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Abstract
Many population-based surveys have polychotomous responses from a number of

individuals in each household within small areas. An example is the second Nepal Living
Standards Survey (NLSS II), in which health categorical data for each individual from the
sampled households (sub-areas) are available in sampled wards (small areas). When the
survey responses are ordinal, the sub-area hierarchical Bayesian probit models are considered
to make inference about finite population proportions of individuals with different health
statuses within the small areas. A standard assumption is that the ordered categorical
responses are determined by an unobservable continuous variable. We discuss how to fit the
model to avoid poor mixing problems in Markov chain Monte Carlo methods when simulating
samples from the joint posterior distribution. The application is on health status data in
the NLSS II, and the sub-area and the small area models are compared. The results show
that the sub-area models are preferred over the small area models that ignore households
(sub-areas) within the wards (areas). Our theoretical and methodological work can help
provide small area official statistics for numerous surveys worldwide.

Key words: Bayesian Inference; Hierarchical Bayesian model; Metropolis-Hastings algorithm;
Ordinal Variables; Small Area Estimation

1. Introduction

Most sample surveys are designed to provide reliable estimates of totals, means and
other parameters of interest for large areas or domains (e.g., state level, national level). Such
estimates are usually called “direct” estimates if they are only based on the domain-specific
sample data. However, direct estimates are not reliable for the areas or domains for which
only small samples or no samples are available. In recent years, more and more policymakers
demand small area estimates. In fact, many new programs, such as fund allocation for needed
areas, new educational or health programs, rely heavily on these estimates. Taking the cost
and operation issues into consideration, it is not practical to conduct surveys with large
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enough sample sizes within the areas. In particular, small area estimation (SAE) deals with
the problem of how to produce reliable “indirect” estimates of characteristics of interest for
the small areas or domains.

Small area models are generally classified into two broad types. The basic area level
model was introduced originally for SAE by Fay and Herriot (1979). The area level model
is applied when individual auxiliary information is not available. Unit level model was
first proposed for SAE by Battese, Harter and Fuller (1988). The generalized linear mixed
model (GLMM) is one extension of the basic unit-level models. It was considered for SAE
by MacGibbon and Tomberlin (1989). GLMM is useful in the case that the small area
quantities of interest are finite population proportions.

In this paper, we are particularly interested in the small area models that can capture
hierarchical structures, such as the Nepal Living Standard Survey II (NLSS II) data. The
sampling scheme of NLSS II is a two-stage stratified sampling design. Nepal is stratified
into primary sample units (wards) and within each ward, twelve households (sub-area) are
systematically selected and all individuals from the selected households are interviewed.
Although the above basic models are very popular and in common use in producing reliable
estimates, the hierarchical structure of the data and the consistency between the estimates
for different levels may not hold. Therefore, we focus on two-fold models, an important
extension of basic small area models.

Hierarchical Bayesian methods are very popular in the two-fold models. Yan and
Sedransk (2007) studied the case that the data follow a normal model with a two-stage (three-
stage) hierarchical structure while the fitted model has a one-stage (two-stage) hierarchical
structure by using posterior predictive p-values. Yan and Sedransk (2010) discussed the
ability to detect a three-stage model when a two-stage model is actually fitted. Nandram
(2016) and Chen and Nandram (2022) showed that it is important to consider the sample
design within each area and proposed a two-fold small-area Beta-Binomial model. Lee et
al. (2017) use a Bayesian method to infer about a finite population proportion when binary
data are collected using a two-fold sample design from small areas. Erciulescu et al. (2018),
Chen et al. (2022), and Nandram et al. (2023) illustrated hierarchical Bayesian approaches to
provide estimates for the sub-area models with and without constraints. Chen and Nandram
(2023) proposed a hierarchical Bayesian logistic regression model for binary data in small
area estimation. This model is a unit level model with the sub-area effect. The results show
that two-fold models can capture the heterogeneity between samples within not only small
areas but also sub-areas.

Many population-based surveys have polychotomous responses from a number of
individuals in each household within small areas, and many responses are ordered. For
example, in the NLSS II, the answers to the question on health status range from 1 to
4, four options (excellent, good, fair, poor). There are few studies for ordinal response
variables in SAE. Early papers on regression models for ordinal data include McKelvey
and Zavoina (1975), McCullagh (1980), and Winship and Mare (1984). Nandram (1989)
discussed the discrimination between the log-log link and logit link models for ordinal data.
The textbook of Agresti (2010) gives a thorough treatment of ordinal data, while O’Connel
(2006) provides applied researchers in the social sciences with accessible and comprehensive
coverage of analysis for ordinal outcomes.
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Albert and Chib (1993) discussed the algorithm to fit the Bayesian ordinal regression
model with probit link. They introduced an underlying continuous variable, Z with a stan-
dard normal cumulative distribution function Φ. The ordinal response variable, Yi is then
observed in category t if Zi comes from Normal(

˜
xT

i ˜
β,1) between the cutpoints θt−1 < Zi ≤ θt

and
˜
x are the covariates. To capture the ordinal nature of the observed data, the cut-points

are constrained to be monotonically increasing, −∞ = θ0 < θ1 < .. . < θT −1 < θT = +∞.
In addition, they assume that Zi follows scale mixture of normal distributions, that is,
Normal(

˜
xT

i ˜
β,λ−1

i ). They assume that the underlying continuous variables follow the normal
distribution without subgroup random effects. In this paper, we focus on the heterogeneous
variances among the small areas and the subareas and conduct the subgroup analysis. We
start with their models and build additional models with the small area and sub-area random
effects.

For the probit analysis, Holmes and Held (2006) discussed Albert and Chib (1993)
algorithm and showed that it gives a poorly mixing Gibbs sampler. They showed how to
solve this mixing problem by adding latent variables and using the block Gibbs sampler
(i.e., some variables are drawn simultaneously). In this paper, we discuss how to fit the
heterogeneous model to avoid poor mixing problems in Markov chain Monte Carlo methods
when simulating samples from the joint posterior distribution.

In Section 2, a full description of the area and sub-area hierarchical Bayesian ordered
probit models is given. In Section 3, we apply the models to the NLSS II data to predict
the four health conditions of the household proportions of members for both sampled and
nonsampled households. The comparisons between the small area models and the subarea
models are presented. Finally, in Section 4, we make concluding remarks and discuss the
future work. Technical details are given in the appendices.

2. Bayesian ordered probit models with covariates

In this section, we discuss two hierarchical Bayesian ordered probit models with co-
variates: the heterogeneous small area model and the heterogeneous sub-area model. We
explain in detail about how to draw samples from the joint posterior distributions of hetero-
geneous models to avoid poor mixing problems in MCMC algorithm.

Suppose that the Yi are categorical responses, falling in t = 1, . . . ,T , categories. Then
Yi follows a multinomial distribution with parameter

˜
p where pit denotes the probability that

the ith observation falls in the response category t. The cumulative probabilities are

γit = P (Yi ≤ t) = pi1 + · · ·+pit.

Let g(·) denote a link function mapping probabilities to the real line, g(γit) = θt +
˜
xT

i ˜
β,

where
˜
xT

i is a vector of explanatory variables for the ith observation and
˜
β is the corresponding

set of regression parameters. The θt parameters are constant representing the baseline value
for category t. Notice that the predictors do not include a column of ones for the intercept
term since the constants are written explicitly. In this paper, we primary discuss the model
with probit link function within the Bayesian paradigm, that is, g(·) = Φ−1(·).
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2.1. Heterogeneous small area model

In this section, we focus on the model with heterogeneous variances among small
areas. In the small area models, we ignore the differences among households. Assume
that there are ℓ areas, within the ith area there are Mi individuals. For sampling, mi

individuals are selected from the Mi units available. Suppose that the independent response
yij , i = 1, . . . , ℓ, j = 1, . . . ,mi are observed and yij takes one of T ordered categories, i.e.,
yij ∈ {1,2, ...,T}.

The interest is to provide indirect estimates of the finite population proportions of
the small areas in each category which are

P̄ a
it = 1

Mi

Mi∑
j=1

I(yij = t) = fa
i Īa

sti +(1−fa
i )Īa

nsti , i = 1, . . . , ℓ, t = 1, . . . ,T,

where a denotes the small area estimates, and Īa
sti = ∑mi

j=1 I(yij = t)/mi, Īa
nsti = ∑Mi

j=mi+1 I(yij =
t)/(Mi −mi), and fa

i = mi/Mi are sampled proportions, non-sampled proportions and sam-
ple fraction respectively in the small area model. Bayesian predictive inference is required
for non-sample proportions.

Define the underlying continuous variable zij , where the zij follows Normal(
˜
xT

ij˜
β +

νi,λ
−1
i ) with small area random effect νi. If θt−1 < zij ≤ θt , then yij = t. Define θ0 = −∞ and

θT = ∞. θt is a constant representing the baseline value for category t. Since the variances of
latent variable zij vary within areas, we called this ordered probit model heterogeneous small
area model. Therefore, the small area Bayesian ordinal probit model with heterogeneous
variances is

zij |˜
ν,

˜
β,λi,˜

x,
˜
y

ind∼ Normal(
˜
xT

ij˜
β +νi,λ

−1
i ), (1)

where θt−1 < zij ≤ θt if yij = t and the priors are

νi|δ2 iid∼ Normal(0, δ2), i = 1, . . . , ℓ,

˜
β ∼ MN

(
˜
β0,1000Σ0

)
,

λi|a
iid∼ Gamma(a,a), i = 1, . . . , ℓ,

π(a,δ2) = 1
(1+a)2

1
(1+ δ2)2 ,

π(θt) = (n−1)!I(θ1 < .. . < θT −1), t = 1, . . . ,T −1.

A diffuse prior is placed on the coefficient
˜
β. The prior of λi is gamma distribution,

which makes the latent variable zij follows a student’s t distribution. We placed the shrinkage
priors on both a and δ2 so that they are proper but with heavy tail. The detail of how to
obtain a sample from joint posterior density is shown in Appendix A.

If the variances among the small areas are the same, no λi but 1, we call that model
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a homogeneous small area model. That is,

zij |˜
ν,

˜
β,

˜
x,

˜
y

ind∼ Normal(
˜
xT

ij˜
β +νi,1), (2)

where θt−1 < zij ≤ θt if yij = t and the priors are

νi|δ2 iid∼ Normal(0, δ2), i = 1, . . . , ℓ,

˜
β ∼ MN

(
˜
β0,1000Σ0

)
,

π(a,δ2) = 1
(1+a)2

1
(1+ δ2)2 ,

π(θt) = (n−1)!I(θ1 < .. . < θT −1), t = 1, . . . ,T −1.

Since the heterogeneous model is more general than the homogeneous model, the
methods can be easily applied to the homogeneous model and the computations are simpler.

2.2. Heterogeneous sub-area model

We focus on the model with heterogeneous variances among sub-areas and discuss how
to fit it. In sub-area models, we assume that there are ℓ areas, within the ith area there are Ni

sub-areas (households) and within the jth sub-areas, there are Mij individuals. For sampling,
ni sub-areas are sampled from the Ni sub-areas and all individuals are selected in sampled
sub-areas, that is, mij = Mij . Let yijk, k = 1, . . . ,mij , j = 1, . . . ,ni, i = 1, .. . . . , ℓ, denote the
categorical response and yijk takes one of T ordered categories, i.e., yijk ∈ {1,2, ...,T}.

The interest is also to provide estimates of the finite population proportions of small
areas in each category which are

P̄ s
it = 1

Ni∑
j=1

Mij

Ni∑
j=1

Mij∑
k=1

I(yijk = t) = fs
i Īs

sti +(1−fs
i )Īs

nsti , i = 1, . . . , ℓ, t = 1, . . . ,T,

where s denotes the estimates considering sub areas, and Īs
sti = ∑ni

j=1
∑mij

k=1 I(yijk = t)/∑ni
j=1 mij ,

Īs
nsti = ∑Ni

j=ni+1
∑Mij

k=1 I(yijk = t)/∑Ni
j=ni+1 Mij , and fs

i = ∑ni
j=1 Mij/

∑Ni
j=1 Mij are sampled

proportions, non-sampled proportions and sample fraction in sub-area models respectively.
Bayesian predictive inference is required for non-sample proportions.

Let the zijk follow Normal(
˜
xT

ijk˜
β +νi +µij ,λ

−1
i ) distribution with the small area ran-

dom effects νi and sub-area random effects µij . If θt−1 < zijk ≤ θt , then yijk = t. Since the
variance of latent variable zijk are different among small areas, we call this ordered probit
model a heterogeneous sub-area model.

Our sub-area Bayesian ordered probit model as

zijk|
˜
ν,

˜
β,λi,˜

x,
˜
y

ind∼ Normal(
˜
xT

ijk˜
β +νi +µij ,λ

−1
i ), (3)
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where θt−1 < zijk ≤ θt if yijk = t and the priors are

µij |σ2 iid∼ Normal(0,σ2), j = 1, . . . ,ni,

νi|δ2 iid∼ Normal(0, δ2), i = 1, . . . , ℓ,

˜
β ∼ MN

(
˜
β0,1000Σ0

)
,

λi|a
iid∼ Gamma(a,a), i = 1, . . . , ℓ,

π(a,σ2, δ2) = 1
(1+a)2

1
(1+ δ2)2

1
(1+σ2)2 ,

π(θt) = (T −1)!I(θ1 < .. . < θT −1), t = 1, . . . ,T −1.

Similarly, the detail of how to obtain a sample from this joint posterior density is
shown in Appendix B.

If the variances among areas are the same, no λi but 1, we call that model as homo-
geneous sub-area model, that is

zijk|
˜
ν,

˜
β,

˜
x,

˜
y

ind∼ Normal(
˜
xT

ijk˜
β +νi +µij ,1), (4)

where θt−1 < zijk ≤ θt if yijk = t and the priors are

µij |σ2 iid∼ Normal(0,σ2), j = 1, . . . ,ni,

νi|δ2 iid∼ Normal(0, δ2), i = 1, . . . , ℓ,

˜
β ∼ MN

(
˜
β0,1000Σ0

)
,

π(a,σ2, δ2) = 1
(1+a)2

1
(1+ δ2)2

1
(1+σ2)2 ,

π(θt) = (T −1)!I(θ1 < .. . < θT −1), t = 1, . . . ,T −1.

Since the heterogeneous model is more general than the homogeneous model, the
methods can be easily applied to the homogeneous model and the computations are simpler.

2.3. Prediction

In this paper, our interest is to predict the finite population proportions of the 102
sampled wards in both sampled and non-sampled households. The covariates of individuals
in non-sampled households and the size of non-sampled households are unknown. Bayesian
bootstrap (Rubin 1981) is used to draw them. The bootstrapping is done within sampled
wards. The detail of the Bayesian bootstrap procedure is shown in Appendix C. Bayesian
predictive inference for the individuals in the non-sampled sub-areas within the sampled small
areas can be made once the set of samples are obtained from the posterior distribution.

For the small area models, we can draw samples of the non-sampled underlying vari-
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able, z
(h)
ij , h = 1, . . . ,M, j = mi +1, . . . ,Mi, i = 1, . . . , ℓ, based on the likelihood functions in

the models, where h denote the hth samples drawn from the predictive distribution and we
draw M samples in total. Then given the set of samples of

˜
θ, the non-sampled responses,

yij , can be predicted based on the criteria:

θ
(h)
t−1 < zij ≤ θ

(h)
t , then yij = t, t = 1, . . . ,T.

For the sub-area models, we can draw samples of the non-sampled underlying variable,
z

(h)
ijk , h = 1, . . . ,M, k = 1, . . . ,Mij , j = ni + 1, . . . ,Ni, i = 1, . . . , ℓ, based on the likelihood

functions in the models. Then given the set of samples of
˜
θ, the non-sampled responses, yijk,

can be predicted based on the criteria:

θ
(h)
t−1 < zijk ≤ θ

(h)
t , then yijk = t, t = 1, . . . ,T.

3. Application

3.1. Nepal living standards survey II

In this section, we describe the second Nepal Living Standards Survey (NLSS II)
and the responses and the covariates. The performance of our method is studied using
NLSS II, conducted in the years 2003-2004. NLSS is a national household survey in Nepal,
actually population based (i.e., interviews are done for all individual household members).
Sometimes the head of the household answers the questions. NLSS follows the World Bank
Living Standards Measurement Survey methodology with a two-stage stratified sampling
scheme. It is an integrated survey which covers samples from the whole country. The main
objective of the NLSS is to collect data from Nepalese households and provide information to
monitor progress in national living standards. We study the polychotomous variable, health
status, from the health section of the questionnaire.

The sampling design of NLSS II is two-stage stratified sampling. One selects the
primary units (small areas) in the first stage and then some of the units (sub-areas) are
selected from the secondary stage. Figure 1 shows that the area level of NLSS II is wards
(circle) and the sub-area level is all selected households (house shape). That is, Nepal is
stratified into primary sample units (wards) and within each ward, twelve households (sub-
areas) are systematically selected. All household members in the sample were interviewed.
Note that any analysis is done for each stratum.

According to the 2001 census data, only about 0.091% of households and only 0.904%
of wards were sampled. NLSS II was designed to provide reliable estimates only at stratum
level or even larger areas than stratum. It cannot give reliable estimates in small areas (ward
or household level) since the sample sizes are too small. Therefore, we need to use statistical
models to fit the available data and find reliable estimates in small areas.

3.2. Response variables and covariates

NLSS II has sparse counts of household members within the wards for four health
status groups: excellent, good, fair and poor, denoted by 1 to 4. The distribution of all
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Figure 1: Illastration of NLSS II two-stage sampling design

responses of the health conditions in each stratum is shown in Table 1. Notice that the
counts in the fair and poor cells are very sparse. There are six strata in the NLSS II. In
this paper, we study the Rural Terai, the largest stratum in Nepal. It has 102 wards with
7,034 individuals in the sample of 12,239 wards in the population with 9,744,810 people.
The number of people in the sample is 7,034 with 3,950 in the “excellent” cell, 2,926 in the
“good” cell, 153 in the “fair” cell and 5 in the “poor” cell with percentages 56.1%, 41.6%,
2.1% and 0.02%. Notice that the counts in the last cell are mostly zeros.

Table 1: Distributions of wards and households in the sample and the distribu-
tions of the responses in each health cell

Stratum Ward Household Individual Excellent Good Fair Poor
Mountains 32 384 1,949 1,262 658 24 4

Kathemandu 34 408 1,954 1,494 459 1 0
Urban Hills 28 336 1,467 820 626 20 1
Rural Hills 96 1,152 5,755 3,028 2,613 110 4

Urban Terai 34 408 2,104 1,239 811 52 2
Rural Terai 102 1,224 7,034 3,950 2,926 153 5

We choose four relevant covariates which can influence health status from the NLSS
II survey for our sub-area logistic model and ordered probit models. They are age, nativity,
sex and religion. We created binary variables: nativity (Indigenous = 1, Non-indigenous =
0), religion ((Hindu = 1, Non-Hindu = 0), and sex (Male = 1, Female = 0).

Table 2 shows some details of these 4 covariates. In the model fitting, we standardize
age covariate. Elder age and children’s age are more vulnerable than younger age. Indigenous
people can have different health status from migrated people.
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In NLSS II, the ordinal response variable of health status has 4 categories, from 1 to
4, where 1 means excellent health condition and 4 means poor health condition, respectively.
When respondents answer this question, there is an underlying order among 1 to 4. Then the
baseline values are −∞ = θ∗

0 < θ∗
1 < θ∗

2 < θ∗
3 < θ∗

4 = +∞. In order to make the computation
simpler, we subtract θ∗

2 in each side and then −∞ < θ1 < 0 < θ2 < +∞, where θ1 = θ∗
1 − θ∗

2
and θ2 = θ∗

3 − θ∗
2.

Table 2: Summaries of the four covariates: age, gender, nativity, and religion

Covariates Frequency Percentage
Age 0-14 7,765 38.32

15-59 10,951 54.04
60+ 1,547 7.64

Gender Male 9,763 48.18
Female 10,500 51.82

Nativity Indigenous 11,903 41.25
Non-Indigenous 8,360 58.75

Religion Hindu 16,378 80.83
Non-Hindu 3,385 19.17

3.3. Numerical results

In this section, we show the numerical results and comparisons among the four mod-
els: homogeneous and heterogeneous wards models (small area models); homogeneous and
heterogeneous household models (sub-area models).

3.3.1. MCMC diagnostics

For each of four models, we run 12,000 MCMC iterations, burn in 2,000 and thin every
10th to obtain 1,000 converged posterior samples. Table 3 and Table 5 give the p-values of
the Geweke test and the effective sample sizes for the parameters

˜
β, θ1, θ2 and δ2 of the

homogeneous models. Table 4 gives the p-values of the Geweke test and the effective sample
sizes for the parameters

˜
β, θ1, θ2, a and δ2 of the heterogeneous area model. Table 6 gives the

p-values of the Geweke test and the effective sample sizes for the parameters
˜
β, θ1, θ2, a, δ2

and σ2 for the heterogeneous household model. The p-values are all large, so we do not reject
the null hypothesis test which is that the Markov chain is in the stationary distribution. The
effective sample sizes are not too far away from 1,000. These model diagnostic summaries
indicate that the MCMC chains converge and strongly mixing.

3.3.2. Model comparisons

For evaluating and comparing these models, the Bayesian posterior predictive p-value
(Meng,1994), the deviance information criterion (DIC) and the logarithm of the pseudo
marginal likelihood (LPML) are computed.

In the ordered probit models, denote Ω = (
˜
ν,

˜
µ,

˜
θ,

˜
β,

˜
λ). Since the responses yijk follow
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Table 3: Summary of MCMC diagnostics: posterior mean, posterior standard
deviation, the p-values of the Geweke test and the effective sample sizes for the
homogeneous wards model

Model Homogeneous Wards Model
Mean SD Geweke pval Effective Size

β1 0.08817 0.02238 0.34 1000
β2 0.00038 0.02818 0.65 900
β3 -0.02079 0.02555 0.57 1000
β4 -0.37098 0.02379 0.71 1123
θ1 -0.50001 0.00021 0.11 1000
θ2 0.59635 0.60952 0.54 1000
δ2 0.59320 0.11752 0.35 1092

Table 4: Summary of MCMC diagnostics: posterior mean, posterior standard
deviation, the p-values of the Geweke test and the effective sample sizes for the
heterogeneous wards model

Model Heterogeneous Wards Model
Mean SD Geweke pval Effective Size

β1 0.1711 0.0148 0.78 1000
β2 -0.0404 0.0164 0.48 910
β3 -0.0074 0.0140 0.46 1000
β4 -0.3467 0.0103 0.17 1000
θ1 -0.5028 0.0044 0.28 908
θ2 0.5963 0.6706 0.69 1000
a 0.8645 0.9327 0.51 1000
δ2 1.4927 0.0396 0.12 875

Table 5: Summary of MCMC diagnostics: posterior mean, posterior standard
deviation, the p-values of the Geweke test and the effective sample sizes for the
homogeneous household model

Model Homogeneous Household Model
Mean SD Geweke pval Effective Size

β1 0.10234 0.02344 0.88 1000
β2 -0.00755 0.02477 0.71 1006
β3 -0.02113 0.02562 0.93 888
β4 -0.05413 0.02141 0.93 598
θ1 -0.50000 0.00020 0.67 1000
θ2 0.58684 0.10882 0.66 1000
δ2 0.55568 0.13674 0.78 901
σ2 0.03291 0.01905 0.30 855
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Table 6: Summary of MCMC diagnostics: posterior mean, posterior standard
deviation, the p-values of the Geweke test and the effective sample sizes for the
heterogeneous household model

Model Heterogeneous Household Model
Mean SD Geweke pval Effective Size

β1 0.1752 0.0149 0.78 1000
β2 -0.0132 0.0177 0.39 1000
β3 -0.0403 0.0159 0.69 1000
β4 0.0089 0.0192 0.24 1000
θ1 -0.4843 0.0044 0.51 888
θ2 0.5584 0.0622 0.65 1000
a 0.8498 0.0997 0.52 1000
δ2 1.6472 0.9333 0.16 1000
σ2 0.3367 0.1957 0.68 1000

multinomial distributions, we consider a measure of form

T (
˜
y,Ω) =

T∑
t=1

ℓ∑
i=1

ni∑
j=1

mij∑
k=1

(I(yijk = t)−pijkt)2

ntpijkt(1−pijkt)
,

where nt = ∑ℓ
i=1

∑ni
j=1

∑mij

k=1 I(yijk = t) is the total number of yijk in t category and pijkt =
Φ(θt −

˜
xT

ijk˜
β − νi − µij). We calculate T (

˜
yrep,Ω) for each of 1,000 samples, and then seeing

what percent are above single calculated T (
˜
yobs,Ω). The Bayesian posterior predictive p-

value (BPP) is used in order to check the discrepancy between data and the posited model.
The BPPs of all models shown in Table 7 are not in the extreme range (close to 0 or 1).
Therefore, they are appropriate and adequate to make inference for the finite population
proportions of interest. Note that the BPP cannot be used for ranking the models, but for
checking if the model is good or not.

In addition, we calculated their DICs and LPMLs. The deviance information criterion
(DIC) (Spiegelhalter et al. 2002) is a Bayesian measure of goodness-of-fit,

DIC = 2

 1
M

M∑
h=1

D(
˜
y,Ω(h))

 −D(
˜
y, Ω̂),

where Ω̂ is a point estimate for Ω such as the mean of the posterior simulations, Ω(h) are
posterior simulations and D(

˜
y, Ω̂) = − logf(y|Ω). DIC has been suggested as a criterion of

model fit when the goal is to pick a model with best out-of-sample predictive power. A
smaller value of DIC indicates a better fit and it provides reasonable assessments of model
fit while considering the model complexity.

Similar to the DIC, LPML is also based on the same cross-validation (leave-one-
out) procedure. A summary statistic of the conditional predictive ordinate (CPO) values is
LPML. CPO is defined as the predictive density of observation i given all the other observa-
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tions, that is, CPOi = p(yi|y(i)) =
�

p(yi|Ω)p(Ω|
˜
y(i))dΩ, where

˜
y(i) is the data

˜
y without ith

observation. If observations are conditionally independent, a harmonic mean approximation
of CPO is ĈPOi =

{
1

M

∑M
h=1

1
p(yi|Ω(h))

}−1
, where Ω(h),h = 1, . . . ,M are samples from the

posterior distribution. Then,
LPML =

∑
i

log(ĈPOi).

Larger values of LPML indicate better fitting models (Geisser and Eddy 1979).

The DICs of the heterogeneous and homogeneous wards models are 1,852.58 and
4,039.93 respectively. The LPML of heterogeneous and homogeneous wards models are
-1,096.38 and -1,838.45 respectively. So the heterogeneous ward model is better than the ho-
mogeneous one. The DICs of heterogeneous and homogeneous household model are 1,329.35
and 1,927.68 respectively. The LPML of the heterogeneous and homogeneous area models
are -1,056.01 and -1,272.85 respectively. So the heterogeneous household model is better than
the homogeneous one. Overall, based on the DIC and LPML, the heterogeneous household
model has the smallest DIC and the largest LPML. The household models have relatively
small DIC and large LPML. The household models are better when fitting the NLSS II
health data.

Table 7: Comparison of BPP and DIC among four models: heterogeneous house-
hold model (HES), heterogeneous wards model (HEA), homogeneous household
model (HOS), homogeneous wards model (HOA) for NLSS II data

Model BPP DIC LPML
HEA 0.415 1852.58 -1096.38
HES 0.475 1329.35 -1056.01
HOA 0.155 4039.93 -1838.45
HOS 0.280 1927.68 -1272.85

We are interested in the finite population proportions of four health conditions in the
small areas. We use all four ordered probit models to predict the nonsampled households
in the 102 sampled wards. Bayesian bootstraps are used to generate unknown household
sizes and nonsampled covariates within sampled wards and the bootstrapping is done within
wards. The 2001 Census could potentially provide these two pieces of information, but there
is a mismatch between the households in the census and the NLSS II (a record linkage can
be performed). We note, however, that there is linkage between the wards, but this infor-
mation is not useful to household estimates. In this application, we know the total number
of households and individuals in each sampled wards, and we have sampled household infor-
mation. Therefore, we decide to use these information in the Bayesian bootstrap approach
to generate nonsampled household sizes and corresponding nonsampled covariates within
sampled wards.

Based on 1,000 samples of parameters from the joint posterior distribution, we get
1,000 values of P̄it; order these values and pick the 95% prediction interval to be (P̄ (25)

it , P̄
(975)
it ),

t = 1,2,3,4, where the values are arranged in increasing order.
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The health status proportions of the 102 sampled wards based on both sampled and
non-sampled households (P̄t, t = 1,2,3,4) under all four models are shown in Figure 2. The
proportions in excellent health condition are similar among all four models. The estimates
from the heterogeneous household model are slightly less than those from the other models.
The proportions in good health condition from both household models are more than those
from the small area models. The proportions of fair condition and poor condition from the
area models are relatively similar. The proportions of fair condition from the household
models are larger than the proportions of poor conditions, which is consistent with the
observed data. The error bars are the 95% credible intervals of P̄t. We can notice that the
95% credible intervals of the estimates in the homogeneous wards model are widest among
all four models. The 95% credible intervals in the heterogeneous model have relatively the
narrowest among all four models.

We examine plots to further compare the predictive inference of the finite population
proportions of the four health conditions between the heterogeneous ward model and the
heterogeneous household model. Figure 3 shows the comparison of the finite population
proportions of four health conditions in each household within the sampled wards respectively
between two models. One of our interest is to provide estimates for sampled wards. We can
get the finite population proportions of health status in each sampled wards by taking the
average on those estimates for households in each ward. Figure 4 shows the comparison of
the finite population proportions of the four health conditions in sampled wards respectively
between the two models. We can see that the points do not fall reasonably well on the 45o

line, which indicates that everything being equal, the model with sub-area random effects
can capture more information, the heterogeneity of different households (sub-areas).

4. Concluding remarks and future works

In this paper, we study several hierarchical Bayesian ordered probit models for poly-
chotomous responses. The sub-area models can capture the heterogeneity among the sub-
areas (households) within the small areas (wards) and borrow strength from the sub-areas
to obtain more efficient estimators. A full Bayesian analysis is provided for each model and
predictive inference of the finite population proportions of the small areas is conducted. We
have demonstrated our application to health status data from NLSS II.

We discussed one posterior computation algorithm to avoid poor mixing problems
that the Gibbs sampler may cause. NLSS II health data were used in order to examine the
performance of two models. We have performed a Bayesian predictive inference for the finite
population proportion of each health status in the sampled wards based on the sampled and
non-sampled households. BPP and DIC are used to assess and compare our ordinal probit
models. The sub-area models perform better than the small area models.

In the paper, we assume the samples are self-weighted. However, if the sample unit
cannot represent the target population, survey weights should be used to adjust selection
bias. In the future, incorporating survey weights into the models can be explored. The
observed biased samples actually followed a weighted distribution instead of the original
distribution that the random samples follow. In order to predict and make inference about
the finite population, the surrogate sampling approach by Nandram (2007) can be used to
predict the finite population proportions.
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We focus on parametric statistical models in this paper. Nonparametric Bayesian
models using the stick-breaking priors can be considered to robustify the inference by em-
bedding parametric models in nonparametric models. Ishwaran and James (2001) discussed
the Gibbs samplers that can be used to fit posteriors of Bayesian hierarchical models based
on stick-breaking priors. They are more flexible and better than the stick breaking prior of
the Dirichlet process.

Figure 2: Comparison of finite population proportions of each health condition
cell among four models
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Figure 3: Comparison of the wards model and household models for prediction
of the finite population proportions of 4 different health conditions of household
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Figure 4: Comparison of the wards model and household models for prediction
of the finite population proportions of 4 different health conditions of wards
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APPENDIX

A. Computation method for the heterogeneous small area model

Using Bayes’ theorem, the joint posterior distribution of the heterogeneous small area
model in Section 2.1 is

π(
˜
z,ν,

˜
β,

˜
λ,

˜
θ,a,δ2|

˜
y) ∝

ℓ∏
i=1

mi∏
j=1


√

λie
− λi

2 (zij−
˜
xT

ij
˜
β−νi)2 T∑

t=1
[I(yij = t,θt−1 < zij ≤ θt)]


×

( 1
δ2

) ℓ
2 ℓ∏

i=1

{
e

− 1
2δ2 ν2

i

}
× exp

{
−(

˜
β −β0)T (1000Σ0)−1(

˜
β −β0)

}

×


ℓ∏

i=1

aaλa−1
i e−aλi

Γ(a)

 1
(1+a)2

1
(1+ δ2)2 .

In order to jointly draw samples of
˜
z and

˜
λ, we integrate out

˜
z from the joint posterior

distribution π(
˜
z,

˜
λ|

˜
ν,

˜
x,

˜
β,

˜
θ,a,

˜
y). That is,

π(λi|˜
ν,

˜
x,

˜
β,

˜
θ,a,

˜
y) =

�
π(

˜
z,λi|˜

ν,
˜
x,

˜
β,

˜
θ,a,

˜
y)d

˜
z

∝
mi∏
j=1


� √

λie
− λi

2 (zij−
˜
xT

ij
˜
β−νi)2 T∑

t=1
[I(yij = t,θt−1 < zij ≤ θt)]d˜

z

 aaλa−1
i e−aλi

Γ(a)

=
mi∏
j=1


T∑

t=1

� θt

θt−1

[√
λie

− λi
2 (zij−

˜
xT

ij
˜
β−νi)2

]
I(yij = t)dzij

 aaλa−1
i e−aλi

Γ(a)

=
mi∏
j=1


T∑

t=1

[
Φ

(√
λi(θt −

˜
xT

ij˜
β −νi)

)
−Φ

(√
λi(θt−1 −

˜
xT

ij˜
β −νi)

)]
I(yij = t)


× aaλa−1

i e−aλi

Γ(a) .

Then Metropolis-Hastings algorithm is used to draw samples of λi from the marginal condi-
tional distribution. Given λi and samples of

˜
β,νi and

˜
θ, we draw zij from truncated normal

N(
˜
xT

ij˜
β +νi,λ

−1
i ), where yij = t if θt−1 < zij ≤ θt.

To implement the Gibbs sampler once we get a sample of
˜
λ and

˜
z, we need to draw

samples from the full conditional posterior distributions of
˜
ν,

˜
β, a, δ2 and

˜
θ.

First, the conditional distribution of
˜
ν is

νi|λi,˜
z,

˜
β,δ2,

˜
y

ind∼ Normal
λi

∑ni
j=1(zij −

˜
xT

ij˜
β)

1
δ2 +niλi

,( 1
δ2 +niλi)−1

 .
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Second, the conditional distribution of
˜
β is

˜
β|

˜
ν,

˜
λ,

˜
z,

˜
x,

˜
y ∼ MN

(
ˆ
˜
β,Σˆ

˜
β

)
, where

ˆ
˜
β = Σˆ

˜
β

 ℓ∑
i=1

mj∑
j=1

λi(zij −νi)˜
xij +(1000Σ0)−1

˜
β0

 ,

Σˆ
˜
β =

 ℓ∑
i=1

ni∑
j=1

λizij˜
xij˜

xT
ij +(1000Σ0)−1

−1

.

Third, the fully conditional distribution of θt, given
˜
z,

˜
θ(t) = {θs, s ̸= t} and data, is

given by

π(θt|˜
z,

˜
θ(t),

˜
y) ∝

ℓ∏
i=1

mi∏
j=1

[I(yij = t,θt−1 < zij ≤ θt)+ I(yij = t+1, θt < zij ≤ θt+1)] .

Notice that this conditional density is uniform density on the interval. That is

θt|˜
z,

˜
θ(t),

˜
y ∼ Uniform

(
max{max{zij ,yij = t}, θt−1},min{min{zij ,yij = t+1}, θt+1}

)
.

Fourth, given the sample of
˜
λ, we can use grid method to draw a. Transform a to

ϕ1 = a
1+a , which is in (0,1). The conditional posterior distribution of ϕ1 is

π(ϕ1|
˜
λ) ∝

 ℓ∏
i=1

aaλa−1
i e−aλi

Γ(a)


ϕ1= a

1+a

.

Fifth, to draw δ2 we also use the grid method. Transform δ2 to ϕ2 = δ2

1+δ2 , which is in (0,1).
The conditional posterior distribution of ϕ2 is

π(ϕ2|
˜
ν) ∝


( 1

δ2

) ℓ
2

exp
− 1

2δ2

ℓ∑
i=1

ν2
i

 |
ϕ2= δ2

1+δ2
.

To implement the algorithm, we chose starting points
˜
β(0),

˜
θ(0) equal to the maximum likeli-

hood estimators (MLE) based on the previous paper by Chen and Nandram (2023), λ
(0)
i = 1

and ν
(0)
i = 1. We first draw a and δ2 using grid method, and then jointly draw a sample of

˜
λ and

˜
z, and simulate from the conditional distribution of νi,

˜
β and θt.

B. Computation method for the heterogeneous sub-area model

Using Bayes’ theorem, the joint posterior distribution of the Heterogeneous Sub-Area
Model in Section 2.2 is
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π(
˜
z,
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The method to fit the sub-area probit model is discussed in the following steps.
In order to jointly draw samples of

˜
z and

˜
λ, we integrate out

˜
z from the joint posterior

distribution π(
˜
z,

˜
λ|

˜
µ,

˜
ν,

˜
x.

˜
β,a,

˜
y). That is,
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Then we can use accept-reject algorithm to draw samples of λi, i = 1, . . . , ℓ. Once we get the
sample, we can draw zijk. Similarly, we first draw a sample

˜
β∗ from prior MN

(
˜
β0,1000Σ0

)
,

draw a sample ν∗
i from prior Normal(0, δ2) and draw a sample µ∗

ij from prior Normal(0,σ2)
and given

˜
β∗,

˜
µ∗,

˜
ν∗,

˜
λ and data, we can draw sample zijk from truncated Normal(

˜
xT

ijk˜
β∗ +

ν∗
i + µ∗

ij ,λ
−1
i ) , where θt−1 < zijk ≤ θt if yijk = t, t = 1, . . . ,T, i = 1, . . . , ℓ, j = 1, . . . ,ni, k =

1, . . . ,mij .

To implement the Gibbs sampler once we get a sample of
˜
λ and

˜
z, we need to draw

samples from the full conditional posterior distributions of
˜
µ,

˜
ν,

˜
β, a, σ2, δ2 and

˜
θ.

First, the conditional distribution of
˜
ν is

µij |νi,λi,˜
z,

˜
β,σ2,

˜
y

ind∼ Normal
λi

∑mij

k=1(zijk −
˜
xT

ijk˜
β −νi)

1
σ2 +mijλi

,( 1
σ2 +mijλi)−1

 .
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Second, the conditional distribution of
˜
ν is

νi|
˜
µ,λi,˜

z,
˜
β,δ2,

˜
y

ind∼ Normal
λi

∑ni
j=1

∑mij

k=1(zijk −
˜
xT

ijk˜
β −µij)

1
δ2 + ∑ni

j=1 mijλi
,( 1

δ2 +
ni∑

j=1
mijλi)−1

 .

Third, the conditional distribution of
˜
β is

˜
β|

˜
µ,

˜
ν,

˜
λ,

˜
z,

˜
x,

˜
y ∼ MN

(
ˆ
˜
β,Σˆ

˜
β

)
, where

ˆ
˜
β = Σˆ

˜
β

 ℓ∑
i=1

ni∑
j=1

mij∑
k=1

λi(zijk −νi −µij)˜
xijk +(1000Σ0)−1

˜
β0

 ,

Σˆ
˜
β =

 ℓ∑
i=1

ni∑
j=1

mij∑
k=1

λi˜
xijk˜

xT
ijk +(1000Σ0)−1

−1

.

Fourth, the fully conditional distribution of θt given
˜
z,

˜
θ(t) = {θs, s ̸= t} and data is given by

π(θt|˜
z,

˜
θ(t),

˜
y) ∝

ℓ∏
i=1

mi∏
j=1

[I(yij = t,θt−1 < zij ≤ θt)+ I(yij = t+1, θt < zij ≤ θt+1)] .

Notice that this conditional density is uniform density on the interval. That is

θt|˜
z,

˜
θ(t),

˜
y ∼ Uniform[max{max{zij ,yij = t}, θt−1},min{min{zij ,yij = t+1}, θt+1}] .

Fifth, given the sample of
˜
λ, we can use grid method to draw a. Transform a to ϕ1 = a

1+a ,
which is in (0,1). The conditional posterior distribution of ϕ1 is

π(ϕ1|
˜
λ) ∝

 ℓ∏
i=1

aaλa−1
i e−aλi

Γ(a)


ϕ1= a

1+a

.

Sixth, to draw δ2 we also use grid method. Transform δ2 to ϕ2 = δ2

1+δ2 , which is in (0,1).
The conditional posterior distribution of ϕ2 is

π(ϕ2|
˜
ν) ∝


( 1

δ2

) ℓ
2

exp
− 1

2δ2

ℓ∑
i=1

ν2
i


ϕ2= δ2

1+δ2

.

Seventh, to draw σ2 we also use grid method. Transform σ2 to ϕ3 = σ2

1+σ2 , which is in (0,1).
The conditional posterior distribution of ϕ2 is

π(ϕ2|
˜
µ) ∝


( 1

σ2

)∑ℓ
i=1 ni

2
exp

− 1
2σ2

ℓ∑
i=1

ni∑
j=1

µ2
ij




ϕ3= σ2
1+σ2

.

To implement the algorithm, we chose start points
˜
β(0),

˜
θ(0) equal to the MLE based on the
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previous paper by Chen and Nandram (2023), λ
(0)
i = 1, µ0(0)ij = 1, ν0(0)i = 1. We first

draw a, δ2, and σ2 using the grid method, and then jointly draw a sample of
˜
λ and

˜
z, and

simulate from the conditional distribution of µij , νi ,
˜
β and θt.

C. Bayesian bootstrap

Our interest is to predict the finite population proportions of 102 sampled wards for
all households. The covariates of individuals in non-sampled households and the size of non-
sampled households are unknown. We know the total number of households and individuals
in each sampled ward and we have all information about the sampled households. Therefore,
we decide to use these information in the Bayesian bootstrap approach to generate the non-
sampled household sizes and corresponding non-sampled covariates within sampled wards.
The Bayesian bootstrap (Rubin 1981) method is used sample the sampled households to
impute the non-sampled households. There are n = 12 sampled households in the sampled
wards and everyone is sampled from the sampled households. We know the sizes and co-
variates of all sampled households, and we simple need to have the sample sizes and the
covariates for all the non-sampled households in any sampled ward to do Bayesian predictive
inference in each sampled ward; the procedure is done independently for each sampled ward.

Let N denote the number of households in one of the sampled wards. We simply
need to fill in the sizes of the households and their covariates. This procedure is equivalent
to simply sampling the households. Denote the labels of the sampled households by 1, . . . ,n
to provide the information (sizes and covariates) of the non-sampled households with labels,
n + 1, . . . ,N . Denote the sampled indicators of each household by Ii, i = 1, . . . ,n. After the
bootstrap is executed, because it is based on sampling with replacement, there will be N∗

i

non-sampled households corresponding to the ith sampled household, and ∑n
i=1 N∗

i = N −n.

The Bayesian bootstrap assumes that

˜
I |

˜
p ∼ Multinomial(n,

˜
p),

where we actually observed Ii = 1, i = 1, . . . ,n,

˜
p ∼ Dirichlet(

˜
O),

Haldane’s improper prior, where
˜
O is a vector of zeros. Then, a posterior

˜
p |

˜
I ∼ Dirichlet(

˜
j), (5)

where
˜
j is a vector of ones. Therefore,

˜
N∗ |

˜
p,

˜
I ∼ Multinomial(N∗,

˜
p). (6)

To execute the bootstrap, simply draw
˜
p from (5) and

˜
N∗ from (6).
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