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Abstract  

 

This paper proposes some shrinkage testimator(s) for the scale parameter of components 

subjected to life testing experiment when the failure rate remains constant. Different choices of 

shrinkage factor(s) have been considered by making it dependent on test statistic. Properties of 

proposed testimator(s) have been studied under General Entropy Loss Function (GELF).  Relative 

Risk analysis has been carried out and it has been observed that the proposed testimator(s) perform 

better than the available best estimator for different degrees of asymmetry and level of 

significance. In particular it is recommended to use the square of the shrinkage factor for the best 

performance of these testimators. Further it is observed that a lower value of level of significance, 

α = 1% provides better control over the relative risk.  

Key words: Exponential model; Scale parameter; Shrinkage testimator; General entropy loss 

function; Level of significance; Euler’s psi function; Relative risks. 

 
 

 

1 Introduction 

 

1.1 The Model 

 

The aim of systems reliability is to forecast various system performance measures such as 

mean life time, guarantee period and reliability etc. In general, the type of failure distribution 

depends on the failure mechanism of components. If the failure rate is constant, which is mostly 

true for electronic components during the major part of their useful life, the failure time follows 

an exponential distribution with the probability density function 

 

 𝑓(𝑥; 𝜃) =  
1

𝜃
 𝑒−𝑥 𝜃⁄       ;    𝑥, 𝜃 >  0  

                          0, otherwise                                                                               (1.1.1) 

In the context of life testing and reliability estimation, numerous data have been examined 

and it has been found that exponential distribution fits well for most of the cases. Several authors 

have proposed estimators, testimators for the mean life time θ with different choices of shrinkage 
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factors (S.F.) under different loss functions. The choice of an appropriate loss function is guided 

by financial consideration apart from other considerations such as over estimation being more 

serious than under-estimation or vice-versa. Many types of loss functions are available in Bayesian 

literature with Canfield (1970) an idea of asymmetric loss function came into existence and now 

broadly the loss functions may be classified as ‘Symmetric’ and ‘Asymmetric’. Zellner (1986) 

proposed a very useful asymmetric loss function which was later modified by Basu and Ebrahimi 

(1991).Later Calabria and Pulcini (1996) proposed the General Entropy Loss Function (GELF). 

1.2 Incorporating a Point Guess and �̂�𝑺𝑻 

In many real life situations the experimenter may have some prior information regarding 

the parameter being estimated due to some past experience or similar kind of studies and it is 

thought to apply this information to the inference procedures of the original model.  If the prior 

information is available only in the form of a point (a single) value (say) θ0 for 𝜃.  For example a 

Reliability engineer knows that in how many days the item under test may fail (say) 100 days due 

to his past experience of performance. Here we may take θ0 = 100 days.  For such situations it is 

suggested to start with the current (sample) information, construct an estimator 𝜃 (MVUE or 

UMVUE) and modify it by incorporating the guess θ0 (sometimes called natural origin) so that 

the resulting estimator or testimator though perhaps biased, has smaller risk than that of  𝜃 in some 

interval around θ0.  This method constructing an estimator of 𝜃 that utilizes the prior information  

θ0 leads to what is known is shrinkage estimator or shrinkage testimator. 

 

1.3 Asymmetric Loss Functions 

We know in many real life situations the overestimation or underestimation are not of equal 

consequences.  Several authors such as Canfield (1970), Zellner (1986), Basu and Ebrahimi 

(1991), Srivastava (1996), Srivastava and Tanna (2001, 2007), Srivastava and Shah (2010) and 

others have shown that the estimators or testimators of the parameters of interest under the 

asymmetric loss function demonstrate their superiority over the estimators obtained under squared 

error loss function (SELF). 

The loss function   ,ˆL   provides a measure of the financial consequences arising from 

a wrong estimate of the unknown quantity 𝜃. Basu and Ebrahimi (1991) defined a modified LINEX 

loss function useful for the scale parameter of a distribution but sometimes it did not give the Bayes 

estimators of parameter of interest in the closed forms. 

A suitable alternative to modified LINEX loss is the General Entropy Loss Function 

(GELF) proposed by Calabria and Pulcini (1996) and is given by: 

          𝐿𝐸(𝜃, 𝜃) ∝  {(
�̂�

𝜃
)

𝑝

−  𝑝 𝑙𝑛 (
�̂�

𝜃
) − 1}                                                               (1.2.1) 

whose minimum occurs at 𝜃 =  𝜃. 
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This loss function is a generalization of the entropy loss used by several authors (for 

example, Dey and Liu, 1992), where the shape parameter ‘p’ is equal to unity (1).  The more 

general version of (1.2.1) allows different shapes of the loss function to be considered when p > 

0, a positive error (𝜃 > 𝜃) causes more serious error than a negative error) and p < 0 for the reverse 

situations. If we are considering prior distributions, then the Bayes estimate of 𝜃 under GELF is in a 

closed form and is given by 

         𝜃𝐸 = [𝐸𝜃(𝜃−𝑝)]
−1

𝑝⁄                                                                                           (1.2.2) 
 

provided that 𝐸𝜃(𝜃−𝑝) exists and is finite. When p = –1, the Bayes estimate (1.2.2) coincides with 

the Bayes estimate under the squared error loss function. 

 

1.4 Background 

Srivastava and Shah (2010) have studied the properties of shrinkage testimators for 

shrinkage factor(s) dependent on test statistics under the asymmetric loss function and have 

reported that the proposed testimator(s) perform better than the usual best estimator.  In this paper 

an attempt has been made to demonstrate that how shrinkage testimation procedure works 

under GELF. 

We have proposed the shrinkage testimators in section 2.  The risks of the proposed 

testimators have been derived in section 3.  The section 4 deals with risk comparisons for different 

shrinkage testmators and the paper concludes with section 5. 

 

2 Shrinkage Testimator(s) 

Using the sample and prior guess information a shrinkage testimator for the scale parameter 

can be proposed as follows 

      �̂�𝑆𝑇1  =   {
  𝑘�̅� + (1 − 𝑘)𝜃0     ;   𝑖𝑓   𝑥1 

2 ≤   
2𝑛�̅�

𝜃0
   ≤  𝑥2 

2   

�̅�             ;         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                    (2.1) 

where  𝑘  being dependent on test statistic is given by  𝑘 =   
2𝑛�̅�

𝜃0 𝑥2
      and  𝑥2 = (𝑥2

2 − 𝑥1
2). 

  This choice of shrinkage factor ensures that the shrinkage factor lies exactly between zero 

and one.   Now, taking the ‘square’ of  𝑘 (i.e. k=  𝑘2 ), another testimator is defined as 

𝜃𝑆𝑇2  =   {
  (

2𝑛�̅�

𝜃0 𝑥2)
2

�̅� +  [1 −  (
2𝑛�̅�

𝜃0 𝑥2)
2

] 𝜃0     ;   𝑖𝑓   𝐻0  𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 

�̅�             ;         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                         (2.2) 

Now, we derive the risk(s) of these testimator(s) in the next section. 
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3      Risk(s) of the Testimator(s) 

The risk of 
1

ˆ
ST  under   ,ˆEL   defined by   

  ],ˆˆ[)ˆ(
11

 ESTST LER                                                                                                                                                                                     
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A straight forward integration of (3.2) gives 
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Again, we obtain the risk of 
2

ˆ
ST under   ,ˆEL   as 

 ],ˆˆ[)ˆ(
22

 ESTST LER   
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A straight forward integration of (3.5) gives: 



2019]                               SHRINKAGE TESTIMATORS USING GENERAL ENTROPY LOSS FUNCTION                         147 

 
 

43

2

2

2

1

2

2

2

1

2

1

2

2
21

1,
2

,
2

1,
2

,
2

)(

,
2

,
2

)ˆ(

1

2

IIn
x

In
x

I

pn
x

Ipn
x

I
n

np

n
x

In
x

IIIR

n

p

ST






































































































 

                 (3.6)                                                   

where    

 

dtte
nn

t
pI

dtte
nn

t
pI

dtte
n

pI

dtte
n

I

nt

x

nt

x

nt

x

x

nt

x

x

p

x

t

xn

t

x

t

xn

t

1

2

4

1
2

0

3

1
2

2

2

1
2

2

1

1
ln

1
ln

1

22

2

222

3

ln

1

22

2

222

3

2
2

2
1

2
2

2
1

2
2

2
1

)(

4

)(

4

)(

4

)(

4











































 









 



























 

4 Relative Risk(s) 

A natural way of comparing the risk of the proposed testimators, is to study its performance with 

respect to the best available estimator i.e. x
 
in this case. For this purpose, we obtain the risk of x under 

  ,ˆEL  as: 
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Using (4.2) and (3.3) the expression for RR1 given in (4.3) can be obtained; it is observed 

that RR1 is a function of, n,  and ‘p ‘. To observe the behavior of
1

ˆ
ST , we have taken several 

values of these viz α = 1%, 5%, 10%, n1 = 5, 8, 10, 12 and p = -3, -2, -1, 2, 3, 4; ‘p’ is the prime 

important factor which decides about the seriousness of over/under estimation in the real life 

situation. Similarly, we define the Relative Risk of 
2

ˆ
ST  with respect to x  under   ,ˆEL   as 

follows 

)ˆ(

)(

2

2

ST

E

R

xR
RR


                                                                                                               

(4.4)

                                                                                                

Using (4.2) and (3.6) the expression for RR2 given in (4.4) can be obtained, again it is 

observed that RR2 is a function of, n,  and ‘p’, to observe the behavior of
2

ˆ
ST , we have taken 

several values of these, same as in the case of  
1

ˆ
ST  . 

4 Conclusions 

 

 We have computed the values of Relative Risk (RR1)  for the data set mentioned  above and 

some of the graphs have been assembled in the appendix by (i) keeping ‘α’ to be fixed and 

varying ‘p’ (ii) keeping ‘p’ to be fixed and varying ‘α’ as we wish to recommend for these 

two values.  All the graphs are not shown however our recommendations are based on all 

the graphs. 
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 For n = 5, α = 1% and for different values of ‘p’ (positive as well as negative) 
1

ˆ
ST  performs 

better than the conventional estimator for all the values of ‘p’ with its best performance for 

p = –3 and p = 2 for the whole range of φ. Considered here i.e. 0.2 ≤ φ ≤ 1.6. 

 Next we have changed to α = 5%.  Similar pattern of behavior is observed for the relative 

risk and p = –3 and p = 2 provide the best results. However, the magnitude of RR is small 

compared to α = 1% values. 

 We have also considered α = 10%  in order to observe the behavior for still higher level of 

significance just to confirm whether under different loss function the value of ‘α’ gets 

changed or not.  We found that 
1

ˆ
ST  performs still better than the conventional estimator 

but the magnitude of relative risk values becomes smaller but mostly still above unity. 

 So by comparing the magnitudes of these relative risk values a small value of α = 1% is 

recommended.  Also by varying ‘n’ it is observed that relative risk values are higher for n = 

5 compared to its other values of 8, 10 and 12.  Hence a smaller ‘n’ is suggested. A higher 

RR1 value indicates a ‘better’ control over the risk.  So, by choosing appropriate value of 

‘p’ and ‘α’ a better gain in terms of performance of 
1

ˆ
ST  can be achieved. 

 
2

ˆ
ST  , is another testimator proposed by taking the ‘SQUARE’ of shrinkage factor. We 

have again prepared the relevant graphs of Relative Risk (RR2) to observe the performance 

of 
2

ˆ
ST  with respect to the conventional estimator for the same set of values as we have 

considered studying the behavior of
1

ˆ
ST . We observe the following: 

 For almost the entire range of φ i.e. 0.2 ≤ φ ≤ 1.4 the values of relative risks (in terms of 

magnitude) are higher than those for shrinkage factor taken itself indicating that square of 

shrinkage factor could be a better choice. 

 The performance of 
1

ˆ
ST is best for n = 5 and α = 1 % compared to the other values 

considered of these two quantities. 

 Finally it can be concluded that the shrinkage testimator with square of shrinkage factor 

performs better for small sample sizes and small level of significance. The testimators 

perform better under GELF. 
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Appendix 

Graphs of Relative Risk for 
1

ˆ
ST and 

2

ˆ
ST with respect to conventional estimator 

Graphs of Relative Risk for  
1

ˆ
ST
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Figure 4
  

 

 

Figure 5
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Figure 6
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Figure 8 

Graphs of Relative Risk for  
2

ˆ
DST
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Figure 10 
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Figure 12 
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Figure 14 
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Figure 16 
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