-environment interaction

With recent technological advances, it is now possible to assay millions of loci in an
individual’s genomic DNA to identify disease-associated genes. While this capability has
revolutionized genetic research, it has also introduced substantial analytical challenges, par-
ticularly in managing the massive volume of data generated. Addressing these challenges
requires the development of sophisticated statistical models that integrate current biological
and biochemical knowledge of disease mechanisms. Such models not only facilitate efficient
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computation but also enable deeper insights into the complex pathways underlying multi-
factorial diseases.

Genome-wide association studies (GWAS) have identified numerous single nucleotide
polymorphisms (SNPs) associated with complex diseases, yet they explain only a small frac-
tion of heritable genetic variation; see Larson and Schaid (2013). A growing body of research
indicates that genes often function through intricate interaction networks, which significantly
shape the genetic basis of complex traits Bonetta (2010). The limited explanatory power of
GWAS may stem from the absence of models that incorporate gene-gene interactions into
genomic analysis Cordell (2009), thereby overlooking important biological mechanisms Yi
(2010).

A major obstacle in studying genetic interactions lies in the lack of a clear definition
of epistasis. Phillips (2008) distinguishes between functional and compositional biological
epistasis, both of which differ from the classical statistical definition proposed by Fisher
(1918) and extended by Kempthorne (1954). While VanderWeele (2009) identifies conditions
for alignment between statistical and biological definitions, most statistical tests fail to reflect
the biological complexity of interactions. Still, statistical models are essential for quantifying
these effects Cordell (2002), Wang et al. (2010).

SNP-SNP interactions are often used to model gene-gene interactions in case-control
studies Yi et al. (2011). However, SNP-level models are computationally intensive due to the
large number of interaction terms required, whereas gene-level models offer dimensionality
reduction at the expense of finer detail Larson and Schaid (2013), Musameh et al. (2015).
Moreover, additive linear models can oversimplify interaction mechanisms and obscure inter-
pretability, especially when principal components are used for reduction Wang et al. (2010).

These challenges are compounded by the frequent neglect of population substructure.
Genetic effects can vary across subpopulations, and ignoring such heterogeneity can lead to
biased inference and inflated false positives Bhattacharjee et al. (2010). Since the number and
structure of subgroups are usually unknown, flexible models that can infer latent structure
are critical.

Beyond genetic interactions, the interplay between genes and environmental factors
is critical to understanding disease etiology. Although most diseases arise from a com-
bination of genetic and environmental influences, only a small subset are purely mono-
genic. Environmental exposures can alter genetic risk Mapp (2003), Khouri (2005), and in
certain cases, disease manifestation occurs only beyond specific environmental thresholds.
Hunter (2005) emphasize that neglecting such interactions can lead to misestimation of the
population-level disease burden. These interactions are particularly salient in pharmacoge-
netics, where treatment efficacy and safety may vary by genotype Scott (2011). Mechanis-
tically, gene—environment interactions may act through pathways such as epigenetic mod-
ification and transcriptional regulation Purcell (2002), Ottman (2010). However, existing
statistical approaches, particularly linear and log-linear models, often fail to adequately cap-
ture these complex dependencies Mukherjee et al. (2008), Mukherjee and Chatterjee (2008),
Mukherjee et al. (2010), Mukherjee et al. (2012), Sanchez et al. (2012), Ahn et al. (2013),
Ko et al. (2013).

These limitations point to the need for more general, data-adaptive approaches.
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Bayesian nonparametric methods based on Dirichlet Process mixture models offer the flex-
ibility to address gene-gene and gene-environment interactions while accounting for popu-
lation stratification. This article surveys recent developments in this direction, building on
the framework proposed in Bhattacharya and Bhattacharya (2018) and Bhattacharya and
Bhattacharya (2024).

2. An overview of our Bayesian nonparametric ideas

This paper presents a Bayesian nonparametric/semiparametric framework for ana-
lyzing gene-gene interactions, fundamentally differing from traditional logistic regression
approaches. Rather than modeling disease status conditional on genotype, we model geno-
type distributions conditional on disease status. To account for hidden population sub-
structure, Dirichlet process-based finite mixtures (Bhattacharya, 2008) are embedded within
a hierarchical model that captures interactions at both gene and SNP levels via matrix-
normal priors. The framework extends naturally to gene-environment interactions through
covariate-dependent priors, enabling the assessment of how environmental factors influence
genetic associations.

Our Bayesian approach addresses multiple sources of uncertainty and moves beyond
binary presence—absence tests by modeling the magnitude and structure of interaction effects
using correlation-based measures. Disease-predisposing loci (DPLs) are detected through
novel posterior-clustering-based hypothesis testing. For computational efficiency in high-
dimensional settings, Transformation-based Markov Chain Monte Carlo (TMCMC) (Dutta
and Bhattacharya, 2014) is employed, facilitating block updates with high acceptance rates.
Combined with parallel Gibbs sampling tailored for Dirichlet process mixtures, the method
achieves substantial computational gains.

We validate the methodology through simulations and apply it to a myocardial in-
farction case—control SNP dataset. The results corroborate known associations and reveal
novel gene—gene and gene—environment interactions, illustrating the flexibility and inferential
power of the proposed framework.

Case/Control (k)

Gene j
Mixture for (j, k):
G ~ DirichletProcess

U, v ~ N(0,1) Minor allele g ~ N(p, A %)
(Interactions) at SNP r: x5, (Interactions)

Figure 1: Schematic representation of the Bayesian model for gene—gene inter-
actions
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For each gene and case-control status, genotype data are modeled using Dirichlet
process-based mixtures that capture sub-population structure. SNP-level dependencies and
gene-gene interactions are introduced through a matrix-normal prior on latent interaction
parameters. The modular design of the model allows efficient parallel computation: gene-
specific mixture components are updated independently across processors, while the inter-
action parameters are updated centrally using transformation-based MCMC (TMCMC).

2.1. Case-control type genotype data

Humans have 22 pairs of autosomes and one pair of sex chromosomes in the nuclear
genome. Chromosomes are composed of tightly coiled DNA, containing genes that may exist
in alternative forms, known as alleles, at the same genetic locus. Variation in alleles can lead
to phenotypic differences, and the specific allelic combination at a locus defines an individ-
ual’s genotype. The most common genetic variation is the Single Nucleotide Polymorphism
(SNP), a single base change in the DNA sequence. This study analyses SNP data from case
and control cohorts in relation to a specific disease.

Let s = 1,2 represent the two chromosomes. For an individual indexed by i, gene

J, group k, and locus r, define xj;, = 1 if the minor allele is present, and z7;,, = 0
otherwise. The indices range as follows: ¢ =1,...,Ny; 7 =1,...,J; k=0,1, where k = 1
corresponds to the case group; and r = 1,..., L;. Given any (j,k), let Tijrr = (Zjj> Tip, ),

and Xijk = (ivz'jkh Lijk2, - - - ;iﬂijij)-

2.2. Gene-gene interaction based mixture models driven by Dirichlet processes

We assume that for every triplet (i,7,k), X, are independently distributed with
mixture probability mass function with a mazimum of M components, given by

M L;
[lek] = Z Tmjk H f (mijkr|pmjkr) ) (]-)
m=1 r=1

where f (:|pmjkr) is the probability mass function of independent Bernoulli distributions,
given by

xzl., a2, —(x}, 422
F @ijhr|Pmgir) = {Pmgir } 70 5000 {1 = iy} ot i) (2)
Using allocation variables z;;;, with probability distribution
[Zijk = m] = Tmjk, (3)
fori=1,...,Nyand m=1,..., M, (1) can be represented as

L,

(Xisnlzige) = [T £ (ijhrlpeypse ) - (4)
r=1
We may assume appropriate Dirichlet distribution priors on (myjk, ..., ) for j =1,...,J;

k = 0,1. Following Mukhopadhyay and Bhattacharya (2021), we set m,,;z = 1/M, for
m=1,...,M, and for all (j, k).
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Letting pp,jr = (pmjklypmjk27 . ,pmjij), we further assume that
Pijks Pojis - - » Pt © Gl (5)
Gk ~ DP (jxGo ji) (6)
where DP (oG ;i) stands for Dirichlet process with expected probability measure Gy
having precision parameter a;,. We assume that under Gy i, for m = 1,..., M and r =
1,...,L;
Pmjkr “ Beta (Vijkrs Vajkr) - (7)

Discreteness of Dirichlet processes causes coincidences among the parameter vectors
of Prjk = {P1jk, P2jk, - - -, Pmjr } With positive probability, so that, with positive probability,
the actual number of mixture components in (1) falls below M, the maximum number of
components, the mixing probabilities taking the form M*/M, where 1 < M* < M. The
property of coincidences among the parameter vectors is clearly preserved by the Polya
urn scheme. Notationally, we shall denote the number of distinct elements of Py, =

{P1jk, P2jks - - - » Prrjic} by T and that of Py \{pmjr} by T;;T)-

Conditioned on Gjj, our fixed-M mixture model mimics an infinite-dimensional
Dirichlet process mixture despite the non-iid nature of the data (Mukhopadhyay and Bhat-
tacharya (2021)). The number of distinct components in Py, can vary across (j, k) due to
random duplication. This flexibility aligns with biological expectations, as genotype distri-
butions often differ between cases and controls under genetic influence. Such heterogeneity
is naturally accommodated within our framework.

2.3. Gene-gene, SNP-SNP interactions and parallel processing

To incorporate the SNP-SNP dependence, which may exist within each gene and also
among the genes, The Beta parameters are modelled as vy, and vy, of (7) as follows:

For r=1,...,L, where L = max{L;; j=1,...,J}, and for every (j,k),

Vijkr = exXp (u'r + /\]k> ; (8)
Vajir = eXp (Ur + Aji) - (9)
We further assume that for r =1,..., L,
ur % N(0,1); (10)
v N(0,1). (11)
The Gaussian priors on u, and v, with other means and variances did not yield significantly
different results, establishing the prior robustness in our modeling strategy.

Subsequently, the SNP-wise dependence in a gene is modelled using matrix-normal
distribution

A:{)\]ka ]:1a7J7 k:071}NN(u’7A®E)7

as a prior for A (A in matrix form) with appropriate inverse-Wishart priors on A and
3. Furthermore, the matrix-normal prior induces dependence among genes, which in turn
creates dependencies among the SNPs belonging to different genes.



158 DURBA BHATTACHARYA AND SOURABH BHATTACHARYA [SPL. PROC.

Given that the mixture distributions for each gene j € 1,...,J and case-control
group k € 0,1 are conditionally independent when the interaction parameters are known, we
take advantage of this structure for efficient computation. Mixture components are updated
simultaneously across multiple processors, while the interaction parameters, which govern
the dependencies, are updated afterward on a single processor using a specialized TMCMC
approach.

This separation in the update steps enables the method to handle large-scale data
effectively while preserving the ability to capture complex gene-gene and SNP-SNP relation-
ships.

2.4. Summary of analysis of the MI dataset

In our analysis of the real Myocardial Infarction (MI) dataset, we focused on a to-
tal of 1251 SNPs, out of which only 33 had prior evidence suggesting a possible link to
the disease. The remaining 1218 SNPs had no documented association with MI and were
largely considered unlikely candidates for influencing disease risk. In fact, apart from a few
among the 33 literature-supported SNPs, most of the others were included not because of
prior biological relevance, but to test the robustness of our model in distinguishing mean-
ingful signals from noise. Interestingly, in several instances, the disease-predisposing loci
(DPL) identified by our Bayesian approach matched those already highlighted in the lit-
erature as relevant to MI. Notable examples include SNP rs7395662 in gene OR4A48P,
SNP 75964184 in AP006216.10, SNP rs4420638 in APOC1, SNP rs1564348 in SLC22A1,
and SNP rs1013442 in BDN F-AS. This alignment underscores the model’s ability to suc-
cessfully detect true associations, thereby effectively controlling false negatives. Conversely,
SNPs not identified as DPLs either by our approach or by prior studies can be reasonably
regarded as unrelated to the disease, indicating that the model also maintains strong control
over false positives.

3. Extension to gene-environment interactions

Our Bayesian hierarchical mixture framework integrates the mechanisms by which
gene—environment interactions, as well as the isolated and joint effects of genes, contribute to
disease susceptibility, while accommodating potential population stratification. A distinctive
feature of the model is its ability to infer the number of latent genetic subpopulations.

To capture the influence of environmental variables, the proposed semiparametric
specification employs Dirichlet process-based finite mixtures at the individual level, jointly
modeling genetic profiles and case—control status. These mixtures are linked through a struc-
tured dependence encoded via hierarchical matrix-normal distributions, enabling the model
to account for correlations induced by environmental exposures. The framework extends
the gene—gene interaction model and Bayesian hypothesis testing methodology developed in
Section 2 to detect the effects of genes, environmental factors, and their interactions.

Computation is performed via a parallel MCMC scheme that leverages the model’s
conditional independence structure, combining Gibbs sampling with Transformation-based
MCMC (TMCMC) for efficient high-dimensional updates. Environmental covariates in-
fluence individual-level Dirichlet process mixtures, allowing for subject-specific modulation
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of genotype distributions. The prior hierarchy accommodates locus-specific, gene-specific,
and environment-dependent parameters. Parallel updates are applied to gene—environment-
specific components, while interaction parameters are updated centrally using TMCMC.
Figure 2 presents a schematic representation of the proposed framework.

Individual ¢
Environmental covariates F;

Gene j
Mixture for (i, 7, k):
Gijx ~ DP
Wy, Vg Minor allele Nijks Mk BkaEi
(Interactions) at SNP 7: 2;n, (Interactions)

Figure 2: Diagram of the extended Bayesian framework incorporating gene-
environment interactions

3.1. Modeling genotypic sub-populations with mixture models driven by Dirich-
let processes

Let E; denote the set of environmental variables associated with the ¢-th individual.
We model the case-control genotype data, together with environmental information, using
our Bayesian semiparametric model.

Let xijpr = (x}jkr,x?jkr) denote the genotype at the r-th locus of the j-th gene for
the i-th individual in the k-th group (case/control), and let Xy, = (Zijr1, Tijao, - - - Tijur,)
denote the genotype information across all L; loci of the j-th gene. Let p,,ijr denote the
minor allele frequency at the r-th locus of the j-th gene for the i-th individual in the k-
th group. The minor allele frequency represents the frequency at which the second most
common allele occurs in a given population.

We assume the mixture distribution:

M L;
[Xijk] = Z Tmijk f(xijkr | pmz‘jkr)7 (12)
m=1 1

r=

where f(- | pmijkr) denotes the Bernoulli mass function:

1 2
Tir T3k (1

o 2
f(xijkr |pmz'jkr) = Dytiior 2 ($ijkr+$ijkr)7 (13)

- pmijkr)
and M is the maximum number of mixture components. The allocation variables z;;;, are
such that:

[zijk:m] = Tmijk, m = 1,...,M. (14)
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We set 7 = 1/M for all (4,7, k) and m, as this fixed weight approach has been
shown to yield better performance than Dirichlet priors in learning about the true number
of components.

This representation captures the possibility that different individuals, even within the
same group and gene, may belong to different sub-populations, influenced by their environ-
mental exposures F;. This is a substantial extension from the model in Section 3, which did
not account for environmental effects.

3.2. Summary of the results of MI data analysis with this new model

We applied the proposed model to the myocardial infarction (MI) dataset previously
analyzed in Section 2.4, incorporating sex as an environmental covariate. The resulting in-
ferences were consistent with established findings in the literature. Although gene—gene in-
teractions were not statistically significant, SNP-SNP correlations, quantified via Euclidean
distances between case and control groups, provided plausible explanations for discrepancies
between our identified disease-predisposing loci (DPLs) and those reported in earlier studies.

Importantly, the Bayesian framework produced interpretable results despite the lim-
ited sample size of 200 individuals, underscoring the utility of hierarchical modeling with
informative priors and the efficiency of the employed MCMC algorithms.

4. A general model for gene-gene and gene-environment interactions based
on hierarchies of Dirichlet processes

As discussed in Section 3, gene—gene interactions alone are insufficient to explain the
etiology of most complex diseases. Similarly, examining environmental factors in isolation
from genetic variation is inadequate; biomedical evidence underscores the pivotal role of
gene—environment interactions in elucidating complex disease mechanisms. Given the ab-
sence of a simple, additive relationship between genetic and environmental influences, linear
or additive models commonly used to date are inadequate for modeling these interactions.

In Section 3, we introduced a Bayesian semiparametric model for case-control geno-
type data, employing Dirichlet process-based finite mixtures at the subject level. A hier-
archical matrix-normal dependence structure linked these mixtures to capture correlations
among genes under environmental influence. However, a potential limitation of this frame-
work arises from its induced covariance structure: for individual ¢, the relevant gene—gene
covariance matrix is 6;A, where A is a common gene—gene interaction matrix (in the ab-
sence of environmental variables) and 6; = oy + ¢, with 0;; denoting the i-th diagonal
element of a symmetric positive-definite matrix unrelated to environmental variables, and
¢ > 0 representing the effect of the environmental covariate E. This formulation assumes
that environmental exposures modify gene—gene interactions in an identical manner across
all individuals, which may be unrealistic when the magnitude and nature of exposure vary.

To address this limitation, we propose a Bayesian nonparametric framework for mod-
eling joint gene-gene and gene—environment interactions, as developed in Bhattacharya
(2019) (see also Bhattacharya and Bhattacharya (2024)). Like the earlier model, individual
genotype distributions are represented via Dirichlet process-based finite mixtures; however,
in place of the matrix-normal dependence structure, we introduce a hierarchy of Dirich-
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let processes that flexibly captures nonparametric dependencies among genes induced by
environmental covariates, case—control status, and inter-individual heterogeneity. This hier-
archical construction overcomes the restrictive assumptions of the matrix-normal approach
described in Section 3. Although conceptually related to the hierarchical Dirichlet process
(HDP) of Teh et al. (2006), our model introduces an additional level of hierarchy, enhancing
flexibility.

For computation, we develop a highly parallelizable MCMC algorithm that inte-
grates modern parallel computing resources with Gibbs sampling, retrospective sampling,
and Transformation-based MCMC (TMCMC). The Bayesian hypothesis testing procedures
from our earlier framework are extended to this enriched setting.

Letting s = 1,2 denote the two chromosomes, we define y;;;, = 1 and 0 to indicate
the presence and absence, respectively, of the minor allele for the i-th individual in group
k € {0,1} (with k& = 1 denoting the case group), at the r-th locus of the j-th gene, for
t=1,...,Ng;r=1,...,Lj;and y=1,...,J. Let N = Ny + Ny, and let E; denote a vector
of environmental variables associated with individual 4.

Again, before describing the components of the model in detail, we first present the
schematic diagram in Figure 3.

Environmental covariates F;

Individual DP: Gy,
log ag ik = pg + Bé B

Gene DP: G B
log acok = pao + B Lk

Group DP: H;,
logay = g + B E

Base: ppijir ~ Beta(vy, 1)

Figure 3: Schematic representation of the hierarchical Dirichlet process (HDP)
model for gene-gene and gene-environment interactions
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This fully nonparametric framework models dependencies across individuals, genes,
and groups through a three-level hierarchy of Dirichlet processes. Environmental covariates
influence the precision parameters at each level, allowing flexible, individualized represen-
tation of interaction structures. The base distribution is a Beta prior on allele frequencies.
This hierarchy enables rich modeling of stratification and interaction while maintaining com-
putational scalability.

4.1. Summary of the MI data analysis with the HDP model

Our analysis of the MI dataset revealed a strong effect of the sex variable, consistent
with the findings in Section 3. Our hypothesis tests indicated no significant marginal effects
of individual genes, in agreement with Section 3 where only weak marginal effects were
observed.

Most notably, even though gene-gene correlations were generally weak, again consis-
tent with Section 3 and Lucas et al. (2012), our tests detected that two genes, AP006216.10
and C6orfl106, exhibited broad, beneficial interactions with other genes that may help com-
bat the disease. Furthermore, in the only subgroup for which all gene-gene interactions were
found to be insignificant was the male cases. Hence, our results lend statistical support to
the widely held belief that males may be more susceptible to heart attacks than females.

4.2. Summary and future directions

This work presents a unified Bayesian nonparametric framework for analyzing gene—
gene and gene—environment interactions in case—control studies. The proposed approach
is designed to accommodate multiple layers of uncertainty, a feature that distinguishes it
from many existing methods that prioritize computational feasibility for large-scale datasets.
Such differences in objectives necessarily lead to different performance criteria, making direct
comparisons with standard approaches inappropriate. Both the simulated and real datasets
analyzed here exhibit multiple subpopulations. While methods such as principal component
analysis can infer subpopulation structure, most approaches require the number of subpop-
ulations to be fixed a priori, which can lead to misestimation and inflated false positives
Bhattacharjee et al. (2010). Since genetic interactions may differ across subpopulations,
such errors can bias inference. Our method explicitly models this uncertainty, in contrast
to De lorio et al. (2015b) and De lorio et al. (2015a), which do not address gene-gene or
gene—environment interactions.

Existing approaches generally test only for the presence of interactions without quan-
tifying their strength, whereas our framework enables classification of genes by the magni-
tude of their interactions. Many standard methods rely on heuristic definitions of main and
interaction effects, for example, kernel-based methods Larson and Schaid (2013), Kullback—
Leibler divergence Wan et al. (2010), entropy-based information gain Li et al. (2015), or
genotype categories Yi et al. (2011), which can yield results sensitive to the chosen defini-
tion. In contrast, our framework models interactions using established statistical principles.
Furthermore, most current models analyze pairwise SNP-SNP interactions via logistic re-
gression, neglecting genes as functional units and lacking scalability to higher-order inter-
actions. Two-stage approaches such as BOOST and Bayesian methods like BEAM or EpiBN
operate only at the SNP level and overlook gene-level modeling Niel et al. (2015). Our
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unified Bayesian approach simultaneously models uncertainties in both gene- and SNP-level
interactions within a coherent probabilistic structure. Finally, the simulation datasets used
to validate our method were generated under logistic models, which form the basis for most
competing approaches. Given that our framework is nonparametric and fundamentally dis-
tinct from logistic regression, such simulation settings do not allow for direct performance
comparisons.

The proposed methodology addresses several key challenges in genetic association
studies, including population stratification, uncertainty in subgroup structure, and the joint
modeling of genetic effects at both the SNP and gene levels. The model incorporates com-
plex dependency structures through hierarchical Dirichlet process mixtures, and Bayesian
hypothesis testing procedures are introduced to assess interaction significance and identify
disease-predisposing loci. Computationally, the framework is highly scalable, leveraging par-
allelization, Gibbs sampling, and Transformation-based MCMC to efficiently analyze high-
dimensional genomic data. Simulation studies and application to a myocardial infarction
dataset demonstrated the accuracy, robustness, and interpretability of the approach, yield-
ing results consistent with established findings while also uncovering novel patterns, including
sex-specific susceptibility.

The flexibility of the proposed model allows for natural extensions to incorporate
additional biological complexities, such as dynamic environmental effects or longitudinal
data. Future work may extend the framework to handle time-to-event outcomes and in-
tegrate multi-omics data. Overall, this study demonstrates how Dirichlet process-based
Bayesian nonparametric methods can advance the analysis of complex diseases by providing
a principled, flexible, and computationally efficient alternative to traditional GWAS analy-
ses, thereby contributing to a deeper understanding of the genetic architecture underlying
complex traits.
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