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Abstract

In this paper network nodes namely routers and switches with self similar input traffic
are modelled as multi-server finite buffer queueing system. Time dependent Markovian
Arrival Process (MAP) is employed for input process, as it emulates the nature of traffic.
The network traffic is asynchronous, and of variable packet lengths, service times(packet
lengths) are assumed to follow Phase type (PH) distribution, The Phase type distribution is
more general, in the sense, it includes all kinds of exponential distributions namely Erlang,
Hyper exponential and Coxian distribution. The transition rate matrix of buffer occupancy
of the system is obtained using Quasi Birth and Death (QBD) process. Here, time dependent
behaviour of queueing system is evaluated through the performance metrics, namely, packet
loss, and mean waiting time. This kind of investigation is useful in dimensioning the network
nodes to guarantee Quality of Service (QoS).
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1. Introduction

In this era of technology, performance of communication networks play a significant
role in all aspects of day to day life. Typically, network systems are characterized by queue-
ing systems using Markovian approach. Due to inflated demand, network traffic is bursty,
which causes congestion, thereby loss of information. For the said reasons, network traffic
modeling and performance analysis have become crucial issues to guarantee the QoS. The
networks namely LAN and WAN traffic display fractal-like characteristics, which can sig-
nificantly impact network performance. The aggregation of this traffic reveals a self-similar
pattern, and the degree of self-similarity measured in terms of the Hurst parameter, which is
used for measuring the burstiness of traffic (Paxson and Floyd (1995); Crovella and Bestavros
(1996)). Self-similar traffic exhibits the same statistical behaviour over a wide range of time
scales (Leland et al. (1994)), hence, it is necessary to consider the said nature in modeling.
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To model self-similar behaviour efficiently, various traffic models have been proposed earlier,
like chaotic maps, Fractional Brownian Motion (FBM), and FARIMA, etc. These models
characterize the traffic patterns in a parsimonious manner. Later on, several Markovian
models were proposed to emulate the self-similar nature of traffic based on second order
characteristics over certain ranges of time scales. However, they are not realistic because,
the traffic parameters in the models were assumed to be homogeneous with respect to time
and the performance metrics are computed at the steady state (Shao et al. (2005); Chang
et al. (2006); Chen et al. (2007)). In this regard, a new procedure was proposed recently,
based on the second order characteristics for fitting the time dependent Markovian process,
and presented that it emulates self-similar traffic (Abhilash and Perati (2022)). On the other
hand, Wavelength Division Multiplexing (WDM) is a promising technology to guarantee the
Quality of Service (QoS) and provides a highly efficient way to increase network capacity by
transmitting multiple signals over a single fiber. In WDM systems, converting asynchronous
data (such as IP traffic) into synchronous traffic is often done through statistical multiplex-
ing, it is used to dynamically allocate bandwidth based on traffic demand, and is suitable
for circuit-switched networks (Chen et al. (2007); Perati et al. (2007); Venkataramani et al.
(1997)). In asynchronous networks, packets typically have variable lengths, and routers
must be capable of handling variable length packets. Using an MMPP/D/1/C queueing
system (with deterministic service time) to model router performance is not suitable for
variable-length packets. A better approach is the MMPP/M/1/C system, where service
time is exponentially distributed. However, it is often more appropriate to model the service
time (packet length) using a more general distribution, such as a Phase type distribution.
This approach is particularly relevant in Broadband Integrated Services Digital Networks
(B-ISDN), where communication services are designed to offer differentiated services (Diff-
Serv) and ensure Quality of Service (QoS). The asynchronous router consists of N input
fiber lines, N output fiber lines, and each fiber line has K (say) wavelength channels, and a
wavelength converter pool of size c (say), (0 ≤ c ≤ K) dedicated to each output fiber line.
In the papers Krieger and Wagner (1992); Artalejo et al. (2001); Kim et al. (2016) network
node is modelled as multi-server queueing system, and considered underlying Markov chain
with its quasi birth-death structure. However, performance evaluation in the above papers
was made in steady state which is again not realistic. For the above reasons, in the current
work, asynchronous switch with self-similar input traffic is modeled into MMPP(t)/PH/c/K
queueing system and transient performance analysis is made by using QBD process. The
performance measures, namely, mean waiting time, packet loss are presented numerically.
The paper is organized in the following way. The fundamental definitions of self-similar and
Long Range Dependent(LRD) processes are placed in section 2. The queueing model de-
scription is presented in section 3. In section 4, performance analysis is given, and numerical
results are presented in section 5. Finally, conclusions are given in section 6.

2. Self-similar and long range dependent (LRD) process

Self-similarity is a key characteristic in fractals. It is a property, wherein a certain
feature of the object is preserved with respect to scaling in space and time. It is statistically
defined as follows. Let X be a second order process with variance σ2, and the time axis is
splitted into disjoint sub intervals of unit length. Let X = {Xt : t = 1, 2, ...} be the points
(packet arrivals) in the tth interval. Let X(m) = {X

(m)
t } be a new sequence obtained by
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averaging the original sequence over non-overlapping blocks of size m. i.e.,

X
(m)
t = 1

m

m∑
i=1

X(t−1)m+i, t = 1, 2, 3, ... (1)

The obtained sequence is a second order process, and is called exactly second order self
similar with Hurst Parameter H = 1 − β/2, if

V ar(X(m)) = σ2m−β, ∀ m ≥ 1 (2)

If the parameter H lies in (0, 0.5), then the process X is called Short Range Dependant
(SRD). The process X is called Long Range Dependant (LRD), if 0.5 < H < 1. Self-similar
traffic displays burstiness across a wide range of time scales, which distinguishes it from
traditional SRD traffic models. However, it is possible to replicate the self-similar behaviour
over a specified time-scale range by using Markov Arrival Processes (MAPs) to model, and
by matching the second-order self-similarity characteristics of the process accurately (Shao
et al. (2005); Abhilash and Perati (2022)).

3. Queueing model

Network switch under consideration is the WDM asynchronous N × N router, where
each output port with self-similar input traffic is modelled into MMPP(t)/PH/c/K multi-
server queueing system. Self-similar input traffic here is modeled as MMPP with time
dependent sinusoidal arrival rates i.e., a + bisint, where a, bi are constants and 0 < bi < 1.
The arrival process here is assumed to be superposition of d two state IPPs, and a classical
Poisson process. The ith IPP is characterized by following matrices:

Qi =
[
−d1i d1i

d2i −d2i

]
, Λi(t) =

[
λ1i(t) 0

0 0

]
, (i = 1, 2, · · · , d). (3)

The superposition of IPPs is given by

Q = Q1 ⊕ Q2 ⊕ · · · ⊕ Qd,

Λ(t) = Λ1(t) ⊕ Λ2(t) ⊕ · · · ⊕ Λd(t) ⊕ λp(t) (4)

where ⊕ indicates kronecker’s sum, and λp(t) denotes arrival rate of classical Poisson pro-
cess at time t. The mean arrival rate λ(t) is 1

t
(π
∫ t

0 Λ(t)dte), where e is the vector of ones
with appropriate dimension, and π is steady state vector of Q. Here, each server follows
continuous-time Phase type service distribution characterized by (β, S) with dimension k,
where β is vector of order 1 × k, S0 = −Se. The mean service time is µ = −βS−1e. Service
discipline is assumed to be FIFO, and the service time (here packet lengths) are indepen-
dent, identically distributed random variables governed by Phase type distribution of order
k. System capacity is finite, and is taken to be K. The resultant MMPP(t)/PH/c/K queue-
ing system can be described by using stochastic process, Z(t) = (R(t), H(t), Y (t)), t ≥ 0.
Here, R(t) denotes the number of packets in the system at time t, and H(t) denotes the
number of customers just served in different phases of the service process at time t. Ac-
cording to assumptions, the process Z(t) is a CTMC on the finite state space S = {z =
(r, h1, h2, · · · , hk, y)}, 0 ≤ r ≤ K, 0 ≤ hj ≤ c, 1 ≤ j ≤ k, 1 ≤ y ≤ m. In the case of quasi



184 M. R. PERATI, S. AREPELLY AND A. VOLLALA [Vol. 23, No. 2

birth and death process with lexicographical ordering of state space S, transition rate matrix
is given by

A(t) =



A00(t) A01(t) 0 · · · · · · · · · 0
A10 A11(t) A12(t)

. . . · · · · · · ...
0 . . . . . . . . . . . . · · · ...
... . . . Acc−1 Acc(t) Acc+1(t)

. . . ...
... · · · . . . Ac+1c Ac+1c+1(t)

. . . 0
. . . · · · · · · . . . . . . . . . AK−1K(t)
... · · · · · · · · · 0 AKK−1(t) AKK(t)


where each block matrix Aij(t) is an ni × nj matrix. The block matrix Aii+1(t) corresponds
to arrival of IP packet, Qii−1 associate with departure of IP packet and, Aii(t) are associate
with internal phase changes with no arrival and service completion. The block matrices are
as follows:

A00(t) = D0(t)

Aii+1(t) = D1(t) ⊗ β ⊗ I, i = 0, 1, · · · , c − 1

Aii−1 = I ⊗ S⊕i, i = 0, 1, · · · , c − 1

Aii(t) = D0(t) ⊗ S⊕i, i = 0, 1, · · · , c − 1

Aii(t) = D0(t) ⊗ S⊕c, i = c, c + 1, · · · , K − 1

AKK(t) = D0(t) ⊗ S⊕K + D1(t) ⊗ I

Aii+1(t) = D1(t) ⊗ I, i = c, c + 1, · · · , K

Aii−1 = I ⊗ (S0β)⊕c, i = c, c + 1, · · · , K,

where D0(t) = Q − Λ(t), D1(t) = Λ(t) and I is the identity matrix of appropriate
order.

4. Performance analysis

Let π(t) = (π0(t), π1(t), π2(t), · · · , πK(t)) be transient state probability vector of A(t),
that is, π(t) satisfies Stewart (1994)

d

dt
π(t) = A(t)π(t), (5)

=⇒ π(t) = π(0) +
∫ t

0
A(s)π(s)ds (6)
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By applying Picard’s iterative method, one can get kth iteration, and is given by

πk(t) = π(0)
(

I +
k∑

r=1

∫ t

0

∫ sr

0
...
∫ s2

0
A(sr)...A(s1)dsr...ds1

)
(7)

The solution of Eq. (7) is given by π(t) = lim
k→∞

πk(t), that is,

π(t) = π(0)
(

I +
∞∑

r=1

∫ t

0

∫ sr

0
...
∫ s2

0
A(sr)...A(s1)dsr+1...ds1

)
(8)

If each element of arrival rate matrix Λ(t) is Riemann integrable, then each element of A(t)
is Riemann integrable. By using Theorem 2.4.3 in Slav́ık (2007), one can get

π(t) = π(0)
n∏

k=0
(I + A(tk)h) , (9)

where h = tk − tk−1, n is the number of partitions of the interval (0, t], and π(0) is state
probabilty vector at time t = 0. The performance measures, namely, Mean Waiting Time
(MWT) and Packet loss Probability are derived from Zhao et al. (2015) as follows:

By Little’s Law, The Mean Waiting Time (MWT) is given by

MWT = E[NL(t)]
λ(t) =

K∑
i=c+1

(i − c)πi(t)

λ(t) .

where E[NL(t)] represents the average queue length of the system. In a finite buffer queueing
system, there is a chance of loss of packets due to buffer is being full. The packet loss in ∆
time is given by

Ploss(∆) = 1
λ(t + ∆)

(
πK(t)

[∫ t+∆

t
(D1(x) ⊗ I)dx

]
e

)
.

5. Numerical results

In this study, a real-time Internet switch is considered for the analysis. Wireshark,
an open-source software tool, is commonly used for network protocol analysis. It enables
the capture and real-time inspection of data packets transmitted across the network. The
data collected (which is presented in Appendix) using Wireshark serves as the basis for
numerical analysis, from which key network traffic parameters such as the arrival rate of
the whole process (λw), the Hurst parameter(H), and the variance (σ2) are calculated using
the NumXL tool in MS-Excel. The NumXL tool in MS-Excel is used to calculate the traffic
parameters. It is a statistical and time series analysis add-in that offers advanced functions
for computing metrics, making it easy to analyze network traffic directly within Excel. Based
on the tool, the values are obtained as follows λw = 27.964, σ2 = 138.39, H = 0.72 in the
interval of [10, 103]. Since H > 0.5, the input traffic exhibits long-range dependence (self-
similar nature). Based on the obtained network parameters, the transient MMPP fitting
has been done using the procedure given in the paper Abhilash and Perati (2022), i.e., by
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matching variance of MMPP and Self-similar traffic (real time). The number of superposed
MMPPs (IPPs) are taken to be two, i.e., d = 2. The sinusoidal arrival rates are considered
for modelling the asynchronous input traffic, and is given in the form of a + b sin t, where
b varies in between (0, 1). The arrival rates referenced are drawn from the work of Eick
et al. (1993) and used to analyze the behaviour of Mt/G/∞ queue. Based on the fitting
procedure for the given input parameters the following values are obtained, which are used in
the current numerical analysis. The transition rates of packet arrivals are d11 = 0.0401126,
d21 = 0.0087, and arrival rates are λ1(t) = 1 + 0.3 sin t, λ2(t) = 1 + 0.7 sin t. Here, it
is assumed that service time follows phase distributions with two phases, namely, Erlang
(E2), Coxian (C2), and Hyper Exponential (H2) with varying rates. The numerical results
were obtained using MATLAB programming and are presented in the form of figures. In
which, the comparison of performance measures, namely, Mean Waiting time and Packet
Loss Probability is presented with respect to traffic intensity pertaining to E2, C2, and H2.

Figure 1: Mean waiting time versus traffic intensity for t=5, K=20, c=3

Figure 2: Mean waiting time versus traffic intensity for t=10, K=20, c=3
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Figure 3: Packet loss probability versus traffic intensity for ∆ = 1, t=10,K=20,
c=3

The figures show that as traffic intensity increases, both the average waiting time and
the Packet loss probability increases. This suggests that, under heavier traffic conditions,
the system faces longer delays and a greater chance of buffer overflow. The results presented
in the figures reveals that the average waiting time for the E2 service type is consistently
higher than C2 and H2, which means that E2 tends to experience more delays under similar
traffic conditions. Also, packet loss probability, varies across different service types, i.e., H2
has the lowest loss probability, followed by E2, and C2 experiences the highest packet loss.
This indicates that, as traffic volume increases, H2 handles the load with the least packet
loss, while C2 is more prone to packet loss.The insights gained from these results are crucial
for understanding how each service type copes with varying traffic intensities. These type
of analysis is useful for designing and optimizing networks to reduce delays and packet loss,
particularly when traffic levels are high.

In this paper, the work is distinguished by its integration of time-dependent anal-
ysis, asynchronous behaviour, and Markovian models in a multi-server queueing system.
The Internet switches with self-similar input traffic are modelled as multi-server Phase type
queueing system, and the queueing behaviour is studied using time-dependent input pa-
rameters which obtained for a real time network traffic. Transient performance measures
are obtained at different time instants using numerical and analytical techniques which are
complimentary to steady state analysis. This approach offers a more accurate method for
modeling and forecasting the performance of Internet switches, which is vital for modern
networks dealing with fluctuating and unpredictable traffic. By using advanced queueing
models like the QBD process, the analysis captures the complex dynamics between servers
and queues, providing valuable inputs to improve network performance and reliability. This
sort of analysis is appropriate in dimensioning the asynchronous internet switch.
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ANNEXURE

The data presented below is used for performing numerical analysis and for calculating
key traffic parameters like arrival rate of whole processes, Variance, and Hurst Parameter.

Figure 4: Packets per unit time of real-time data
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