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Abstract
In the context of nonparametric regression, statistical relationship between the covari-

ate and the random error is a matter of interest. For a traditional nonparametric regression
model Y = g(X) + ϵ where Y is the response, X the covariate, ϵ the random error and g(·) a
suitably chosen smooth function, null hypothesis may be framed as the independence of X
and ϵ against all possible alternatives citing dependence between them. It may be of further
concern, whether for an incomplete data set with several missing observations, such rank
based testing of independence can be performed. For example, some observations on Y are
unreported whereas the covariate X has complete data. On this structure of missingness
completely at random (MCAR) situation, process of rank based testing on independence
between X and ϵ may be thought of. This article delineates such testing techniques, based
on Kendall’s τ or Bergsma’s (2014) τ ∗ and Blum et al. (1961) distance based test statistics,
in order to develop consistent test procedures against a sequence of contiguous alternatives.
The asymptotic powers of these test statistics are further studied through the finite sample
simulation study, choosing different levels of missingness percentage. Finally, a real data
analysis presents a comparative testimony of those proposed test statistics.

Key words: Asymptotic power; Contiguous alternative; Distance covariance; Kendall’s τ ;
Missing completely at random; Nonparametric regression model; Local linear smoothing.
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1. Introduction

For a quite substantial period of time in statistics literature, missing data context
continues to be a live topic. The impact of missing data on quantitative research can be
serious, heading to biased estimates of parameters, loss of information, increased standard
errors and debilitated the generalizability of findings. Usually, most statistical processes are
designed for complete data. In the presence of missing values, failing to edit the incomplete
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data into “complete” one can turn the data statistically unsuitable. Particularly, statisti-
cal inference process experiences a huge toll in presence of missingness. Thus, as a default
approach, one may delete those missing observations before going to conduct the necessary
analysis using statistical methods. Most inevitable drawback of such listwise deletion is
that a large fraction of sample might get trimmed causing severe loss to statistical power.
Some articles by Anderson(1957), Wilks(1932), Afifi and Elashoff(1966), Hartley and Hock-
ing(1971) discussed the problem of listwise deletion where each value of data set is equally
likely to be missing.

In regression set up, missing scenario mostly occurs in response variable Y where some
of the observations in Y are not available. The chance mechanism of this missingness may be
independent of X and Y or may depend fully on the covariate, X. The first case is termed
as missing completely at random (MCAR) while the second type of missingness is missing at
random (MAR) (Little and Rubin (2014)). Mathematically speaking, in regression set-up,
missingness can be interpreted via a triplet (Xi, Yi, δi) for a set of n observations on (X, Y ).
At a given point Xi, the response Yi is either observed or missing. The indicator variable δ
takes the value 1 or 0 according as the value of Y is reported or not. Clearly for MCAR,
Prob[δ = 1/X, Y ] = p (a constant) while for MAR Prob[δ = 1/X, Y ] = P [δ = 1/X] = p(X)
(a function of X). We shall proceed with an MCAR data to test the association in the
context of nonparametric regression further.

Suppose in nonparametric regression model Y = g(X) + ϵ with g being the unknown
regression function and ϵ the error, missingness at random occurs in Y . Instead of com-
plete deletion of those unavailable (X, Y ) observations, imputation techniques may be used
where substitutes for missing values are looked for. In contrast to imputing certain global
estimates such as mean/median of available Y figures, it may be worthwhile to opt for some
other imputation alternatives based on nonparametric regression estimation, like local linear
smoothing, kernel density estimation etc. (Chung et al. (1993), Cheng (1994)), thereafter
examining the impact of missingness on their performances. One may note that downside of
imputation technique is to produce underestimates of standard errors, which leads in turn
to inflated test statistics.

In nonparametric regression, a fundamental assumption is homoscedasticity, i.e.
E(ϵ2/X = x) = σ2 > 0. However even for homoscedastic model, inference based on unknown
regression function g(x) may be unconvincing, for instance in isotonic mean/median regres-
sion model, confidence interval for the regression function at a given point will be wrong
even if the homoscedasticity holds. In such cases, it is safer to assume the independence
between X and ϵ. This issue of checking the independence against all possible alternatives,
has been addressed in the literature by Einmahl et al.(2008), Neumeyer(2009), Hlavka et al.
(2011), Dhar et al.(2018). Most of the test statistics proposed are distance based except the
rank based test statistic by Bergsma (2014), followed by Dhar et al. (2018), Das et al.(2022)
where the test statistic is constructed on the sign function of second/third order differences
of neighbouring quadruplet of responses.

The present article is evolved on the adoption of such rank based test statistic to
investigate the independence of ϵ andX in nonprametric regression when the data has MCAR
in Y . At the first stage, the missing places are imputed by the regression estimator through
Nadaraya- Watson estimation and local linear smoothing technique respectively. Thereafter,
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filling those unregistered Y values we try to form rank based test statistic following the road-
map by Bergsma (2014). We also investigate the asymptotic theory of those test statistics
under null and contiguous alternative (Lehmann and Romano, 2005).

The rest of the article is organized as follows. Section 2 describes original regres-
sion model and the transformed imputed model. Section 3 provides the methodologies to
estimate the regression function g(.) using various estimation techniques. In section 4, test
statistics are constructed based on the newly obtained bivariate observations X and Y . The
asymptotic local powers of the test statistics under contiguous alternatives are computed in
Section 5. Section 6 includes a real data study. A precise conclusion is presented in section
6. Appendix 1 contains derivation of technical details while appendix 2 contains numerical
results of asymptotic power study.

2. Regression setting

Let the nonparametric regression model to be considered as Y = g(X) + ϵ. Consider
the following imcomplete data: (Xi, Yi, δi), i = 1, 2 · · · , n where δ = 1 if Yi is observed
otherwise δ0 = 0 if Yi is missing. Also, Prob(δ = 1/X, Y ) = Prob(δ = 1/X) = p (0 < p < 1)
where p being a fixed constant, i.e., missingness is MCAR type. Let there be k bivariate
observations assuming missingness on Y and the remaining (n − k) pairs are complete.
Suppose (X ′

i, Y
′

i ) denote the i-th complete observation of (X, Y ), i = 1, 2, · · · , (n − k). A
nonparametric sub-model can be formulated on these complete pairs as

Y ′ = g1(X ′) + ϵ′ (1)

with the assumptions on error ϵ′ similar to the assumptions, already drawn on error ϵ of the
original model, as E(ϵ′|X ′ = x′) = 0 ∀ x′ and E(ϵ′2|X ′ = x′) = σ2(x′) where σ2(x′) > 0.
The regression function g1(·) is the first step regression function. Its nonparametric
estimator may be treated as a naive alternative against the estimator of g(X) in the original
model. After deducing the estimator of g1(·) as ĝ1(·), the missing observations on Y will be
filled up by ĝ1(·) at the values of the covariate X corresponding to the missing responses.
These fillers are known as imputed responses. Thus, by imputing the missing values of
Y , the complete data set (X∗, Y ∗) of size n can be re-framed as follows.

Y ∗
i =

{
Y ′

i when δ = 1
ĝ1(Xi), when δ = 0 ; i = 1, 2, · · · , n

Then, the following regression model is proposed on the hence completed bivariate data
(X∗, Y ∗).

Y ∗ = g2(X∗) + ϵ∗ (2)

where X∗ being the covariate and ϵ∗ being the error. Finally, g2(X∗) is estimated using the
conventional methods like Nadaraya-Watson (NW) estimation and local linear smoothing
method respectively.
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3. Estimation of regression functions

3.1. Estimation using Nadaraya-Watson method

The first step regression function g1(.) in (1) can be estimated using Nadaraya Watson
(NW) estimation process at X ′ = x′ as

ĝ1(x′) =

n∑
i=1

k

(
X ′

i − x′

h

)
Y ′

i

n∑
i=1

k

(
X ′

i − x′

h

) (3)

where k(·) is the kernel density function and h is the bandwidth satisfying h → 0 with
nh → ∞ where n → ∞. A variety of kernel functions are possible to be chosen but for
practical and theoretical considerations we choose a very common one, Epanichnikov kernel
k(u), where k(u) = .75(1−u2).I(|u| ≤ 1). This parabolic shape kernel enjoys some optimality
properties.

The second stage estimator of the regression function g2(X∗) in (4) is also deduced
in a similar manner.

ĝ2(x∗) =

n∑
i=1

k
(
X∗

i − x∗

h

)
Y ∗

i

n∑
i=1

k
(
X∗

i − x∗

h

) (4)

Further, proposition of some test statistics are made.

3.2. Estimation using local linear smoothing (LLS)

In addressing the same issue, another alternative approach against NW estimation
can be the technique of local linear smoothing (Chu et al., 1995). This method begins with
the minimization of the local weighted least squares based on all bivariate observations, i.e.
minimization of the following expression.

n∑
i=1

[Yi − r0 − r1(x−Xi)]2 k
(
x−Xi

h

)
δi (5)

As per the notation stated in section 2, specifically for non missing pairs of observations
(X ′, Y ′) the above expression of minimization can be re-framed as minimization of

n−k∑
i=1

[Y ′
i − r0 − r1(x′ −X ′

i)]
2
k

(
x′ −X ′

i

h

)
(6)

The minimization yields the solutions of the constants r0 and r1. (5) gives

r̂0 =

n∑
i=1

(M2 − (x−Xi)M1) k
(
x−Xi

h

)
δi Yi

n∑
i=1

[M2 − (x−Xi)M1] k
(
x−Xi

h

)
δi

(7)
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where Ml =
n∑

i=1
(x−Xi)l k

(
x−Xi

h

)
δi, l = 1, 2. Clearly, for non-missing pairs of observa-

tions (X ′, Y ′) (6) would be reshaped as

r̂0 =

n−k∑
i=1

[M ′
2 − (x′ −X ′

i)M ′
1] k

(
x′ −X ′

i

h

)
Yi

n−k∑
i=1

[M ′
2 − (x′ −X ′

i)M ′
1] k

(
x′ −X ′

i

h

) (8)

where M ′
l =

n−k∑
i=1

(x′ −X ′
i)l k

(
x′ −X ′

i

h

)
, l = 1, 2. The least square estimate r̂1 of r1 can be

deduced in a similar way from (5) or (6) which is simply

r̂1 =

n∑
i=1

(x′ −X ′
i) k

(
x−Xi

h

)
δi Yi − r̂0M

′
1

M ′
2

.

Next, by the first order Taylor’s expansion, g(Xi) can be expanded in the neighbour-
hood of x as

g(Xi) = g(x) − (x−Xi)g(1)(x) (9)

where g(1)(x) is the first order derivative of g(x). Hence the response Yi can be approximated
as {g(x) − (x − Xi)g(1)(x) + ϵi}, i = 1, . . . , n. Synonymously, under non missing set up Y ′

i

may be approximated as {g(x′) − (x′ −X ′
i)g(1)(x′) + ϵ′

i}, i = 1, . . . , n. Then substituting Y ′
i

in (3), we obtain

ĝ1(x′) =

n∑
i=1

k

(
X ′

i − x′

h

)
{r̂0 + r̂1 (x′ −X ′

i)}
n∑

i=1
k

(
X ′

i − x′

h

)

= r̂0 − hr̂1

n∑
i=1

(
X ′

i − x′

h

)
k

(
X ′

i − x′

h

)
n∑

i=1
k

(
X ′

i − x′

h

)

which approaches to r̂0 mentioned in (7) for relatively small bandwidth h such that h → 0.
Noticeably, the estimator r̂1 is not of use when h → 0. Denote β′

i = M ′
2 − (x′ − X ′

i)M ′
1 ∀

i = 1, . . . , n. Then the estimate of g1(x) will be

ĝ1(x′) =

n∑
i=1

β′
iY

′
i

n∑
i=1

β′
i

(10)
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or a slightly modified estimator ĝ1(x′) =

n∑
i=1

β′
iY

′
i

n∑
i=1

β′
i + n−2

where n−2 is added to the denominator

to avoid the situation of
n∑

i=1
β′

i ≈ 0. This ĝ1(x′) is called simplified local linear smoother

(SLLS) of g1(x′).

As we mentioned in the introduction, deletion of incomplete pairs may cause loss of
information in data analysis. Hence the technique of refilling the missing observations or
imputation would be thought of. ĝ1(x′) can be treated as the imputed estimator for those k
missing responses at the values of corresponding X. Subsequently, the estimator ĝ2(·) is to
be derived on the basis of complete bivariate observations (X, Y ), denoted as (X∗, Y ∗) after
the imputation process.

Thus, in this concocted data X∗ = X and Y ∗
i = δi Y

′
i + (1 − δi) ĝ1(X ′

i).

Minimizing
n∑

i=1
[Y ∗

i − s0 − s1(x∗ −X∗
i )]2 k

(
x∗ −X∗

i

h

)
with respect to the linear con-

stants s0 and s1 following the same arguments already proposed in (5) and (6),

ŝ0 =

n∑
i=1

(M∗
2 − (x∗ −X∗

i )M∗
1 ) k

(
x∗ −X∗

i

h

)
δi Y

∗
i

n∑
i=1

(M∗
2 − (x∗ −X∗

i )M∗
1 ) k

(
x∗ −X∗

i

h

) (11)

where

M∗
l =

n∑
i=1

(x∗ −X∗
i )l k

(
x∗ −X∗

i

h

)
, l = 1, 2.

and ŝ1 be the solution of s1.

Ultimately, using the same logic as projected in (10), the final estimator ĝ2(·) at
X∗ = x∗ is derived as

ĝ2(x∗) =

n∑
i=1

β∗
i Y

∗
i

n∑
i=1

β∗
i

(12)

where β∗
i = M∗

2 − (x∗ −X∗
i )M∗

1 ∀ i = 1, . . . , n. Alternatively, (11) can be written as

ĝ2(x∗) =

n∑
i=1

β∗
i Y

∗
i

n∑
i=1

β∗
i + n−2

in order to avoid the possibility of the inflation of ĝ2(x∗). This

estimator ĝ2(·) is called the imputed local linear smoother (ILLS) of g(x).
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4. Relevant test statistics

In order to test H0 : X∗ ⊥⊥ ϵ∗ (⊥⊥ means independence) we consider a sequence of
contiguous alternatives, say Hn, that converges to H0 as n → ∞. In this case, the sequence
of contiguous alternative Hn, indicating to the dependence between X∗ and ϵ∗, has the
following expression

Hn : Fn;X∗,ϵ∗(x∗, e∗) = (1 − γ√
n

)GX∗(x∗)Hϵ∗(e∗) + γ√
n
KX∗,ϵ∗(x∗, e∗) (13)

where Fn;X∗,ϵ∗(·, ·) denote the joint CDF of (X∗, ϵ∗) under Hn while, Hϵ∗(·) and GX∗(·) are
the marginal CDFs of ϵ∗ and X∗ respectively and KX∗,ϵ∗(·, ·) is the proper joint distribu-
tion function of (X∗, ϵ∗). γ > 0 is the mixing constant for F0(·, ·) and KX∗,ϵ∗(·, ·) where
F0(x∗, e∗) = GX∗(x∗)Hϵ∗(e∗) is the joint CDF of (X∗, ϵ∗) under H0. First we generate a
bivariate sample {(x∗

1, e
∗
1), . . ., (x∗

n, e
∗
n)} of size n from F0(x∗, e∗) under H0. Then, using the

regression model Y ∗ = g(X∗) + ϵ∗ we obtain the bivariate observations (x∗
1, y

∗
1), . . ., (x∗

n, y
∗
n)

can be from the joint distribution function of (X∗, Y ∗). Taking the ordered observations
on X∗ as x∗

(1), . . ., x∗
(n) and then the corresponding Y ∗-values as y∗

(1), . . ., y∗
(n) (y∗

(i)’s termed
as induced ordered statistics), we achieve the ordered set {(x∗

(1), y
∗
(1)), . . ., (x∗

(n), y
∗
(n))}. The

related errors are ϵ∗
(1), . . ., ϵ∗

(n) which are also viewed as the induced ordered values of ϵ∗
1, . . .,

ϵ∗
n. The second order differences of these induced ordered observations y∗

(i)’s, i = 1, . . . , n
are defined as y∗(2)

(i) := y∗
(i+1) − 2y∗

(i) + y∗
(i−1) with the marginal considerations as y∗

(0) = y∗
(1),

y∗
(n+1) = y∗

(n), resulting two threshold figures as y∗(2)
(1) = y∗

(2) − y∗
(1) and y

∗(2)
(n) = y∗

(n−1) − y∗
(n).

Based on the these bivariate observation (x∗
(i), y

∗(2)
(i) )s for i = 1, . . . , n, the following test

statistics (Dhar et al. (2018)) are proposed as

Tn,1 = 1(
n
2

) ∑
1≤i<j≤n

sign{(x∗
(i) − x∗

(j))(y
∗(2)
(i) − y

∗(2)
(j) )} (14)

Tn,2 = 1(
n
4

) ∑
1≤i<j≤n

a(x∗
(i), x

∗
(j), x

∗
(k), x

∗
(l))a(y∗(2)

(i) , y
∗(2)
(j) , y

∗(2)
(k) , y

∗(2)
(l) ) (15)

Tn,3 = 1(
n
4

) ∑
1≤i<j≤n

1
4h(x∗

(i), x
∗
(j), x

∗
(k), x

∗
(l))h(y∗(2)

(i) , y
∗(2)
(j) , y

∗(2)
(k) , y

∗(2)
(l) ) (16)

where sign(t) = t
|t| if t ̸= 0 or 0 otherwise, h(p, q, r, s) = {|p − q| + |r − s| − |p − r| − |q −

s|}; p, q, r, s ∈ R and a(p, q, r, s) = sign{|p−q|+ |r−s|−|p−r|−|q−s|}. (14) is the sample
version of Kendall’s tau statistics between X∗ and Y ∗(2) while (15) is the sample statistic
in favour to τ ∗ which is an extended version of Kendall’s tau by Bergsma et al. (2014).
In contrast, (16) is the sample counterpart of the distance based measure D introduced by
Blum-Kiefer-Rosenblatt (1961).

For the sake of readers’ interest the population versions of the aforementioned test
statistics for unordered observations on (X∗, Y ∗), i = 1, 2, 3 are too presented herewith.

T1 = E[sign(X∗
1 −X∗

2 )(Y ∗
1 − Y ∗

3 )]

T2 = E[a(X∗
1 , X

∗
2 , X

∗
3 , X

∗
4 )a(Y ∗

1 , Y
∗

2 , Y
∗

3 , Y
∗

4 )]
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T3 = E[14h(X∗
1 , X

∗
2 , X

∗
3 , X

∗
4 )h(Y ∗

1 , Y
∗

2 , Y
∗

3 , Y
∗

4 )].

To check H0 : X∗ ⊥⊥ ϵ∗ is analogous of checking H0 : X∗ ⊥⊥ f(ϵ∗) for any proper
function f(·). Let us assume the form of the function as f(ϵ∗) = ϵ∗(2) = ϵ(i+1) − 2ϵ(i) + ϵ(i−1),
i = 1, . . . , n, the second order difference of ϵ∗. Thus modified H0 is H0 : X∗ ⊥⊥ ϵ∗(2). Since
ϵi’s are unobservable, so is ϵ∗(2). Thus instead of ϵ∗(2) we may judiciously approximate it
by Y ∗(2) provided the function g(.) is sufficiently smooth. Thus H0 can further be modified
to H0 : X∗ ⊥⊥ Y ∗(2). Evidently, independence of X∗ and ϵ∗ implies and implied by Tk = 0
for k = 1, 2, 3. So, H0 : X∗ ⊥⊥ Y ∗(2) implies Tk = 0, k = 1, 2, 3 and vice versa. Therefore
their sample representatives, viz., Tn,k for k = 1, 2, 3 would be regarded as the desired test
statistics to carry out the test of independence.

To kick-start the test process it is reasonable to approximate Tn,k((x∗
(1), e

∗(2)
(1) ), . . . ,

(x∗
(4), e

∗(2)
(4) )) by Tn,k((x∗

(1), y
∗(2)
(1) ), . . . , (x∗

(4), y
∗(2)
(4) )) for k = 1, 2, 3, as due to smoothness of g(.),

y∗(2) would enable to sweep out the effect of g for large n. In fact, any function sorting
out the effect of g(·) can be chosen instead of y∗(2)

(i) . For instance, the test statistic based
on first order differences of Y ∗ may be applicable also for testing homoscedasticity of errors
against all possible alternatives, which coincides with any traditional nonparametric test of
homoscedasticity [see the discussion in Einmahl et al., 2008]. Under H0 the critical regions
can be determined by the test statistics Tn,i’s (i = 1, 2, 3) as ωn,i : Tn,i > cα,i, i = 1, 2, 3,
where α ∈ (0, 1) is the level of significance satisfying PH0 [Tn,i > cα,i] = α and cα,i is the α-th
critical point of the limiting distribution of Tn,i under H0. To study the statistical powers of
all Tn,i’s under Hn for different values of γ, we have to ascertain their limiting distributions.

5. Study on asymptotic powers of the test statistics

It can be shown that the proposed test statistics Tn,1, Tn,2 and Tn,3 are all degen-
erate U-statistics. In order to study their asymptotic powers we would use various asymp-
totic properties such as consistency, efficiency, limiting law related to degenerate U statistic.
Hence, the order of degeneracy of Tn,i for each i = 1, 2, 3 is derived hereafter so that their
asymptotic distributions under H0 and Hn can be established.

5.1. Contiguity

For two arbitrary sequences of probability measures, say Pn and Qn, the definition of
contiguity of Pn and Qn on the sequence of measurable spaces (χn,An) is stated from Le
Cam (1960a).

Definition 1: For an arbitrary sequence of events An ∈ An, if Pn(An) −→ 0 =⇒
Qn(An) −→ 0 for sufficiently large sample size n, then Qn is concluded as contiguous with
respect to Pn. It is symbolically expressed as Pn ◁ Qn.

To detect whether Pn ◁ Qn holds, the theory of local asymptotic normality (LAN)
needs to be expounded. Le Cam’s first lemma describes the asymptotic Gaussian nature of
the quantity log dQn

dPn
under the probability measure Pn (p.253, Hajek et al., 1999)

Lemma 1: Let ln = dQn

dPn
be a sequence of likelihood ratios corresponding to Pn and Qn.
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Define Gn to be the sequence of distribution functions of ln. Furthermore, Gn converges to
another distribution function G such that

� ∞

0
v dG(v) = 1.

Then, Pn ◁ Qn.

Corollary 1 below delves out an useful consequence of Lemma 1 .

Corollary 0.1: log ln Pn∼ N(−1
2θ, θ) implies that Qn is contiguous with respect to Pn.

The proof of Corollary 1 can be derived using Lemma 1 (for details see Van Der Vaart
(2002)). To derive the asymptotic distributions of Tn,1, Tn,2 and Tn,3 using Le Cam’s first
lemma under contiguous alternatives Hn we assume

Assumption 1: fX∗,ϵ∗(x∗, e∗) > 0 for all x∗ and e∗, where fX∗,ϵ∗ is the joint PDF of (X∗, ϵ∗).

Assumption 2: EFX∗,ϵ∗ (kX∗,ϵ∗ (x∗,e∗)
fX∗,ϵ∗ (x∗,e∗) − 1)2 < ∞ where kX∗,ϵ∗(·, ·) is the joint proper PDF of

(X∗, ϵ∗).

Theorem 1: Under Assumption 1 and Assumption 2, Hn is a sequence of contiguous alter-
natives.

The formal proof of Theorem 1 is provided in Appendix 1. Next, we explore out the
limiting laws of an U-statistic with certain order of degeneracy so that limiting distributions
of Tn,i’s under both hypotheses can be intuited further.

Definition 2: (U statistic) Suppose ψ(z1, . . . , zm) be a real-valued measurable function.
Based on a sample {Z1, . . . , Zn} from FZ(·) ∈ F , m ≤ n, a U-statistic with kernel ψ is
defined as

Un ≡ Un(ψ) = 1(
n
m

) ∑
1≤i1<...<im≤n

ψ(Zi1 , . . . , Zim). (17)

Un is an unbiased estimator of population parameter θ. Also, Un attains the minimum
variance among all other unbiased estimators of θ.
Let us define a sequence of functions related to ψ. For c = 0, 1, · · · ,m, let

ψc(z1, . . . , zc) = E[ψ(z1, . . . , zc, Zc+1, . . . , Zm)] where Xc+1, · · · , Xn are i.i.d. Clearly,
Eψc(z1, . . . , zc) = θ.

Denote, ψ∗
c (z1, . . . , zc) = ψc(z1, . . . , zc)−E[ψc(z1, . . . , zc)] and ξc = var[ψ∗

c (z1, . . . , zc)], 0 ≤
c ≤ m.

Under this notation, the degeneracy of U statistic of order m is defined as follows.

Definition 3: (Order of degeneracy) The order of degeneracy of a U statistic is p if ξ0 =
. . . = ξp = 0 and ξp+1 > 0.
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Here p is the order of degeneracy for the associated kernel ψ(.) and the corresponding
U -statistic Un as well. Some useful theorems, provided by Lee (1990), are pertinent in the
context of variance of Un.

Theorem 2: (i) ψc(z1, . . . , zc) = E[ψd(z1, . . . , zc, Zc+1, . . . , Zd)] for 1 ≤ c < d ≤ m.

(ii) E[ψc(Z1, . . . , Zc)] = E[ψ(Z1, . . . , Zm)].

Theorem 3: ξc = cov(ψ(N1), ψ(N2)) with N1, N2 being the subsets of Cm,n, c = 1, . . . ,m
each with m number of elements.

Theorem 4: The variance of Un based on kernel ψ of degree m is

V ar(Un) =
(
n

m

)−1 m∑
c=1

(
m

c

)(
n−m

m− c

)
ξc (18)

The asymptotic distribution of
√
n(Un − θ) for large n is normal with mean 0 and

variance m2 ξ1 (Serfling, 1980) . Unfortunately, in degenerate situation the asymptotic dis-
tribution of Un is no longer normally distributed. Also, it can be explained that

√
n(Un − θ)

does not converge to a random variable with degenerate distribution function. If the kernel ψ
possesses order of degeneracy p, then the asymptotic distribution of n d+1

2 (Un−θ) converges to
a nonnormal distribution as n increases. The following theorem from Serfling (1980) unveils
on the pattern of distribution when p = 1(i.e. order of degeneracy 1).

Theorem 5: Let ψ̃2(z1, z2) = E[ψ(Z1, Z2, Z3, . . . , Zm)|Z1 = z1, Z2 = z2], and ξ2 = V ar[ψ̃2(z1,
z2)]. If ξ1 = 0 < ξ2 and E[ψ2(Z1, . . . , Zm)] < ∞, then for some real constants λ1, λ2, . . . and
iid N(0, 1) random variables Γ1, Γ2, . . .,

n(Un − θ) L−→ Y (19)

where Y ∼
(

m
2

) ∞∑
i=1

λi(Γ2
i − 1), m ≥ 2.

The asymptotic non-Gaussian distribution of degenerate U-statistic may also be ex-
plicated through obtaining the variance of a symmetric and positive definite quadratic kernel
W (Z1, Z2) with order of degeneracy 1 where Z1, Z2 are i.i.d. random variables. The kernel
W (Z1, Z2) can be expanded as

W (z1, z2) =
∞∑

k=1
λkϕk(z1)ϕk(z2)

where λk’s are the eigenvalues with corresponding eigenfunctions ϕk(z)’s satisfying� ∞

−∞
W (z, Z2)ϕk(Z2)dZ2 = λkϕk(z).

In contiguous set up, the distribution of degenerate U statistic can be deduced (Gregory,
1977). Let Qn,1 be the sequence of probability measures with Qn = Qn,1 × . . . × Qn,1 (n
times). P0 is the probability measure under H0 with Pn = P0 × . . .× P0 (n times). Further
suppose, Qn is contiguous with respect to Pn. Then, the following theorem asserts the
limiting distribution of an U-statistic Tn under the probability measure Qn.
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Theorem 6: (Gregory, 1977) Suppose the Radon-Nikodym derivative dQn,1/dP0 = 1 +
n− 1

2 hn holds for some sequence {hn} in L2(χ,A) that converges to h ∈ L2. Then, for an
U-statistic Tn with order of degeneracy 1,

lim
n→∞

Qn,1{Tn ≤ x} = P

( ∞∑
k=1

λk{(Γk + ak)2 − 1} ≤ x

)
(20)

where ak =
�
hϕk dP0 and Γ1, Γ2, . . . are iid N(0, 1) random variables.

The asymptotic distributions for Tn,2 and Tn,3 under H0 and Hn are easily obtainable
using Theorem 6.

Generally speaking, let us define an operator E on L2(χ,A) for ψ̃2(z1, z2) associated
with the kernel ψ as

E g(z) =
� ∞

−∞
ψ̃2(z, y)g(y)d(F (y)), z ∈ R, g ∈ L2 (21)

and corresponding to E the eigenvalues λ1, λ2, . . . satisfy E g = λ g. Hence one can con-
clude that ψ̃2(z1, z2) =

∞∑
k=1

λkgk(z1)gk(z2) with being orthonormal sequence gk’s satisfying

E[gk(Z1)gl(Z2)] = 1 if k = l and 0 if k ̸= l. Here gk’s are the eigenfunctions corresponding
to λk’s of the transformation

E[ψ̃2(z, Z1)gk(Z1)] = λk gk(z) (22)

and in L2,
n∑

k=1
λkgk(Z1)gk(Z2)

q.m.−→ ψ̃2(Z1, Z2). (23)

5.2. Limiting distributions of Tn,1, Tn,2 and Tn,3

These test statistics are constructed by the spacings function formed from the distri-
bution function of X∗ i.e. GX∗(·). Regarding consistency of the test statistics under H0, we
prefer to mention below an important result related to the expectation of an ordered uniform
spacing due to Bairamov et al. (2010).

Result 1: For r ≥ 1 and n → ∞,

E(V(n+2−r)) ∼ log n
n

−→ 0 (24)

where V(s) is the sth order statistic among {V(1), . . . , V(n)} based on the uniform spacings
Vi = U(i) − U(i−1)’s ∀ i = 1, . . . , n. V(s) is also called the sth ordered uniform spacing,
1 ≤ s ≤ n. U(i) is the ith order statistic based on {U1, . . . , Un} obtained from Uniform(a, b)
distribution, a < b, 1 ≤ i ≤ n.
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Along with Assumptions 1 and 2, let us further assume

Assumption 3: X∗
1 , . . ., X∗

n (as defined earlier) are i.i.d. random variables with distribution
function GX∗ .

Assumption 4: Y ∗
1 , . . ., Y ∗

n (as defined earlier) are obtained from the model Y ∗
i = g(X∗

i )+ϵ∗
i ,

i = 1, . . . , n, with g(·) having bounded derivative, ϵ∗ having bounded probability density
function and E(ϵ∗

i |X∗
i ) = 0 ∀ i = 1, . . . , n.

Based on Assumption 1-4, we develop the following theorems (Theorem 7, 8 and 9)
regarding the limiting properties of Tn,i’s, i = 1, 2, 3. In each theorem, part (i) detects
the order of degeneracy attached to each of Tn,i’s, i = 1, 2, 3. Part (ii) and part (iv) are
directly followed from (i), describing the limiting distributions of Tn,1, Tn,2 and Tn,3. Part (ii)
establishes the consistency of each of the test statistics. Suppose ϵ∗(2) has the CDF H∗

ϵ∗(2)(·).

Theorem 7: (i) Tn,1 has kernel of order of degeneracy 0.

(ii) Tn,1
P−→ 0 under H0.

(iii) Under H0,
√
n(Tn,1 − E(Tn,1)) L−→ N(0, 4ξ1).

(iv) Under Hn,
√
n(Tn,1 − E(Tn,1)) L−→ N(µ1, 4ξ1), where

µ1 = 2γ
� ∞

−∞

� ∞

−∞
[2
� x∗

−∞

� y∗

−∞
dGX∗(u∗)dH∗

ϵ∗(2)(v∗) + 2
� ∞

x∗

� ∞

y∗
dGX∗(u∗)dH∗

ϵ∗(2)(v∗)]dKX∗,ϵ∗(x∗, y∗)

(25)
and,

ξ1 =
� ∞

−∞

� ∞

−∞
[2
� x∗

−∞

� y∗

−∞
dGX∗(u∗)dH∗

ϵ∗(2)(v∗) + 2
� ∞

x∗

� ∞

y∗
dGX∗(u∗)dH∗

ϵ∗(2)(v∗)]2dGX∗(x∗)dHϵ∗(y∗).

(26)

Theorem 8: (i) Tn,2 has kernel of order of degeneracy 1.

(ii) Tn,2
P−→ 0 under H0.

(iii) The asymptotic distribution for Tn,2 under H0 is given by

n(Tn,2 − E(Tn,2)) L−→
∞∑

k=1
λk{Γ2

k − 1}

where Γ1, Γ2, . . . are iid N(0, 1) random variables, λk’s are the eigenvalues associated
with

l(x, y) = E[sign{|X∗
(1) −X∗

(2)| + |X∗
(3) −X∗

(4)| − |X∗
(1) −X∗

(3)| − |X∗
(2) −X∗

(4)|}

×sign{|Y ∗(2)
(1) − Y

∗(2)
(2) | + |Y ∗(2)

(3) − Y
∗(2)

(4) | − |Y ∗(2)
(1) − Y

∗(2)
(3) | − |Y ∗(2)

(2) − Y
∗(2)

(4) |}

|X∗
(1) = x∗, Y

∗(2)
(1) = y∗].
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(iv) The asymptotic distribution for Tn,2 under Hn is given by

n(Tn,2 − E(Tn,2)) L−→
∞∑

k=1
λk{(Γk + ak)2 − 1} (27)

where Γ1, Γ2, . . . are iid N(0, 1) random variables, λk’s are the eigenvalues associated
with l(x∗, y∗) given in (iii). The quantities ak’s are defined as

ak =
�
h fk(x∗)fk(y∗) dGX∗(x∗)dH∗

ϵ∗(2)(y∗). (28)

where fk’s are the eigenfunctions corresponding to λk’s, k = 1, 2, . . ..

Theorem 9: (i) Tn,3 has kernel of order of degeneracy 1.

(ii) Tn,3
P−→ 0 under H0.

(iii) The asymptotic distribution for Tn,3 under H0 is given by

n(Tn,3 − E(Tn,3)) L−→
∞∑

k=1
λ∗

k{Γ∗2

k − 1}

where Γ∗
1, Γ∗

2, . . . are iid N(0, 1) random variables, λ∗
k’s are the eigenvalues associated

with

l∗(x∗, y∗) = E[{|X∗
(1) −X∗

(2)| + |X∗
(3) −X∗

(4)| − |X∗
(1) −X∗

(3)| − |X∗
(2) −X∗

(4)|}

×{|Y ∗(2)
(1) − Y

∗(2)
(2) | + |Y ∗(2)

(3) − Y
∗(2)

(4) | − |Y ∗(2)
(1) − Y

∗(2)
(3) | − |Y ∗(2)

(2) − Y
∗(2)

(4) |}

|X∗
(1) = x∗, Y

∗(2)
(1) = y∗].

(iv) The asymptotic distribution for Tn,3 under Hn is given by

n(Tn,3 − E(Tn,3)) L−→
∞∑

k=1
λ∗

k{(Γ∗
k + a∗

k)2 − 1} (29)

where Γ∗
1, Γ∗

2, . . . are iid N(0, 1) random variables, λ∗
k’s are the eigenvalues associated

with l∗(x∗, y∗) given in (iii). The quantities a∗
k’s are defined as

a∗
k =

�
h f ∗

k (x∗)f ∗
k (y∗) dGX∗(x∗)dH∗

ϵ∗(2)(y∗). (30)

where f ∗
k ’s are the eigenfunctions corresponding to λ∗

k’s, k = 1, 2, . . ..

Proofs of all three theorems are furnished in Appendix 1.
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5.3. Examples on asymptotic power calculation

To check on the performance of asymptotic power curves of Tn,1, Tn,2 and Tn,3 with
respect to different values of the mixing constant γ introduced in (13) we consider the values
of γ from 0 to 10. We investigate on power against the H0 in reference with these three
statistics when the different percentage of missingness occurs in Y values under missing at
random (MCAR) structure. All those missing values are refilled by NW estimation process
as well as local linear smoothing (ILLS) as elaborately discussed in Section 3. Thereafter,
the power functions for Tn,1, Tn,2 and Tn,3 are found for the imputed set of (X∗, Y ∗) under
n = 100. We generate such 500 sets of bootstap sample.

Let us pick up a couple of examples from Einmahl et al.(2008) where the conditional
distributions of the error ϵ∗ for given value of the covariate X∗, along with the joint proper
distribution of (X∗, ϵ∗) are proposed. Epanechnikov kernel is used as the kernel function in
the expression of the test statistics. Note that for each of the examples under consideration,
the null model is taken as independent bivariate normal, i.e., fX∗,ϵ∗(., .) = 1

2π
e− ϵ∗2+x∗2

2 . Since
under H0, FX∗,ϵ∗(., .) = GX∗(.)Hϵ∗(.), µ1 and ξ1 in (25) and (26) are theoretically found out
using the integral of standard normal variable. The rest of the results related to Tn,2 and
Tn,3 are deduced by approximating infinite sum of weighted chi-square by finite one (taking
upto the tenth term of (27) and (29)).

Example 1: kX∗,ϵ∗(x∗, e∗) is such that (ϵ∗|X∗ = x∗) ∼ N(0, 1+5x∗

100 ) with X∗ ∼ N(0, 1).

Example 2: kX∗,ϵ∗(x∗, e∗) is such that (ϵ∗|X∗ = x∗) D= Cauchy(0, x∗2) with X∗ ∼ N(0, 1) .

Percentages of missingness are chosen as 5%, 10% and 20% respectively. For each
example, power curves of three statistics under complete data (without missing value) and
other three missing proportion cases are drawn (a total of eight figures). The red line denotes
the power curve of Tn,1, whereas the green and blue lines denote the power curves of Tn,2
and Tn,3 respectively. Due to space constraint, the power curves obtained only through LLS
imputation technique in n = 100 are provided here. Appendix 2 contains the detailed and
comparative tables of power calculation derived by both NW estimation and ILS technique
taking sample size 100 with bootsrap size 500.

Figure 1: Power for Example 1
against γ in no missing setup

Figure 2: Power for Example 1
against γin 5% MCAR setup
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Figure 3: Power for Example 1
against γ in 10% MCAR setup

Figure 4: Power for Example 1
against γ in 20% MCAR setup

Figure 5: Power for Example 2
against γ in no missing setup

Figure 6: Power for Example 2
against γ in 5% MCAR setup

Figure 7: Power for Example 2
against γ in 10% MCAR setup

Figure 8: Power for Example 2
against γ in 20% MCAR setup

Although for no missing case power exerted by Tn,2 performs better across the mixing
constant γ, in presence of missingness its power gets deteriorated as compared with the power
by Kendall’s tau, i.e. Tn,1. In contrast, power by distance based measure Tn,3 behaves not so
well for all choices of missingness. Imputation done by local linear smoothing also does not
change the scenario. In applying rank based test when observations on Y are missing does
not guarantee the universal superiority in power. The more the counts in bivariate pairing



208 STITADHI DAS AND SARAN ISHIKA MAITI [Vol. 22, No. 1

in test statistic; lesser will be the power with the increase of missingness. Since in Tn,2 four
bivariate pairs are in use, impact of missingness hits it more sharply than Tn,1. Plausible
imputation can not improve the downfall as well.

Additionally, under normally distributed alternative the power exerted by all three
statistics are quite reasonable and closer to 1. In contrast, Example 2 dealing with Cauchy
alternatives experiences poorer power performance. Cauchy distribution being a heavy tailed
distribution might be a good indicator of how sensitive the tests are to departures from
normality, i.e. in presence of extreme observations. Although in no missing case the proposed
Tn,2 holds its superiority, it fails to hold that in missing cases. In fact more the missingness
worse the power comes out.
The entire simulation exercise is performed by R 4.0.5.

6. Real data analysis

In this segment of real data analysis, we choose out Abalone Data collected by the De-
partment of Primary Industry and Fisheries, Tasmania. The data is available online in UCI
Machine Learning Repository Data Set page (https://archive.ics.uci.edu/ml/datasets/Abalone).

The primary objective of this zoological data is to predict the age of abalone (a
common species of marine gastropod molluscs, mainly inhabited in warm seas) from different
physical measurements. This data consists of 4177 observations each having 10 qualitative
and quantitative characters. Among those there are 9 independent characters, based on the
physical measurements – viz, sex (nominal), length (in mm) for longest shell measurement,
diameter (in mm) perpendicular to length, height (in mm) with meat in shell, whole weight
(in grams) of abalone, shucked weight (in grams) i.e. weight of meat, viscera weight (in
grams) i.e. gut weight (after bleeding), shell weight (in grams) after being dried, rings
(integer) and one dependent variable — age (in years).

In our study, we pick up a single nonparametric regressor, viz., shell weight after being
dried (X in grams) and the regressand, viz. age (Y in years). For the sake of preciseness,
we select first 100 observations instead of the whole. As a preliminary exploratory analysis,
let us highlight the scatter plot on age against scaled shell weights below. The plot projects
positive association with weakly linear tendency.

In order to incite readers’ interest, the group of histograms (Figure 1) on underlying
distributions of the response variable Y for complete case as well as for of several percentage
of missingness is provided. In this figure, the missing observations are imputed by Nadaraya
Watson estimator. Also the kernel density inlay is curved over each histogram. The underly-
ing distribution is mildly right skewed which remains almost same not only in complete case
but also in imputed distributions under 5%,10% and 20% missingness. Therefore imputation
does not trigger any significant change in the underlying distribution.

To test the independence of X and ϵ we carry out bootstrap tests on 200 resamples
having 100 sample observations in each set. At first, the observed values of the test statistics
under the null hypothesis are obtained for the fixed sample size 100. Suppose the bth resam-
ple of Tn,k be T b

n,k, b = 1, . . . , 200, k = 1, 2, 3. The estimated p-value of Tn,k is computed as
#{T b

n,k > T ∗
n,k}

200 , b = 1, . . . , 200, k = 1, 2, 3 where T ∗
n,k is the observed value of Tn,k under H0.
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Figure 9: Scatter diagram

The same is repeated for (i) complete case (with 100 observations in each bootstrap set); (ii)
5% randomly missing observations, (iii) 10% randomly missing observations and (iv) 20%
randomly missing observations. In each of the missing scenario, the missing observations are
imputed by NW estimation as well as ILLS estimation and p-value is reported accordingly.
Higher the p-value stronger is the evidence in favour of H0. Tacitly speaking, for this data,
under missingness, each p-value indicates preference towards H0.

Table 1: Table showing p-values of Tn,1, Tn,2 and Tn,3 under missingness estimated
by N-W & ILLS imputation respectively

p-values
Statistic Complete N-W ILLS

case 5% 10% 20% 5% 10% 20%
Tn,1 0.575 0.375 0.480 0.415 0.490 0.515 0.635
Tn,2 0.680 0.940 0.930 0.900 0.980 0.989 0.890
Tn,3 0.660 0.900 0.920 0.880 0.980 0.999 0.905

7. Conclusion

In this article we have investigated the performance of three statistics– two rank based
and one distance based, in the presence of MCAR missingness of observations. These tests are
consistent. Powers are calculated under contiguous alternatives. For complete case situation
Tn,2 shows best staging over Tn,1 and Tn,3 in both Gaussian and the heavy tailed distribution
Cauchy but Tn,2 is not robust enough in presence of constant proportion of missingness.
Specifically for non Gaussian alternative, missingness yields poor power exerted by Tn,2
and Tn,3 as compared to that by Tn,1. On the other hand, estimation of missing responses
by imputated local linear smoothing (ILLS) method may yield a better power over that
deduced by Nadaraya Watson (N-W) method, still those results are not convincing enough
for non Gaussian distribution. Therefore, applying a rank based test statistic in testing of
independence under nonparametric regression set up in presence of missingness would not
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For complete case
With 5% missing

With 10% missing With 20% missing

Figure 10: Histograms and regression curve in-lays for complete and missing
cases

add substantial amount of power. In order to deal with such a situation few other distance
based measure on distribution functions, e.g. Kolmogorov-Smirnov or Cramer-Von-Mises
might be given a thought. It is to be noted that Alvo et al. (1995) proposed a new class of
measures of rank correlation which are formed on a notion of distance between incomplete
rankings. This approach utilizes the information on the positions of the actual observations
relative to the string of incomplete observations. This mechanism would compensate for
missing values and may be used as consistent test statistic in same context too.

In missing situation the strongest assumption that is commonly made is that the data
are missing completely at random (MCAR) as probability that any variable is missing can
not depend on any other variable in the model of interests. But for most data sets, the MCAR
assumption is unlikely to be precisely specified, specially in design data. In those cases, a
much weaker assumption, missing at random (MAR) is more common in practice. In MAR,
the missingness of response depends on another observed variable. Therefore, effectivity of
Tn,2 may be more worth investigating subject under MAR situation as compared with the
performance by Tn,1 and Tn,3, considering a certain probability distribution of missingness.
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ANNEXURE

Appendix 1

Proof of Theorem 1

The expansion of logLn takes the form as follows

logLn = log
n∏

i=1

fn;X∗,ϵ∗(x∗
i , e

∗
i )

fX∗,ϵ∗(x∗
i , e

∗
i )

= log
n∏

i=1

{(1 − γ√
n
)fX∗,ϵ∗(x∗

i , e
∗
i ) + γ√

n
kX∗,ϵ∗(x∗

i , e
∗
i )

fX∗,ϵ∗(x∗
i , e

∗
i )

}

=
n∑

i=1
log
{(1 − γ√

n
)fX∗,ϵ∗(x∗

i , e
∗
i ) + γ√

n
kX∗,ϵ(x∗

i , e
∗
i )

fX∗,ϵ∗(x∗
i , e

∗
i )

}
.

With the aid of Taylor’s expansion of log(1 + r), r > −1 as well as the weak law of large
numbers, logLn is further expanded as

n∑
i=1

γ√
n

(
kX∗,ϵ∗(x∗

i , e
∗
i )

fX∗,ϵ∗(x∗
i , e

∗
i )

− 1
)

− γ2

2n

n∑
i=1

(
kX∗,ϵ∗(x∗

i , e
∗
i )

fX∗,ϵ∗(x∗
i , e

∗
i )

− 1
)2

+OP (n−1/2). (31)

Then,

logLn −∑n
i=1

γ√
n

(
kX∗,ϵ∗ (x∗

i ,e∗
i )

fX∗,ϵ∗ (x∗
i ,e∗

i ) − 1
)

+ γ2

2n

∑n
i=1

(
kX∗,ϵ∗ (x∗

i ,e∗
i )

fX∗,ϵ∗ (x∗
i ,e∗

i ) − 1
)2

= OP (n−1/2) −→ 0 as n → ∞.

Define a sequence of random variables Wn as
n∑

i=1

γ√
n

(
kX∗,ϵ∗(x∗

i , e
∗
i )

fX∗,ϵ∗(x∗
i , e

∗
i )

− 1
)

. With the help

of Lindeberg’s condition, the asymptotic distribution of Wn is developed as Wn−E(Wn)√
V ar(Wn)

L−→
N(0, 1) under H0, where

EH0(Wn) =
n∑

i=1

γ√
n
EH0

(
kX∗,ϵ(x∗

i , e
∗
i )

fX∗,ϵ∗(x∗
i , e

∗
i )

− 1
)

= 0

and V arH0(Wn) = γ2

n

n∑
i=1

EH0

(
kX∗,ϵ∗(x∗

i , e
∗
i )

fX∗,ϵ∗(x∗
i , e

∗
i )

− 1
)2

= γ2EH0

(
kX∗,ϵ∗

fX∗,ϵ∗
− 1

)2

. Hence underH0,

Wn
L−→ N

0, γ2EH0

(
kX∗,ϵ∗

fX∗,ϵ∗
− 1

)2
 .

Another sequence of random variables Vn = γ2

2n

n∑
i=1

(
kX∗,ϵ∗(x∗

i , e
∗
i )

fX∗,ϵ∗(x∗
i , e

∗
i )

− 1
)2

weakly converges to

γ2

2 EH0

(
kX∗,ϵ∗

fX∗,ϵ∗
− 1

)2
. So, logLn − Wn + Vn = op(1). Slutsky’s theorem further ensures that
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the limiting distribution of the sequence of random variables Mn = Wn − Vn converges to a
random variable M such that

M ∼ N

−1
2γ

2EH0

(
k

f
− 1

)2

, γ2EH0

(
k

f
− 1

)2
 . (32)

Summing up all, one can conclude that logLn − Mn = op(1), i.e. logLn has the limiting
distribution which is identical with that of limiting distribution of Mn, i.e. N(−1

2σ, σ) where
σ = γ2EH0

(
k
f

− 1
)2

. Thereafter, the Corollary 5.1 of lemma 5.1 is sufficient enough in
establishing the fact that Hn is a contiguous sequence of alternatives due to asymptotic
normality of logLn. Notationally, contiguity can be expressed as FX∗,ϵ∗ ◁ Fn;X∗,ϵ∗ .

Proof of Theorem 7

(i) Suppose the kernel of Tn,1 is denoted by ψ((X∗
(1), Y

∗(2)
(1) ), (X∗

(2), Y
∗(2)

(2) )). One can simplify
its form as

ψ1(x∗, y∗) = E[ψ((X∗
(1), Y

∗(2)
(1) ), (X∗

(2), Y
∗(2)

(2) ))|X∗
(1) = x∗, Y

∗(2)
(1) = y∗]

= E[sign{(X∗
(1) −X∗

(2))(Y
∗(2)

(1) − Y
∗(2)

(2) )}|X∗
(1) = x∗, Y

∗(2)
(1) = y∗]

= 2P [(X∗
(1) −X∗

(2))(Y
∗(2)

(1) − Y
∗(2)

(2) ) > 0|X∗
(1) = x∗, Y

∗(2)
(1) = y∗] − 1.

Now under H0 one can determine that

E(X∗
(1),Y

∗(2)
(1) )[ψ1(X∗

(1), Y
∗(2)

(1) )] = E(X∗
(1),Y

∗(2)
(1) ),(X∗

(2),Y
∗(2)

(2) )[ψ((X∗
(1), Y

∗(2)
(1) ), (X∗

(2), Y
∗(2)

(2) ))] = 0.

Then, ξ1 = V ar[ψ1(X∗
(1), Y

∗(2)
(1) )] = E[ψ2

1(X∗
(1), Y

∗(2)
(1) )] > 0, where Y ∗(2) is approximately

identically distributed with ϵ∗(2). Therefore, ξ0 = 0 and ξ1 > 0 is enough to conclude
that ψ has order of degeneracy 0.

(ii) From Theorem 4 it is clear that the variance of Tn,1 gets approximated as 4ξ1
n

for large n,
and E[sign{(X∗

(i) −X∗
(j))(Y

∗(2)
(i) −Y

∗(2)
(j) )}] = 0 ∀ 1 ≤ i < j ≤ n as P [(X∗

(i) −X∗
(j))(Y

∗(2)
(i) −

Y
∗(2)

(j) ) > 0] = P [(X∗
(i) − X∗

(j))(Y
∗(2)

(i) − Y
∗(2)

(j) ) < 0] under H0. One may conclude that
Tn,1

P−→ 0 as E(Tn,1) = 0 and var(Tn,1) → 0 for n → ∞ under H0.

(iii) Deducing the asymptotic variance in Theorem 4 when n → ∞, we derive the asymp-
totic distribution of

√
n(Tn,1 − E(Tn,1)) under H0. To prove this part of the theorem,

any standard textbook on nonparametric inference would suffice.

(iv) Directed from the Le Cam’s third lemma (Dhar et al. (2018)) the asymptotic distribu-

tion of (
√
n(Tn,1 −E(Tn,1)), logLn) converges to N2

((
0

− θ
2

)
,

(
4ξ1 τ
τ θ

))
, θ > 0 under

H0. Then it is easy to determine the limiting distribution of
√
n(Tn,1 −E(Tn,1)) under

Hn as N(0 + τ, 4ξ1) i.e. N(τ, 4ξ1). Hence τ = lim
n→∞

covH0(
√
n(Tn,1 − E(Tn,1)), logLn)

which can be finally derived as

2γ
� ∞

−∞

� ∞

−∞
[2
� x∗

−∞

� y∗

−∞
dGX∗(u∗)dHϵ∗(v∗) + 2

� ∞

x∗

� ∞

y∗
dGX∗(u∗)dHϵ∗(v∗) − 1]dKX∗,ϵ∗(x∗, y∗).
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Proof of Theorem 8

(i) The simplification of the kernel of Tn,2 is done as

a(X∗
(1), X

∗
(2), X

∗
(3), X

∗
(4))a(Y ∗

(1), Y
∗

(2), Y
∗

(3), Y
∗

(4))
= 2I(|X∗

(1) −X∗
(2)| + |X∗

(3) −X∗
(4)| − |X∗

(1) −X∗
(3)| − |X∗

(2) −X∗
(4)| > 0,

|Y ∗(2)
(1) − Y

∗(2)
(2) | + |Y ∗(2)

(3) − Y
∗(2)

(4) | − |Y ∗(2)
(1) − Y

∗(2)
(3) | − |Y ∗(2)

(2) − Y
∗(2)

(4) | > 0) +
2I(|X∗

(1) −X∗
(2)| + |X∗

(3) −X∗
(4)| − |X∗

(1) −X∗
(3)| − |X∗

(2) −X∗
(4)| < 0,

|Y ∗(2)
(1) − Y

∗(2)
(2) | + |Y ∗(2)

(3) − Y
∗(2)

(4) | − |Y ∗(2)
(1) − Y

∗(2)
(3) | − |Y ∗(2)

(2) − Y
∗(2)

(4) | < 0) − 1

= 2P (|Y ∗(2)
(1) − Y

∗(2)
(2) | + |Y ∗(2)

(3) − Y
∗(2)

(4) | − |Y ∗(2)
(1) − Y

∗(2)
(3) | − |Y ∗(2)

(2) − Y
∗(2)

(4) | < 0) − 1

= ã((X∗
(1), Y

∗(2)
(1) ), (X∗

(2), Y
∗(2)

(2) ), (X∗
(3), Y

∗(2)
(3) ), (X∗

(4), Y
∗(2)

(4) )) (33)

where I(·) is an indicator function. Now define, for c = 0, . . . , 4,

ãc((x∗
(1), y

∗(2)
(1) ), . . . , (x∗

(c), y
∗(2)
(c) ))

= E[ã((x∗
(1), y

∗(2)
(1) ), . . . , (x∗

(c), y
∗(2)
(c) ), (X∗

(c+1), Y
∗(2)

(c+1)), . . . , (X
∗
(4), Y

∗(2)
(4) ))]

and, ξc = V ar[ãc((X(1), Y
∗(2)

(1) ), . . . , (X(c), Y
∗(2)

(c) ))].
In equation (33), |Y ∗(2)

(1) − Y
∗(2)

(3) | and |Y ∗(2)
(2) − Y

∗(2)
(4) | can be written into following two

inequalities as |Y ∗(2)
(1) − Y

∗(2)
(3) | ≤ |Y ∗(2)

(1) − Y
∗(2)

(2) | + |Y ∗(2)
(2) − Y

∗(2)
(3) | and

|Y ∗(2)
(2) − Y

∗(2)
(4) | ≤ |Y ∗(2)

(2) − Y
∗(2)

(3) | + |Y ∗(2)
(3) − Y

∗(2)
(4) |. Then,

P (Y ∗(2)
(2) > Y

∗(2)
(3) , Y

∗(2)
(1) > Y

∗(2)
(4) )

= P (Y ∗(2)
(2) > Y

∗(2)
(3) , Y

∗(2)
(1) > Y

∗(2)
(4) , Y

∗(2)
(3) > Y

∗(2)
(1) )+P (Y ∗(2)

(2) > Y
∗(2)

(3) , Y
∗(2)

(1) > Y
∗(2)

(4) , Y
∗(2)

(3) ≤
Y

∗(2)
(1) ) = 1

4! × 6 = 1
4 . Similarly, P (Y ∗(2)

(2) > Y
∗(2)

(3) , Y
∗(2)

(1) ≤ Y
∗(2)

(4) ) is calculated as 1
4 .

Then, P (Y ∗(2)
(2) < Y

∗(2)
(3) ) = 1

2 = P (Y ∗(2)
(2) > Y

∗(2)
(3) ).

Finally we obtain 2P (|Y ∗(2)
(1) −Y

∗(2)
(2) | + |Y ∗(2)

(3) −Y
∗(2)

(4) | − |Y ∗(2)
(1) −Y

∗(2)
(3) | − |Y ∗(2)

(2) −Y
∗(2)

(4) | <
0) = 2 min

(
1
2 ,

1
2

)
= 1. Therefore,

E[ã((X∗
(1), Y

∗(2)
(1) ), (X∗

(2), Y
∗(2)

(2) ), (X∗
(3), Y

∗(2)
(3) ), (X∗

(4), Y
∗(2)

(4) ))] = 0.
On the other hand, the expression of ξ1 is same as
cov[ã((X∗

(1), Y
∗(2)

(1) ), (X∗
(2), Y

∗(2)
(2) ), (X∗

(3), Y
∗(2)

(3) ), (X∗
(4), Y

∗(2)
(4) ))] which equals

{1 + 4P [Y ∗(2)
(2) > Y

∗(2)
(3) , Y

∗(2)
(5) > Y

∗(2)
(6) ] − 2P [Y ∗(2)

(2) > Y
∗(2)

(3) ] − 2P [Y ∗(2)
(5) > Y

∗(2)
(6) ]}.

For four distinct numbers (i1, i2, i3, i4) with 1 ≤ i1 ̸= i2 ̸= i3 ̸= i4 ̸= 7 it is easy to
verify that
P [Y ∗(2)

(i1) > Y
∗(2)

(i2) > Y
∗(2)

(i3) > Y
∗(2)

(i4) ] = 6
4! = 1

4 and furthermore P [Y ∗(2)
(i1) > Y

∗(2)
(i2) ] = 1

2 .
Then ξ1 = 1 + 4 · 1

4 − 2 · 1
2 − 2 · 1

2 = 0.
Consequently, the computation of ξ2 becomes necessary to verify whether it is equal to
0 or not. ξ2 is evaluated further as {1 + 4P [Y ∗(2)

(2) > Y
∗(2)

(3) , Y
∗(2)

(2) > Y
∗(2)

(5) ] − 2P [Y ∗(2)
(2) >

Y
∗(2)

(3) ] − 2P [Y ∗(2)
(2) > Y

∗(2)
(5) ]} which equals 4 × 5 × 6 × P [Y ∗(2)

(2) > Y
∗(2)

(3) > Y
∗(2)

(5) > Y
∗(2)

(6) >

Y
∗(2)

(4) > Y
∗(2)

(1) ] + 4 × 5 × 6 × P [Y ∗(2)
(2) > Y

∗(2)
(5) > Y

∗(2)
(3) > Y

∗(2)
(6) > Y

∗(2)
(4) > Y

∗(2)
(1) ] =
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2 × 4×5×6
6! = 1

3 > 0. So ξ2 > 0, which naturally implies that the order of degeneracy of
Tn,2 is 1.

(ii) It is to be noted that (|X∗
(i) −X∗

(j)|+ |X∗
(k) −X∗

(l)|− |X∗
(i) −X∗

(k)|− |X∗
(j) −X∗

(l)|)(|Y
∗(2)

(i) −
Y

∗(2)
(j) |+|Y ∗(2)

(k) −Y ∗(2)
(l) |−|Y ∗(2)

(i) −Y ∗(2)
(k) |−|Y ∗(2)

(j) −Y ∗(2)
(l) |) = Op( log n

n
), 1 ≤ i < j < k < l ≤ n

by Result 5.1 originally introduced by Bairamov et al. (2010).
The distribution function of (|ϵ∗(2)

(i) − ϵ
∗(2)
(j) | + |ϵ∗(2)

(k) − ϵ
∗(2)
(l) | − |ϵ∗(2)

(i) − ϵ
∗(2)
(k) | − |ϵ∗(2)

(j) −

ϵ
∗(2)
(l) |) is

� ∞

−∞

{
Hϵ∗

(
y∗ + t

2

)
−Hϵ∗

(
y∗ − t

2

)}
dHϵ∗(y∗), denoted by H∗

ϵ∗(2)(t). Also the

distribution function of ϵ∗(2) is approximately equal to the distribution function of
Y ∗(2). One can derive that a(X∗

(i), X
∗
(j), X

∗
(k), X

∗
(l))a(Y ∗(2)

(i) , Y
∗(2)

(j) , Y
∗(2)

(k) , Y
∗(2)

(l) ) −→ 0 in
probability for 1 ≤ i < j < k < l ≤ n under H0. Consequently a final conclusion
becomes inevitable that Tn,2

P−→ 0 as n → ∞.

(iii) Due to Serfling (1981)’s theorem on the asymptotic distribution of a degenerate U-
statistic presented by Theorem 5, it is quite straightforward to derive the limiting
distributional form of n(Tn,2 − E(Tn,2)) under H0.

(iv) To furnish the elaborate proof regarding the asymptotic distribution of n(Tn,2−E(Tn,2))
under Hn, Theorem 6 by Gregory (1977) is required.

Proof of Theorem 9

In similar way to the proof of Theorem 8, Theorem 9 can also be proved.
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Appendix 2
Table 2: Powers of Tn,1, Tn,2 and Tn,3 for Example 1 for complete and missing
cases using N-W and ILLS imputation

Powers of test statistics in MCAR setup using NW estimation Powers of test statistics in MCAR setup using ILLS

γ No missing 5% missing 10% missing 20% missing 5% missing 10% missing 20% missing

Power
of

Tn,1

Power
of

Tn,2

Power
of

Tn,3

Power
of

Tn,1

Power
of

Tn,2

Power
of

Tn,3

Power
of

Tn,1

Power
of

Tn,2

Power
of

Tn,3

Power
of

Tn,1

Power
of

Tn,2

Power
of

Tn,3

Power
of

Tn,1

Power
of

Tn,2

Power
of

Tn,3

Power
of

Tn,1

Power
of

Tn,2

Power
of

Tn,3

Power
of

Tn,1

Power
of

Tn,2

Power
of

Tn,3

0 0.042 0.05 0.05 0.053 0.05 0.05 0.05 0.05 0.05 0.054 0.05 0.05 0.047 0.05 0.05 0.05 0.05 0.05 0.046 0.05 0.05

1 0.1 0.25 0.095 0.103 0.06 0.188 0.156 0.064 0.12 0.157 0.087 0.087 0.157 0.129 0.143 0.108 0.16 0.123 0.091 0.252 0.124

2 0.201 0.537 0.166 0.18 0.085 0.474 0.355 0.1 0.249 0.343 0.143 0.148 0.366 0.309 0.284 0.205 0.371 0.268 0.161 0.647 0.209

3 0.347 0.742 0.276 0.286 0.139 0.796 0.604 0.148 0.468 0.579 0.206 0.241 0.628 0.632 0.436 0.341 0.668 0.465 0.261 0.92 0.33

4 0.521 0.859 0.436 0.415 0.23 0.969 0.816 0.238 0.695 0.789 0.273 0.344 0.84 0.845 0.579 0.501 0.909 0.652 0.386 0.995 0.45

5 0.691 0.95 0.606 0.554 0.356 0.997 0.938 0.381 0.877 0.92 0.325 0.501 0.951 0.957 0.691 0.661 0.984 0.818 0.523 1 0.613

6 0.827 0.975 0.759 0.686 0.483 1 0.985 0.5 0.968 0.978 0.359 0.66 0.99 0.989 0.777 0.796 1 0.904 0.658 1 0.766

7 0.918 0.988 0.866 0.798 0.628 1 0.998 0.63 0.996 0.995 0.391 0.758 0.999 0.998 0.85 0.892 1 0.953 0.775 1 0.869

8 0.967 0.996 0.943 0.882 0.758 1 1 0.753 1 0.999 0.411 0.84 1 0.998 0.902 0.951 1 0.974 0.866 1 0.957

9 0.989 0.999 0.982 0.938 0.852 1 1 0.851 1 1 0.421 0.898 1 1 0.934 0.981 1 0.986 0.927 1 0.991

10 0.997 0.999 0.996 0.97 0.924 1 1 0.913 1 1 0.42 0.948 1 1 0.96 0.993 1 0.994 0.964 1 1
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Table 3: Powers of Tn,1, Tn,2 and Tn,3 for Example 2 for complete and missing
cases using N-W and ILLS imputation

Powers of test statistics in MCAR setup using N-W estimation Powers of test statistics in MCAR setup using ILLS

γ No missing 5% missing 10% missing 20% missing 5% missing 10% missing 20% missing

Power
of

Tn,1

Power
of

Tn,2

Power
of

Tn,3

Power
of

Tn,1

Power
of

Tn,2

Power
of

Tn,3

Power
of

Tn,1

Power
of

Tn,2

Power
of

Tn,3

Power
of

Tn,1

Power
of

Tn,2

Power
of

Tn,3

Power
of

Tn,1

Power
of

Tn,2

Power
of

Tn,3

Power
of

Tn,1

Power
of

Tn,2

Power
of

Tn,3

Power
of

Tn,1

Power
of

Tn,2

Power
of

Tn,3

0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.044 0.05 0.05 0.05 0.05 0.05

1 0.059 0.084 0.066 0.063 0.083 0.067 0.085 0.065 0.061 0.065 0.058 0.051 0.066 0.067 0.068 0.057 0.069 0.067 0.055 0.058 0.054

2 0.08 0.149 0.09 0.085 0.148 0.088 0.146 0.073 0.077 0.087 0.06 0.051 0.094 0.09 0.097 0.073 0.086 0.089 0.066 0.064 0.06

3 0.106 0.221 0.117 0.112 0.206 0.104 0.231 0.08 0.093 0.115 0.067 0.055 0.13 0.119 0.126 0.092 0.104 0.118 0.08 0.069 0.064

4 0.138 0.31 0.142 0.145 0.29 0.124 0.338 0.103 0.113 0.149 0.069 0.056 0.175 0.154 0.17 0.115 0.128 0.141 0.095 0.072 0.072

5 0.176 0.386 0.173 0.184 0.396 0.151 0.46 0.121 0.132 0.189 0.079 0.056 0.228 0.205 0.222 0.141 0.157 0.173 0.112 0.075 0.08

6 0.22 0.478 0.206 0.229 0.488 0.182 0.586 0.146 0.15 0.235 0.09 0.057 0.289 0.243 0.271 0.172 0.189 0.201 0.131 0.083 0.085

7 0.27 0.573 0.263 0.28 0.57 0.211 0.704 0.181 0.18 0.287 0.106 0.063 0.357 0.289 0.327 0.206 0.227 0.242 0.152 0.091 0.091

8 0.325 0.651 0.316 0.336 0.64 0.244 0.803 0.194 0.207 0.343 0.122 0.064 0.43 0.332 0.374 0.244 0.259 0.283 0.176 0.098 0.098

9 0.383 0.712 0.365 0.395 0.692 0.287 0.879 0.213 0.245 0.403 0.136 0.069 0.506 0.382 0.446 0.286 0.29 0.321 0.201 0.106 0.107

10 0.445 0.745 0.437 0.458 0.72 0.325 0.932 0.238 0.288 0.465 0.146 0.072 0.581 0.444 0.501 0.331 0.327 0.365 0.229 0.113 0.112
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